
1 
 

Development of new computational 
approaches for analysis and visualization of 
fluxes of genomic islands through bacterial 

species. 
   

 

 

 

 

 

 

 

Louis Cronje in partial fulfillment of the degree (MSc Bioinformatics) 

2015 

Department of Biochemistry, School of Biological Sciences, 

Faculty of Natural and Agricultural Sciences, University of Pretoria  



2 
 

 ........................................................................................................................................................ 2 

 ................................................................................................................................................ 4 

 ................................................................................................................................................. 9 

Chapter 1. Background ............................................................................................................................... 10 

1.1 Literature Review .............................................................................................................................. 10 

1.1.1 Introduction ............................................................................................................................... 10 

1.1.2 The influence of gene sharing among prokaryotes ................................................................... 11 

1.1.3 Genomic island evolution .......................................................................................................... 15 

1.1.4 Genomic island detection .......................................................................................................... 18 

1.1.5 Barriers to horizontal gene transfer........................................................................................... 20 

1.1.6 Donor-recipient relations with graph theory ............................................................................. 23 

1.1.7 Functional analyses of genomic islands ..................................................................................... 27 

1.1.8 Summary .................................................................................................................................... 30 

1.2 Methodology ..................................................................................................................................... 31 

1.2.1 SeqWord Project and the Pre_GI database ............................................................................... 31 

1.2.2 Markov Clustering Algorithm ..................................................................................................... 33 

1.2.3 Cytoscape Freeware ................................................................................................................... 35 

1.3 Project Overview ............................................................................................................................... 36 

Chapter 2. Reconstruction of GI entities by compositional clustering of identified inserts of foreign DNA 

in bacterial genomes ................................................................................................................................... 38 

2.1 Grouping of GIs ................................................................................................................................. 38 

2.2 Calculating of OUP similarity values between groups of GIs ............................................................ 46 

2.3 Discussion .......................................................................................................................................... 52 

Chapter 3. Development of the web based platform for the visualization of fluxes of GIs ....................... 53 

3.1 System platform ................................................................................................................................ 53 

3.2 System interface ............................................................................................................................... 55 

3.3 Discussion .......................................................................................................................................... 63 

Chapter 4. Functional categorization of genomic islands groups ............................................................... 64 

4.1 Genetic functional attribution .......................................................................................................... 64 

4.1.1 COG classifications ..................................................................................................................... 64 

4.1.2 Virulence factor assignments ..................................................................................................... 69 

4.1.3 Gene networks ........................................................................................................................... 70 



3 
 

4.2 Co-occurrence of functional categories ............................................................................................ 74 

4.3 Associations of shared gene matches among groups of GIs............................................................. 79 

4.4 Discussion .......................................................................................................................................... 83 

Chapter 5 Investigation of HGT relationships using the Flux Visualizer ..................................................... 84 

5.1 Case study for Bacillus anthracis ....................................................................................................... 84 

5.2 Case study for Streptomyces & Mycobacterium .............................................................................. 91 

5.3 Discussion .......................................................................................................................................... 94 

Concluding remarks .................................................................................................................................... 95 

Bibliography ................................................................................................................................................ 97 

 

 

  



4 
 

 

Figure 1. 1 Proportion of genes (%) that are virulence factors (VFs) inside versus outside of genomic 

islands predicted by (A) IslandPath-DINUC, (B) IslandPath-DIMOB, and (C) SIGI-HMM GIs. Pathogens 

having GI predictions are grouped by genus. Adapted from (Ho Sui, et al., 2009). .................................... 12 

 

Figure 1. 2 Four of the most influential types of defense systems in 1516 bacterial and archaeal genomes 

(A) per occupying fraction of the genome (probability density function) and (B) per defense gene set ratio 

relative to the total number of genes. Adapted from (Makarova, et al., 2013). ........................................ 13 

 

Figure 1. 3 Distribution of the defense strategies among major prokaryotic taxa. The number of analyzed 

genomes for each taxon is indicated inside the respective bar. The colors represent the strategies as 

coded in Figure 1.2. Adapted from (Makarova, et al., 2013). ..................................................................... 13 

 

Figure 1. 4 Secular trends of methicillin-susceptible (white bars) and methicillin-resistant (shaded bars) 

Staphylococcus aureus (MRSA) infections in unique patients, identified during laboratory-based 

surveillance for the Community Health Network of San Francisco. The total no. of MRSA isolates is listed 

for each year. Adapted from (An Diep, et al., 2006). .................................................................................. 14 

 

Figure 1. 5. 1 Phylogenetic tree of microbial genomes. Tree branches correspond to genomes and branch 

colors represent different lineages. Horizontal connections between the branches correspond to HGT 

events; Adapted from (Popa & Dagan, 2011) Figure 1.5.2 (right) Schematic representation of gene flow 

through the E. coli chromosome through time. Adapted from (Martin, 1999) .......................................... 15 

 

Figure 1. 6 Node color denotes taxonomic classification at the phylum level. Each node denotes a 

microbial lineage, and each line is a significant co-occurrence relationship partitioned using unsupervised 

Markov clustering, to reveal modules (clusters) of co- occurring lineages. Adapted from (Chaffron, et al., 

2010) ........................................................................................................................................................... 16 

 

Figure 1. 7 Examples of regions in (a) Vibrio cholerae and (b) Neisseria identified as having atypical 

sequence properties at line peaks; Top bar: GC % content; Second bar: dinucleotide signatures; Third bar:  

Codon bias; Fourth bar: Amino acid bias. Adapted from (Karlin, 2001) ..................................................... 18 

 

Figure 1. 8 The number of Genomic Islands per genome for the 246 genomes tested (left). Adapted from 

(Roos & van Passel, 2011); the number of clustered GIs per genome (right). Adapted from (Roos & van 

Passel, 2011) ............................................................................................................................................... 19 

 

Figure 1. 9 Circular representation of the phylogenetic tree based on the hybridization of 7,055 probes 

from the six fully sequenced strains. Putative horizontal gene transfer events are represented using lines 



5 
 

between tips of the tree. The lines are colored according to the significance level of having more gene 

sharing than expected by chance with green, blue and red for p-values superior to 0.99, 0.999 and 0.9999

 .................................................................................................................................................................... 21 

 

Figure 1. 10 The directed network of recent lateral gene transfers. Node color corresponds to the 

taxonomic group of donors and recipients listed at the bottom. Connected components of endosymbionts 

are marked with numbers: (1) Helicobacter, (2) Coxiella, (3) Bartonella, (4) Leptospira, (5) Legionella and 

(6) Ehrlichia. Clusters of cyanobacteria are marked with letters: (a) high-light adapted Prochlorococcus, 

(b) low-light adapted Prochlorococcus, (c) marine Synechococcus, (d) other Synechococcus, (e) 

Nostocales and Chroococcales. Adapted from the study (Popa, et al., 2011) ............................................ 24 

 

Figure 1. 11 Distribution of connectivity and edge weight in the directed network. Adapted from (Popa, et 

al., 2011) ..................................................................................................................................................... 25 

 

Figure 1. 12 Pathogens in the largest connected component of the network. The white arrow marks a 

non-pathogen (Bukholderia thailandensis) within a pathogenic community. Adapted from (Popa, et al., 

2011) ........................................................................................................................................................... 25 

