Why does serum contain ferritin?

*Douglas B. Kell\(^1\) & *Etheresia Pretorius\(^2\)

\(^1\)School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, MANCHESTER M1 7DN, Lancs, UK

\(^2\)Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.

CORRESPONDING AUTHORS

*Douglas B. Kell

School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, MANCHESTER M1 7DN, Lancs, UK

dbk@manchester.ac.uk

http://dbkgroup.org/

Tel: (+44)161 306 4492

*Etheresia Pretorius

Department of Physiology, Faculty of Health Sciences, University of Pretoria

Private Bag x323, ARCADIA, 0007

SOUTH AFRICA

resia.pretorius@up.ac.za

Tel: (+27)12 420 2864

Keywords: Ferritin – apoptosis – iron dysregulation – inflammation – chronic diseases – atopobiosis
In a recent article, Koperdanova and Cullis \(^1\) rehearsed the various interpretations of raised serum ferritin levels. In fact the most interesting question \(^2\) is why does ferritin appear in serum at all?

All modern network models of iron metabolism (e.g. \(^3\)\(^-\)\(^7\)) have iron being passed from the gut to peripheral cells via blood (serum) bound to transferrin, a well-established iron-transporting molecule that is present in serum at ca 0.6-3.3 g.L\(^{-1}\) \(^8\). By contrast, ferritin is an intracellular iron storage compound \(^3\)\(^5\)\(^7\); its normal range for serum is at levels 10,000-100,000 times lower than that for transferrin, being from very small levels to up to 300 µg.L\(^{-1}\) in men and slightly lower in women \(^2\).

While it was once thought that serum ferritin levels might reflect liver iron stores, our modern understanding (and the systems biology models) recognise, as indeed do Koperdanova and Cullis \(^1\), that it is far more commonly an inflammatory marker. All the evidence, however, it that it appears in serum by dint simply of cell death, and is thereby a cell death marker \(^2\).

Normally, serum ferritin is assessed via an antibody test, that detects only the protein. Where measurements to measure its iron content as well \(^9\)\(^-\)\(^11\), the serum ferritin itself is found to have lost almost all its iron \(^2\). The free iron thereby liberated can prove cytotoxic, both by catalysing the Fenton reaction to produce hydroxyl radicals \(^4\)\(^12\)\(^-\)\(^14\), and by the awakening of dormant microbes whose lipopolysaccharide can produce the inflammation characteristic of such diseases \(^15\)\(^-\)\(^17\).

We think that it is time for a re-evaluation of what serum ferritin measurements are really telling us.

Acknowledgments

We thank the Biotechnology and Biological Sciences Research Council (grant BB/L025752/1) as well as the National Research Foundation (NRF) of South Africa for supporting this collaboration.

2. Kell DB, Pretorius E. Serum ferritin is an important disease marker, and is mainly a leakage product from damaged cells. *Metallomics* 2014;6(4):748-73.

12. Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. *Arch Toxicol* 2010;577:825-89.