 

Figure 1. 13 Distribution of annotated genes within the GIs according to GO classification. Functional 

categories were split in three: Cellular Components (CC), Biological Processes (BP) and Molecular 

Functions (MF).  Asterisk means the number of annotated genes to each main category. Numbers 

between parentheses indicate the percentage of appearance. Adapted from (Fernández-Gómez, et al., 

2012). .......................................................................................................................................................... 28 

 

Figure 1. 14 The frequency of transferred genes by functional category and a genome sequence similarity 

index (Sgs) Adapted from (Popa, et al., 2011). ........................................................................................... 29 

 

Figure 1. 15 Successive stages of MCL flow simulation. Adapted from (Van Dogen, 2000) ....................... 34 

 

Figure 1. 16 MCL Clusters of phyla among gene networks reveal different common genes among Bacteria 

and Archaea. ............................................................................................................................................... 35 

 

Figure 2. 1 Percentage of BLASTN hits between pairs of GIs shared ranked compositional similarity. The 

threshold value used for clustering of GIs is depicted by a vertical red line. Adapted from (Bezuidt, et al., 

2011). .......................................................................................................................................................... 39 

 

Figure 2. 2 The boxplot frequencies of organisms assigned with GI groups for all DID thresholds of 5, 10, 

15, 20 and 20 combined. ............................................................................................................................. 40 

 



6 
 

Figure 2. 3 Pseudo code for grouping GIs in each organism. ...................................................................... 41 

 

Figure 2. 4 Frequency of bacterial organisms with different numbers of GI groups................................... 42 

 

Figure 2. 5 Distribution of GI counts in each group for DID threshold of 10. .............................................. 43 

 

Figure 2. 6 Example of grouping of the GIs of Nitrosomonas europaea ATCC 19718 in 3D space by 

LingvoCom. Each GIG group is color coded to clearly observe the separations of their GIs. ...................... 44 

 

Figure 2. 8 Frequencies of pair of GI OUP scores as per the Pre_GI database. ........................................... 47 

 

Figure 2. 9 Distribution of average and maximum OUP similarity links between groups of GIs. ............... 47 

 

Figure 2. 10 Maximal single-linkage comparison of intra-generic and extra-generic OUP similarities with 

reference genera set for A) Escherichia; B) Bacillus; C)  Streptococcus…………………………………………….48 - 49 

 

Figure 2. 11 Centroid-linkage comparison of intra-generic and extra-generic OUP similarities with 

reference genera set for A) Escherichia; B) Bacillus; C) Streptococcus……………………………………………50 - 51 

 

 

Figure 3. 1 Process flow diagram of the Flux Visualizer core operation. .................................................... 54 

 

Figure 3. 2 View GI Grouping Interface on the Flux Visualizer page. The search functionality is used to 

display relevant entries for the Salmonella species keyword. .................................................................... 55 

 

Figure 3. 3 The GI groupings of Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 

(NC_003197). The starting positions of the GIs in each group as well as the organism accession group is 

hyperlinked to the Pre_GI website for additional information on .............................................................. 56 

 

Figure 3. 4 Example usage of the Flux Analysis navigation link with suggested selections using Escherichia 

coli str. K-12 substr. W3110 accession AC_000091 and “Efflux” gene keyword as reference. ................... 58 

 

Figure 3. 5  Example usage of the Flux Analysis navigation link with custom selections based on accession 

numbers. ..................................................................................................................................................... 59 

 

Figure 3. 6 Example visualization of flux links among the organisms selected in Figure 3.5. ..................... 60 

 



7 
 

Figure 3. 7 BLAST visualization options for GIs with common genes for Shigella flexneri 2a str. 301 

plasmid pCP301 (NC_004851) and Escherichia coli O157:H7 EDL933 (NC_002655). ................................. 61 

 

Figure 3. 8 Pre_GI functionality for visualizing BLASTN similarity matches between Shigella flexneri 2a str. 

301 plasmid pCP301 (NC_004851) and Escherichia coli O157:H7 EDL933 (NC_002655). .......................... 62 

 

Figure 4. 1 Frequencies of GI’s genes by COG functional category. ............................................................ 66 

 

Figure 4. 2 Proportions of COG class distributions per GI group. ................................................................ 67 

 

Figure 4. 3 (A) Arrows depicting the clickable navigation links. (B) Functional class proportions (Excluding 

R and S classifications) for Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 

(NC_003197) GI group 1. ............................................................................................................................ 68 

 

Figure 4. 4 BLASTP hits for Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 

(NC_003197) GI group 1 against the MvirDB. ............................................................................................ 69 

 

Figure 4. 5 Proportions of organisms with common genes in the networks among major genera. ........... 71 

 

Figure 4. 6 Proportions of BLAST subjects in the gene networks. ............................................................... 72 

 

Figure 4. 7 Proportions of OUP among common genes in unique genera. ................................................. 73 

 

Figure 4. 8 Heatmap of the correlation matrix encompassing the frequency of co-occurrence of the COG 

categories. ................................................................................................................................................... 75 

 

Figure 4. 9 Separation of GI groups sharing COG category combinations. The red nodes are the top 10% 

of groups of GIs with the highest frequency of virulence factors. .............................................................. 78 

 

Figure 4. 10 Frequency of single BLAST matches among GI groups per COG class. ................................... 80 

 

 

Figure 5. 1 Genetic positions of GIs in two closely related Bacillus anthracis strains. ................................ 85 

 

Figure 5. 2 Example BLASTP visualizations of two GIs loci pairs (A & B) between Bacillus anthracis str. 

Sterne (NC_005945) and Bacillus anthracis str. A0248 (NC_012659). ....................................................... 86 

 



8 
 

Figure 5. 3 Flux Visualizer image of B. thuringiensis (yellow) plasmid gene fluxes to both Bacillus 

anthracis strains (red). ................................................................................................................................ 87 

 

Figure 5. 4 BLASTN visualization between Bacillus anthracis str. 'Ames Ancestor' plasmid, pXO2 

(NC_007323) and Bacillus thuringiensis serovar konkukian str. 97-27 plasmid NC_006578) .................... 88 

 

Figure 5. 5 Flux Visualizer image of B. thuringiensis (yellow) plasmid gene fluxes to Streptococcus 

pyogenes (green) and Bacillus anthracis strains (red). ............................................................................... 89 

 

Figure 5. 6 Flux Visualizer image of B. thuringiensis (yellow) plasmid gene fluxes to Staphylococcus 

aureus (green) and Bacillus anthracis strains (red). ................................................................................... 89 

 

Figure 5. 7 Flux Visualizer image of B. thuringiensis (yellow) plasmid gene fluxes to Clostridium difficile & 

perfringens (green & blue) and Bacillus anthracis strains (red).................................................................. 90 

 

Figure 5. 8 The BLASTP visualizations between Streptomyces violaceusniger Tu 4113 (NC_015957) and 

Mycobacterium tuberculosis H37Ra (NC_009525). .................................................................................... 91 

 

Figure 5. 9 Extreme HGT confirmed by BLAST similarities (green lines) from the Flux Visualization of 

secondary metabolite genes shared between Mycobacterium and Streptomyces. ................................... 93 

 

 



9 
 

 

Table 2. 1 Organisms with extreme number of GIs grouped into single G1 groups that indicated a single 

HGT event followed by severe fragmentation. ........................................................................................... 45 

 

Table 4. 1 COG database functional classifications with representative letters of functional categories. . 65 

 

Table 4. 2 Matrix of two random variables, X and Y, with a, b, c and d as non-negative counts of the 

number of observations. ............................................................................................................................. 74 

 

Table 4. 3 Virulence factor linkage associations for each of the COG categories. ...................................... 77 

 

Table 4. 4 Proportion of BLAST similarities between GI groups. ................................................................. 79 

 

Table 4. 5 The proportion of sequence similarities between groups of GIs from different taxonomic ranks.

 .................................................................................................................................................................... 81 

 

Table 4. 6 The frequency of sequence similarities between groups of GIs from different taxonomic ranks.

 .................................................................................................................................................................... 81 

 

Table 5. 1 No of BLAST similarities among GI group combinations of Mycobacteria and Streptomyces. .. 92 

 

Table 5. 2 Blast matches between Streptomyces and Mycobacterium reveal exclusive functional 

preferences to Secondary metabolites ........................................................................................................ 93 

 

 

 

 

  



10 
 

Chapter 1. Background 
 

1.1 Literature Review 
 

1.1.1 Introduction 

 

Oscillations of gene exchange in the prokaryotic world have enormous impacts on bacterial evolution 

and outbreaks of new diseases (Smets & Barkay, 2005; Seiffert, et al., 2013; Goldsmith , et al., 2013). Yet 

we have limited information on the dynamics of the complex system. Mobile genetic elements (MGEs) 

are shared between bacterial taxonomic ranks by means of horizontal gene transfer (HGT).  Genetic 

exchange rates are largely determined by sequence and ecological similarities among organisms and we 

expect closer related species to show increased HGT as a result. Successful HGT is characterized by 

compatible architecture and a physiological kinship to recipient organisms, provided the novel gene 

exerts advantageous influence for the recipient within its niche.  Furthermore, the acquisition of 

genomic islands (GIs) enables environmental and clinical strains to transform into threatening forces by 

providing both “offensive” and “defensive” virulence encoding factors. It is therefore imperative that we 

study the mechanisms of HGT as well as the underlying foundation of gene sharing relationships in the 

prokaryotic realm. Current research on the detection of GIs allows for the estimation of relative 

insertion times as well as transfer direction indices (Bezuidt, et al., 2011; Popa, et al., 2011). In turn, 

these indicators are proposed to reveal recurring HGT events to ultimately infer donor-recipient 

relationships. This raises some serious questions regarding the regulation of HGT between microbial 

organisms and our ability to predict the genetic and environmental signals that trigger them. Given the 

tremendous amount of GI markers already identified (Langille & Brinkman, 2009), we are able to 

venture into gene sharing arrangements between a multitude of species and we may simulate gene 

sharing networks even among diverse bacterial communities. A collection of gene flux networks will 

allow us to monitor new and most active gene exchange hotspots and assist in formulating accurate 

expectations regarding gene spread research, especially among those of pathogenic nature. However, 

due diligence should be given in the implementation of such a system to ensure that all necessary 

aspects are taken into account.  
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1.1.2 The influence of gene sharing among prokaryotes 
 

In the prokaryotic domain, genomic island (GI) exchange routines have extensively controlled ecological 

niche stability and susceptibility. With the availability of new properties provided by the readily 

integrated genetic segments, HGT has greatly influenced the adaptive ability of bacterial commensalism, 

symbiotic relationships and environmental interaction (Ulrich, et al., 2004; Jane & Frederick, 2011; 

Zongfu, et al., 2013; Ho Sui, et al., 2009). Our attention however, has only recently been focused on the 

detection of GIs with the realization of the association between significant virulence gene frequencies 

and the occurrence of GIs. Figure 1.1 shows the proportions of virulence factors inside and outside GIs 

predicted by three different IslandViewer methods (Langille & Brinkman, 2009).  It is not only the 

offensive elements we need to concern ourselves with; defensive properties increasing an organism’s 

resilience, for example by the addition of antibiotic resistance genes, further enable the organisms 

evasive or defensive strategies to overcome threatening evolutionary pressures. Makarova et al. (2013), 

evaluates the various known defense systems provided by genes typically associated with GIs and 

showed that the distribution of different defense mechanisms among archaea and bacteria are not 

uniform with respect to overall abundance and usage but rather cluster into distinguishable groups. This 

indicates different preferences for microbe resistance response and accentuates the need for unique 

approaches in dealing with each resistance class. Makarova et al. (2013), categorized the defense 

systems into four distinct subgroups. The various restriction-modification gene sets (R-M), Clustered 

Regularly Interspaced Short Palindromic Repeats with CAS protein gene sets (CRISPR), toxin with 

antitoxin (TA) systems as well as the abortive infection (ABI) gene sets. Figure 1.2 reveals the fraction of 

these gene found within GIs as well as the ratios of each class we may expect to find relative to the total 

number of genes within an organism. Figure 1.3 shows the various preferences of defense systems 

among major prokaryotic taxa.  

 

The implications of these studies are amplified in the hospital setting where active surveillance and strict 

hygienic procedures are implemented to prevent cross infections and outbreaks (Sabino, et al., 2011). 

Resistant strains quickly become dormant as resistances accumulate via a wealth of locally available 

gene pools (Baldan, et al., 2012).   
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Figure 1. 1 Proportion of genes (%) that are virulence factors (VFs) inside versus outside of genomic 
islands predicted by (A) IslandPath-DINUC, (B) IslandPath-DIMOB, and (C) SIGI-HMM GIs. Pathogens 

having GI predictions are grouped by genus. Adapted from Ho Sui, et al. (2009). 
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Figure 1. 2 Four of the most influential types of defense systems in 1516 bacterial and archaeal genomes 
(A) per occupying fraction of the genome (probability density function) and (B) per defense gene set ratio 

relative to the total number of genes. Adapted from Makarova, et al. (2013). 

 
 

 

 

Figure 1. 3 Distribution of the defense strategies among major prokaryotic taxa. The number of analyzed 
genomes for each taxon is indicated inside the respective bar. The colors represent the strategies as 

coded in Figure 1.2. Adapted from Makarova, et al. (2013). 
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An Diep et al. (2006) associates HGT with the emergence of new Methicillin-Resistant strains of 

Staphylococcus aureus (MRSA) within the Community Health Network of San Francisco and shows an 

increased detection of MRSA isolates over a timespan of only 8 years. Figure 1.4 reveals the steady 

increase of the resistant strains while the susceptible strain isolates decline.  

 

It is of grave importance that we formulate an understanding as to where and when threating transfer 

events do occur. Indeed, different GI detection strategies have been employed with sufficient 

benchmarking to determine the accuracy and completeness of each method (Becq, et al., 2010; Karlin, 

2001). However, limited work on the origination of gene flux have been done in the community setting, 

with studies directed at certain taxonomic involvements or with predetermined gene prominence 

(Bezuidt, et al., 2011; Encinas, et al., 2014). Discoveries relating to GI flows are interest-driven and we 

lack a comprehensive view of co-existing GI highways.  

 

 

 

 

Figure 1. 4 Secular trends of methicillin-susceptible (white bars) and methicillin-resistant (shaded bars) 
Staphylococcus aureus (MRSA) infections in unique patients, identified during laboratory-based 

surveillance for the Community Health Network of San Francisco. The total no. of MRSA isolates is listed 
for each year. Adapted from An Diep, et al. (2006). 
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1.1.3 Genomic island evolution 
 

In an attempt to understand the multifaceted aspects of GI transfer and integration events, we have 

explored the evolutionary basis for the provision of HGT mechanisms. However, we are left to speculate. 

It has been proposed that HGT was derived from integrating plasmids or phages which had lost their 

abilities of self-replication and subsequently transferred themselves for more stable succession lines 

(Ulrich, et al., 2004). This adaptation has caused great ripples through the evolution of prokaryotes, 

successfully driving the creation of countless new bacterial species (Jane & Frederick, 2011). Figure 1.5.1 

and Figure 1.5.2, are representations of the implications of HGT motivating genetic variation among 

microbial tree of life. Ulrich et al. (2004) explains that bacteria which are present in communities which 

also contain other species, have access to a greater collection of mobile gene pools. HGT then, is more 

likely to occur within ecological niches, which are colonized by diverse microbes than of those of sparely 

populated environments.  Figure 1.6 reveals a global network of coexisting microbial lineages as a 

demonstration of the multitude of bacterial communities (Chaffron, et al., 2010). 

 

 

Figure 1. 5. 1 Phylogenetic tree of microbial genomes. Tree branches correspond to genomes and branch 
colors represent different lineages. Horizontal connections between the branches correspond to HGT 

events. Adapted from Popa & Dagan (2011) Figure 1.5.2 (right) Schematic representation of gene flow 
through the E. coli chromosome through time. Adapted from Martin (1999). 
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Figure 1. 6 Node color denotes taxonomic classification at the phylum level. Each node denotes a 
microbial lineage, and each line is a significant co-occurrence relationship partitioned using unsupervised 

Markov clustering, to reveal modules (clusters) of co- occurring lineages. Adapted from Chaffron, et al. 
(2010). 
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The process for the assimilation of genes obtained through HGT can be divided into stages, namely the 

transference of mobile DNA into the cytoplasm, the integration of the acquired DNA into the site 

specific regions of the genome and the clonal inheritance to following generations (Popa, et al., 2011). 

From the fully sequenced genomes currently available, we observe a substantial fraction of open 

reading frames (ORFs), have been involved in HGT events (Popa, et al., 2011; Jane & Frederick, 2011). 

Speculatively, almost all genes are subject to HGT with only a few resistant to it (Park & Zhang, 2012). 

Gene exchange events may be done through a number of mechanisms of which the most prominent are 

transformation, conjugation, transduction and gene transfer agents (Popa & Dagan, 2011).  

 
It has been shown that all GIs contain a recombination mechanism consisting of either an integrase or in 

some cases, a recombination directionality factor (Boyd, et al., 2009). Integrases are specific to the sites 

they bind to and it is well established that such binding usually occur at tRNA loci. However, the number 

of specific tRNA genes used to integrate over the entire genome are limited to a minority (Williams, 

2002). Other suggestions of integration occurring at specific sites are evident in instances such as for 

Streptococcus thermophilus CNRZ368, where a significant number of genomic islands are recombined at 

the same position in seven other strains of S. thermophiles (Pavlovic, et al., 2004). Soon after the 

integration of foreign elements into the genome, these regions are brought into functional questioning 

by the host organism. Transferred genes tend to be deleted quickly if they prove to provide no or 

unfavorable utility (Popa, et al., 2011). This means that although large genic regions may have been 

obtained through HGT, only snippets may be retained within the host genome. Furthermore, it has been 

suggested that the translocation of genes takes place preferentially in recently acquired genes (Hao & 

Golding, 2009). Upon obtaining new genetic material, a host bacterium frequently counterbalances the 

acquisition with a loss of native genes (Ulrich, et al., 2004; Lefeuvre, et al., 2013). Whether these steps 

would prove to be advantageous remains to be decided by selection.  
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1.1.4 Genomic island detection 
 

The detection of GIs has received a great deal of attention. Several methods encapsulating the discovery 

of genomic regions foreign to the host organism exists. The first group of methods implements 

comparative genomics to identify genomic regions unique to one organism by comparing multiple 

related strains. HGT events, even when occurring infrequently, have major impacts on phylogenetic 

inferences. Therefore the phylogenetic incongruence method is one of the most accurate GI detection 

methods to date (Langille, et al., 2010). However for purposes of computational expense, such 

approaches are severely limited due to the method being completely dependent on the breadth and 

depth of the query sequence database. The detection of orphan genes of foreign origin, for example, is 

especially evaded by these approaches (Becq, et al., 2010). Moreover, methods based on phylogenetic 

differences are not well suited for the exhaustive search of HGT as a sufficient number of orthologs for 

each gene under inspection is required to produce any significant results. A second group of methods 

infers HGT when encountering atypical sequence composition from a gene or gene set when compared 

with the rest of the genome. Differences in GC content along with dinucleotide abundance values, 

codon biases and oligonucleotide frequencies has been used to great extent. Overall, methods based on 

oligonucleotide frequencies share the greatest accuracy with sufficient sensitivity (Becq, et al., 2010; 

Langille, et al., 2010; Karlin, 2001; Roos & Mark , 2011).  

 

 

 

Figure 1. 7 Examples of regions in (a) Vibrio cholerae and (b) Neisseria identified as having atypical 
sequence properties at line peaks; Top bar: GC % content; Second bar: dinucleotide signatures; Third bar:  

Codon bias; Fourth bar: Amino acid bias. Adapted from Karlin (2001). 
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Some pitfalls associated with sequence composition methods do exist. Highly expressed genes, such as 

the genes in ribosomal operons, have a sequence composition that is dramatically different from the 

host genome and would therefore be classified as a GI. Additionally, amelioration, an evolutionary 

process described as mutational pressure that slowly causes genes which were integrated to adapt to 

the host genome signature over time, also limits the ability of sequence composition methods to detect 

more ancient GIs (Wiedenbeck & Frederick, 2011). Other approaches for the detection of foreign regions 

integrates the identification of genes associated with GIs by searching through annotation data and 

finding BLAST sequence similarities. In retrospect, GIs which were obtained from recent acquisitions still 

reflect the sequence composition patterns of their previous hosts. It is there for possible to re-trace 

donor organisms where sufficient matching is found. Roos & Mark et al. (2011), state that when multiple 

GIs are identified in a single organism, they may share resemblances in their genomic composition and 

we may expect that a common donor was responsible for those transfers. Through the use of clustering 

techniques, it is possible to bundle these sequences together and we may only need to account for a 

single common donor for each cluster. The authors evaluated 1787 GIs from 246 genome sequences in 

88 species by allocating GIs in individual organisms which show similar dinucleotide relative abundance 

values into groups. Figures 1.8 shows the calculated number of GIs per analyzed genome and number of 

GIs within clusters after grouping. These results show that even in lack of sequence alignment, the 

regions detected with atypical sequence composition can be associated with each other individually. 

Clustering related sequences in this way provides a reference for analyzing the roles and interactions 

between the donor and recipient organisms because they may share common regulatory modules or 

mobilizing capacities. 

 

Figure 1. 8 The number of Genomic Islands per genome for the 246 genomes tested (left). Adapted from 
(Roos & van Passel, 2011); the number of clustered GIs per genome (right). Adapted from Roos & van 

Passel, 2011) 
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1.1.5 Barriers to horizontal gene transfer 
 

HGT may bring genes from taxonomically unrelated species into a considered genome. Unlike point 

mutations, genetic rearrangements, gene loss and duplications, the speed at which microbes are able to 

utilize new functionality through the use of HGT is unmatchable. The current perspective regarding HGT 

exchange routines is that they are merely random dealings due to the promiscuity of microbes (Wiezera 

& Merklb, 2005). However, the evolutionary driving force for HGT is faced with transfer barriers 

(Thomas & Nielsen, 2005). Donor–recipient genome sequence composition similarities have been shown 

to correlate positively with HGT event frequencies. While gene acquisitions from distantly related 

species have been reported in literature, such events are proposed to evade the sequence similarity 

complications by integrating near or with a recognized promoter or by advances such as the 

nonhomologous end-joining DNA doublestrand break repair mechanisms (Popa, et al., 2011; Shuman & 

Glickman, 2007). Another requirement for the successful integration of foreign DNA is functional utility. 

Following the integration, nonfunctional or unnecessary DNA is usually discarded. Physical distance 

between HGT parties serves as an immediate barrier, evident in the formation of habitats (here 

transduction is considered as the longest range mechanism due to the phage mobility) (Popa & Dagan, 

2011). The availability of nutrients can also serve to isolate geographic reproduction and may therefore 

also be included in the latter as a mechanism of HGT maintenance. However, it has been reported that 

multiple antibiotic resistance genes were shared among very diverse pathogens which proliferated in an 

agricultural context (Gatica & Cytryn, 2013). Furthermore, this phenomenon has also been shown to 

occur between pathogenic species confined to a single ecological niche (Djordjevic, et al., 2013). 

Therefore, a means enabling the travel of microbial genes from one part of the biosphere to another 

must exist with probable origins from completely separate areas (Wiezera & Merklb, 2005). Given the 

assumption that above mentioned restrictions do have significant impacts on the directive flow of GIs, it 

remains difficult to classify to what extent gene pools are available or transferable between microbial 

populations. To attempt such analyses, patterns of gene movements with sufficient information 

regarding sequence similarities and functional associations needs to be evaluated in order to maintain 

an understanding of the impacts of the gene sharing relations. 

 

Lefeuvre, et al. (2013), evaluate the genomic plasticity of R. solanacearum to determine gene exchange 

flows accessible to the species. The authors suggested that through analyses of gene movement 

patterns, factors such as gene function and ecology reveal possible HGT highways. The study used 72 R. 

http://thesaurus.com/browse/unmatchable
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solanacearum strains as representatives of all the phylotypes of R. solanacearum through the 

hybridization of metagenomic data using microarrays. Probes were chosen to be representative of all 

the coding regions of six full R. solanacearum genome sequences available at that time. Hybridization 

signals were filtered and analyzed to obtain a matrix of positive and negative probe signals. The 

presence or absence of a signal for each probe were used to reconstruct the phylogeny of R. 

solanacearum with frequencies of gene gain and gene loss, estimated independently. Figure 1.9 reveals 

estimated HGT pathways on a circular phylogenetic tree for the species and is representative of the 

existence of transfer restrictions from certain clades. 

 

 

 
 

 

Figure 1. 9 Circular representation of the phylogenetic tree based on the hybridization of 7,055 probes 
from the six fully sequenced strains. Putative horizontal gene transfer events are represented using lines 

between tips of the tree. The lines are colored according to the significance level of having more gene 
sharing than expected by chance with green, blue and red for p-values superior to 0.99, 0.999 and 0.9999 
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While it has been shown that HGT is also more common among closer-related species sharing greater 

sequence composition similarity, examples of what may be thought of as improbable HGT events, have 

been found (Popa & Dagan, 2011). Gene translocations and nucleotide substitution rates increased for 

recently transferred segments as compared to those of conserved or ancient genes (Hao & Golding, 

2009). Collectively these points suggest that even though HGT plays a huge part in the evolution of 

prokaryotic organisms, some exchange limiting influences exist. These boundaries represent active gene 

flux preferences forming underlying platforms which governs GI exchange routines by forces such as 

physical distance, sequence composition, DNA integration mechanisms and micro-flora ecology (Popa & 

Dagan, 2011; Lefeuvre, et al., 2013). The extent and magnitude of these influences are still debated. 

However, they may assist in identifying the roles of HGT between taxonomically closer species and 

imports from distant origins. Moreover, we may use the information shown in these studies to approach 

the implementation of a system for the simulation of gene sharing networks. 
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1.1.6 Donor-recipient relations and graph theory 
 

The process of HGT is becoming clearer as additional research brings forth new information surrounding 

the mechanisms behind it. It is evident from literature that GIs are generally obtained at similar insertion 

sites and the integrated regions become fragmented into a mosaic of foreign regions scattered across 

the genome in a non-uniform fashion due to the multitude of increased evolutionary forces acting upon 

them. Taking the information in the above mentioned studies into account, it then becomes increasingly 

difficult to examine single GI markers with attempts at relational analysis regarding potential donors and 

recipients. Roos et al. (2011), indicated that a significant proportion of GI in individual bacterial 

organisms shared similar dinucleotide frequencies. As explained, these are proposed as recurring 

acquisitions from the same donor to the same acceptor. Another explanation may be that they are 

fragments of the same transfer which were subject to translocation. To prevent the loss of information 

in this way, attempts at relational analyses should be considered from a perspective of clustered GIs. GIs 

in individual organisms should be grouped with reasonable technique to counteract the fragmentation 

and to represent independent transfer events. In addition, the magnitude of GI data already generated 

poses a challenge in terms of extracting sensible information for a myriad of species.  

 

The use of networks represented as graphs integrated with GIs research has been proposed in previous 

literature. Popa et al. (2011), evaluated a total of 657 sequenced prokaryotic genomes by exemplifying 

HGT donor-recipient events with a directed network. The authors identified 446,854 protein-coding 

genes using atypical GC content values which deviated from sequential sequence windows over the 

genome compared to the GC content of the entire genome. Subsequently these genes were scanned for 

most likely donors by searching for orthologs with the highest sequence similarity to the acquired gene 

but excluding orthologs that share a common acquisition event with the specific gene. The method 

revealed donors for a subset of 32,028 of the identified genes. The subset of genes was then embodied 

into polarized HGT events as input to a directed network. The nodes were connected by directed edges 

pointing from the donor node to the recipient nodes. For additional calculations on the distribution of 

network connections, edge weights were quantified as the number of genes that were transferred from 

unique donor to unique recipient. Figure 1.10 shows the network graph produced by using a force-

directed layout. Figure 1.11 reveals the observed number of connections for a typical node along with 

the edge weight distribution. 
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Figure 1. 10 The directed network of recent lateral gene transfers. Node color corresponds to the 
taxonomic group of donors and recipients listed at the bottom. Connected components of endosymbionts 
are marked with numbers: (1) Helicobacter, (2) Coxiella, (3) Bartonella, (4) Leptospira, (5) Legionella and 
(6) Ehrlichia. Clusters of cyanobacteria are marked with letters: (a) high-light adapted Prochlorococcus, 

(b) low-light adapted Prochlorococcus, (c) marine Synechococcus, (d) other Synechococcus, (e) 
Nostocales and Chroococcales. Adapted from the study Popa et al., (2011). 
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Figure 1. 11 Distribution of connectivity and edge weight in the directed network. Adapted from Popa et 
al., (2011). 

 
 
 

 

 

Figure 1. 12 Pathogens in the largest connected component of the network. The white arrow marks a 
non-pathogen (Bukholderia thailandensis) within a pathogenic community. Adapted from Popa et al., 

(2011). 
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We observe several communities forming from densely connected regions. These communities are 

mostly shared by members of the closely related or similar taxa. From the network, the authors 

conclude that most HGT occurs between donors and recipients within the same taxonomic group. They 

propose this is due to closely related species having similar genome sequence compositions. The 

usefulness of the network is further extrapolated by selecting a subset of the graph to illustrate 

interactions between pathogenic and non-pathogenic organisms as per Figure 1.12. 

 

For determination of GI flow, closer related species were expected to share gene exchange events more 

frequently and we would therefore also expect such species would harbor genes with parallel function 

or ontology. However, BLAST sequence similarity implies a functional conservation rather than a 

phylogenetic kinship. Single genes comparisons hold very little information in the context of the entire 

GI transfer relations. Since one GI may share the same single gene to a completely dissimilar GI in 

another microbe, an attempt to imply a HGT relationship between these GIs is erroneous and would 

give a false impression as to associations of specific donor-recipient interactions. Moreover, the 

exclusion of certain genera may also obscure the resulting network and is indicative of a requirement to 

provide specific suggestions of organisms to formulate more accurate visualizations. 
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1.1.7 Functional analyses of genomic islands 
 

We have rarely ventured into correlations of co-occurring gene products found in horizontally 

transferred regions, which has resulted in a lacking perspective of associations between bacterial 

lifestyle and GI composition. Analyses of GI content and functions are challenging due to the lack of 

standardized annotation and a large amount of hypothetical genes. Several solutions have been 

proposed to overcome this issue. The COG database allows for the classification of proteins on the basis 

of the orthology concept and is commonly used in approaches of sorting gene products. The database of 

Clusters of Orthologous Groups (COG) provides an interface for the phylogenetic classifications of 

proteins encoded in 21 complete genomes of bacteria, archaea and from the yeast Saccharomyces 

cerevisiae. The database comprises of 2091 COGs that includes gene products of up to 83% of the 

bacterial and archaeal genomes and up to 35% of Saccharomyces cerevisiae (Tatusov, et al., 2000). The 

resulting gene products were divided into 25 unique functional classes. Using these functional 

classifications we may group genes, even from distantly related organisms, in a standardized measure. 

Another approach for the classification of gene products is done using the GeneOntology database (GO). 

The GO database is a project developed for describing gene products and characteristics using 

controlled vocabulary terms. The GO database has developed formal ontologies that represent over 40 

000 biological concepts which are updated regularly (Ashburner, et al., 200). Proteins shared in two or 

more organisms provide strong evidence for the role of these proteins in all organisms, if the function or 

products is known in at least one. The authors describes the role of proteins to three main categories: 

Biological process, Molecular functions and Cellular components (Ashburner, et al., 200). 

 

Fernandez-Gomez et al. (2012), studied the gene contents of GIs in 70 marine bacteria to reveal 

functional trends significant to the ecology. The author used the GO database for the classification of 

gene functions and identified the highest proportion of gene functions were related to DNA integration. 

Other categories also over-represented were found among cell membrane development and 

transposition. Figure 1.13 shows the distribution of genes according to GeneOntology (GO). 
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Figure 1. 13 Distribution of annotated genes within the GIs according to GO classification. Functional 
categories were split in three: Cellular Components (CC), Biological Processes (BP) and Molecular 
Functions (MF).  Asterisk means the number of annotated genes to each main category. Numbers 

between parentheses indicate the percentage of appearance. Adapted from Fernandez-Gomez et al. 
(2012). 

 

 

Merkl et al. (2006), evaluated the GIs of 63 bacterial organisms and attributed COG functions to the 

genes found within. The authors assigned the organisms to separate groups based on taxon and habitat 

to find significant functional class usage differences. In all groups, genes related to replication 

recombination and repair were always significantly over-represented, with genes related to intracellular 

trafficking, cell motility and defense mechanisms among the most predominant classes. Genes related to 

information storage and processing tracked among the least. Popa et al. (2011), evaluates the types of 

genes found in the GIs of 657 sequenced prokaryotes as an example of the use of the COG scheme to 

illustrate over-and-underrepresented gene functions among horizontally transferred genes.  Figure 1.14 

reveals the classification of gene types per frequency of COG class. 
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Figure 1. 14 The frequency of transferred genes by functional category and a genome sequence similarity 
index (Sgs) Adapted from Popa et al. (2011). 

 

The results from these studies indicated that a large proportion of genes within the analyzed organisms 

were dedicated to the actual transfer and integration of the regions themselves. Given the importance 

of these integration genes, it is unlikely to encounter an underrepresentation of these classes in 

frequent and successful GI transfers. However, the exclusion of these classes may reveal interesting 

results among the remaining content, especially with regards to the co-occurrence of certain gene 

classes with others. The investigation of functional classes in a system for the monitoring of HGT will 

allow for the separation of GIs on a functional level and may furthermore assist in describing the roles of 

HGT among various organisms based on common gene content.   
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1.1.8 Summary 
 

GI exchange routines in prokaryotic kingdom have been shown to exert great influence for the 

survivability and adaptations of microbes. Virulent strains have become prominent and widespread as 

pathogenicity islands become more accessible via HGT. Fortunately, we have identified some HGT 

barriers which require additional mechanisms for species which do not inherently share similar 

sequence compositions. In this regard, the promiscuity of microbes are countered to a debatable extent 

and we may use this information to assist in our investigations of gene movement assessments. To 

enable the formulation of expectations related to the outbreak of new or recurring diseases, gene 

movement patterns needs to be evaluated from a unified perspective. Therefore, we need an 

understanding of the mechanisms of HGT and suitable representations of unique HGT events. Our 

approaches to the detection of GIs in a bacterial host genome has reached a stage of maturity to the 

extent were we now have sufficient information to simulate gene fluxes even among diverse organisms. 

We may find foreign genetic regions in different parts of a host genome which share a likely common 

origin as a result of successive HGT between two organisms, or gene translocations of specific 

horizontally transferred regions. Therefore, GIs which have been identified as sharing compositional 

similarities in a single bacteria should subsequently be grouped to unify all the genes which formed part 

of a common HGT event. It is challenging to attempt relational analyses from a fragmented point of 

view, as the clustering of GIs in this way results in a minor partitioning of sources, and therefore 

indistinguishable origins. To visualize unique HGT events we may employ graph theory with clustering 

algorithms to reveal the underlying HGT flux structures. The resulting information may be used to derive 

preliminary hypotheses required for subsequent gene spread predictions. Furthermore, it is necessary 

to categorize the coding regions in GIs in a standardized format so that we may formulate possible 

association between the content and the role of HGT in a controlled fashion.    
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1.2 Methodology 
 

1.2.1 SeqWord Project and the Pre_GI database 
 

The earlier studies by Karlin et al. (2001) showed the evolutionary implications of dinucleotide and 

codon biases, with extended statistical approaches by various authors (Deschavanne, et al., 1999; Pride, 

et al., 2003) to finally propose methods to detect genomic regions harboring oligonucleotide sequence 

usages significantly different from the rest of the genome. 

The SeqWord project (http://www.bi.up.ac.za/SeqWord/) incorporated tertranucleotide usage patterns 

as a matrix of deviations of observed versus expected oligonucleotide usage (OU) counts. These 

oligonucleotides or “words” are distributed logarithmically in sequences and deviations from the 

expected frequencies are quantified by Equation 1.1. 

 

Equation 1.1 

 

where n is any nucleotide A, T, G or C in a N-long word; C[1…N]|obs is the observed count of a word 

[1…N]; C[1…N]|e is its expected count and C[1…N]|0 is a standard count estimated from the 

assumption of an equal distribution of words in the sequence: (C[1…N]|0 = Lseq  4-N). Expected counts 

of words C…]|e were calculated in accordance to the applied normalization scheme. For instance, 

C[…]|e = C[…]|0 if OU is not normalized, and C[…]|e = C[…]|1 if OU is normalized by the GC-

content (Reva & Tümmler, 2005). These oligonucleotide usage patterns (OUP) represented the 

normalized measures of the sequence pattern similarity between two GIs. Recent acquisitions are 

known to constitute oligonucleotide usage patterns of former hosts which allow the possibility to trace 

down their distribution patterns and identify their putative donors (Roos & Mark , 2011).   

Additionally, a distance percentage (D) was calculated between the host genome pattern and its 

relevant putative GI sequence pattern as the sum of absolute values of the subtractions between ranks 
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of identical oligonucleotides or words (w, in a total 4N different words) after the ordering of words by 

[1…N] values in patterns i and j by Equation 1.2: 

 

 

 

Equation 1.2 

 

This distance percentage (D) was in turn used to classify how divergent the OUP of the GIs were from 

their host genome OUP. Consequently, D might be interpreted as the amount of relative evolutionary 

time the process of amelioration was in effect. Therefore, this measure served as a representation of 

the relative time of insertion (Reva & Tümmler, 2005). Hereinafter in the text percentage in D values will 

be omitted. 

A large number of bacterial organisms and plasmids were scanned with the above mentioned 

procedures from SeqWord and putative genomic islands saved to a MYSQL database called Pre_GI 

(http://pregi.bi.up.ac.za/). The database to date consists of 26,744 predicted GIs from a total of 2,407 

analyzed bacterial replicons downloaded from the NCBI (http://www.ncbi.nlm.nih.gov/) in the Genbank 

accession format. The Pre_GI database is focused around creating a research environment for the 

mining of bacterial DNA sequences though the use of genome linguistics. The database enables users to 

deconstruct the ontological relationships between bacterial mobile genetic elements and to examine 

the global spread of genetic vectors through taxonomic barriers. The Pre_GI database contained GI 

composition similarity scores computed by comparisons of sequence pattern similarities (OUP) for all 

GIs in the database. Sequence pattern similarity comparisons among GIs produced 69,176,627 matching 

scores, indicating the strength of OUP resemblances to every other respective GI.  
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1.2.2 Markov Clustering Algorithm 
 

The use of the Markov Clustering Algorithm (MCL) is not uncommon in Bioinformatic studies and is 

generally regarded as well suited for high-throughput data. MCL is mostly known for its applications in 

protein interaction networks within the field of Biology. However, because the intended use of MCL is 

not to find clusters but rather to identify the underlying cluster structure, it may be used regardless of 

the number of nodes and without making any assumptions of the data a priori. MCL is also appropriate 

for representations of graphs due to its intuitive modelling of node and edge implementation as 

community interactions. MCL is indicative of a superior technique with regards to execution time and 

processing power requirements as it has been shown to outperform other clustering algorithms 

(Brandes, et al., 2008; Foggia, et al., 2008; Van Dogen, 2000; Guzzi & Cannataro, 2012).  

 

With regards to the implementation of MCL in the analysis of HGT, GIs may be presented as nodes and 

high sequence composition pattern similarities as edges between the GIs. We may also provide raw 

BLAST sequence similarity scores as edge attributes, although base sequence similarity allows us to infer 

a functional resemblance of gene products, rather that of a common origin. 

 

The MCL algorithm clusters several nodes into groups by simulating stochastic flows between edges and 

analyzing the distribution of the flow spread (Van Dogen, 2000). By observing the walks of a network we 

can derive certain behaviors of the elements of the network. For each walk the probability of taking a 

next route may be described as the probability that the particular route will be chosen next, based on 

the number of surrounding connections. Thus, highly connected regions are more likely to cluster 

together and the probability of diverting to a distant node from another cluster only becomes prevalent 

once closer related nodes have been routed. MCL also considers areas of weak and strong connections 

to iteratively decease the flow where it is weak and increase the flow where it is strong. Formally, MCL 

represents a matrix of a graph M. An associated Markov matrix MxM of the normalized values of M then 

relates to the inclination of a node to be attracted to each of its neighboring nodes (Guzzi & Cannataro, 

2012). However, since all nodes in MxM have a non-zero attraction to each of its neighbors at this stage, 

additional computation is required to distinguish between nodes which are strongly connected to each 

other but not in the same region in the matrix. The consecutive powers of MxM is then used to calculate 

the increasing probability of attractions for distant but allured nodes. The algorithm uses a parameter, 

called the inflation value, to change node attraction probabilities. Thus based on the inflation 
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parameter, the structure of a cluster network changes so that for inflation values greater than one, an 

increasing amount of clusters are obtained (Van Dogen, 2000). Figure 1.15 below is representation of 

the stages of MCL execution (Van Dogen, 2000). 

 

 

 

Figure 1. 15 Successive stages of MCL flow simulation. Adapted from (Van Dogen, 2000) 
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1.2.3 Cytoscape Freeware 
 

Cytoscape is an open source software platform used for the modelling of interaction networks through 

visualization. The program was initially designed for molecular interaction networks in biological 

research, with integrated annotation and gene expression profiles as a standard. The program also 

allows for the addition of external applications via designed plug-ins. These plug-ins enables the 

program to perform multiple functions on a single input of data. ClusterMaker is a Cytoscape plugin 

which incorporates different clustering techniques including MCL (Morris, et al., 2011; Cline, 2007).  

Cytoscape allows for the addition of external data to attribute edges and nodes with enhancements to 

the graph at each import. We may therefore initiate the MCL procedure with composition similarity 

scores as weights and provide more information to the Cytoscape server for the consumption of 

attributes related to functional annotation, BLAST similarity scores and taxonomic classifications. Figure 

1.16 shows an example usage and output of Cytoscape with the clusterMaker plugin.  Here the 

separation of bacterial and archaeal BLAST sequence similarities are illustrated after the application of 

MCL and the force-directed layout. MCL detects a difference in the common genes in between the 

kingdoms of Archaea and Bacteria as shown in the two separate clusters. 

 

 

Figure 1. 16 MCL Clusters of phyla among gene networks reveal different common genes among Bacteria 
and Archaea. 
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1.3 Project Overview 
 

The objective of the project is to develop a system (Flux Visualizer) for the graphical monitoring and 

large scale analysis of MGEs identified in the Pre_GI database, in order evaluate and determine non-

random HGT event associations, and to highlight GI exchange pathways between various taxonomic 

ranks by integrating GI sequence composition patterns and relative insertion time similarities. The 

visualization of the donor-recipient relationships should be implemented through the Cytoscape 

freeware (Cline, 2007) to ensure applied procedures are accurate and up to date. Additionally, the 

Markov clustering algorithm will be employed with modeled layouts from Cytoscape to present unique 

elements revealing probable donor-recipient relationship by means of graph construction. Studies 

surrounding gene flux relations are usually subject to certain taxonomic involvements and would 

therefore also require selection criteria’s to identify only the most prominent inclusions. The system will 

enable the user to select organisms of interest by entering Genbank accession numbers and taxonomic 

keywords as well as to provide suggestions from organisms identified to share significant BLAST hits 

among their GIs. In this regard, networks of successive BLAST matches will allow users to admission non-

related inclusions based on common gene functions. Furthermore, all GI genes will be assigned to 

functional categories most accurately portraying their roles in individual GIs to assist in describing the 

characteristics of HGT between the targeted species. 

 

The project had four main goals to achieve: 

 

1. Investigate the level of fragmentation of genomic islands (GIs) in bacterial genomes. The 

working hypothesis is that the number of events of horizontal gene transfer was overestimated 

in the Pre_GI database due to fragmentation of GIs. To be able to predict fluxes of GIs through 

bacterial species, it is important to reconstruct entities of mobile genetic elements. This aim will 

be addressed by grouping GIs through compositional similarity (Chapter 2). 

 

2. Construct a system for visualization of HGT events based on oligonucleotide usage similarities 

among the reconstructed entities of mobile genetic elements. To enable interpretation of the 

gene spread between organisms selected by users of the system, MCL and graph theory 

approaches will be applied to simulate and visualize fluxes of GIs through various bacterial 
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species. The system will be implemented on a web-based platform integrated with a server 

instance of Cytoscape to ensure appropriate procedures are applied (Chapter 3). 

 

3. Evaluate the distributions of co-occurring functional class and genetic contents among the 

reconstructed entities of mobile genetic elements. We hypothesize that it is possible to separate 

and cluster groups of GIs based on functional preferences. To be able to describe the functional 

aspects of fluxes of GIs visualized with the system, the COG database will be used to assign 

functional roles to all of the coding regions in each GI. This aim will assist in describing the 

practical roles of HGT among selected organisms (Chapter 4). 

 

4. Validate the system functionality by investigating associations of BLAST hit matches among 

groups of GIs as a case study. To illustrate the use of the system, organisms which show 

significant BLAST hits matches between their groups of GIs, will be used as example inputs to 

the system. This aim will be addressed by visualizing and describing ontological HGT links 

between the selected organisms (Chapter 5). 
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Chapter 2. Reconstruction of GI entities by 

compositional clustering of identified inserts of 

foreign DNA in bacterial genomes 
 

2.1 Grouping of GIs 
 

It is known from literature that GIs are generally exposed to accelerated substitution rates as well as 

increased gene translocations soon after integration (Hao & Golding, 2009). Consequently, newly 

integrated regions are frequently fragmented and these fragments may incorrectly be perceived as 

separate HGT events. Furthermore, unrelated GIs may be expected to contain homologous genes by 

chance and this would give a false impression of gene exchange between the hosting organisms. To 

obtain an accurate representation of the HGT relationships between microorganisms in the Pre_GI 

database (http://pregi.bi.up.ac.za/index.php), HGT events should be clearly distinguished from 

consequent GI fragmentation and rearrangement. Donor-recipient links formulated in such a way, will 

serve to identify unique GI origins among numerous equivalent matches, since we will be able to 

recognize which GIs were fragmented or formed part of recurring transfers from a common origin. To 

determine which GI inserts resulted from the fragmentation of longer entities, every GI predicted in 

2,407 replicons and stored in Pre_GI database were subsequently compared against all of the other GIs 

in their respective host organisms. The grouping of GIs was based on oligonucleotide usage pattern 

(OUP) similarities (100 – GI-to-GI-distance-value) and the distance-to-host values (Equation 1.2). 

Similarity in OUP allowed for the inference of a common origin of GIs, and similar differences in OUP 

distance-to-host values lead to the conclusion that GIs were acquired at the same time. The rationale for 

the latter assumption was that foreign DNA inserts in bacterial genomes experience the DNA 

amelioration pressure smoothing out the difference in OUP patterns between GIs and the host organism 

(Wiedenbeck & Frederick, 2011). Both of these measures were extracted from the Pre_GI database and 

analyzed using Python scripts. 

It was assumed that the similarity of randomly generated DNA sequences may be expected to be around 

50 (see Equation 1.2.) and it was empirically proved that pairs of GIs, which showed similarities from 50 

to 70, were just random combinations (Bezuidt, et al., 2011). In this paper it was shown that for each 

OUP similarity rank the number of GI pairs producing significant BLASTN hits became prevalent once 
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OUP similarity reached above 75, and was therefore used as a lower threshold of meaningful 

compositional similarity (Figure 2.1). Therefore, in this study GIs sharing 75 or higher OUP similarity 

were considered as possibly originating from the same source (a donor organism or a pool of genetic 

vectors shared by a microbial community). 

 

 

Figure 2. 1 Percentage of BLASTN hits between pairs of GIs shared ranked compositional similarity. The 
threshold value used for clustering of GIs is depicted by a vertical red line. Adapted from Bezuidt, et al. 

(2011). 

 

Additionally, we considered using several threshold values for the absolute difference in pattern 

distance- to-host (DID) measures among any two GIs. GIs were only considered for grouping if they 

showed OUP similarities above 75 and also similar DID values supposing the same time of acquisition by 

the host organism. DID values were used as a representation of the timespan between each GI 

integration. This measure was formulated by the difference of each GI’s distance-to-host value 

(Equation 1.2). A minimal threshold value of 15 GI distance-to-host value was used as a cutoff point to 

exclude old significantly ameliorated GIs, as their origins could not be reliable predicted. To identify 

suitable pattern distance-to-host differences between GIs, the clustering of GIs was performed five 

times iteratively with 5, 10, 15, 20 and 25 DID cutoff values.  Remarkably, the results of the clustering 
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with all of these cutoff values were quite consistent (Figure 2.2). This indicates that HGT events occurs 

infrequently and that fragments of one horizontally acquired insert may be distinguished from 

fragments of other successive inserts even if all of them came from the same origin.  

Figure 2.2 shows how many groups of GIs were identified in the genomes of different organisms when 

different DID cutoff values were applied (denoted as G1 – all GIs were grouped into a single cluster; G2 – 

GIs were separated to two clusters; and so on). Note that the OUP similarity cutoff was 75 for all 

iterations of clustering. The boxplots denote clustering with 10, 15 and 20 cutoffs – bottom, middle and 

top lines of the box, respectively. Outliers for cutoff of 25 and 5 were depicted by short bars and open 

cycles. Clustering with a DID threshold of 5 may presumably lead to an overestimated grouping, while 

results with all other thresholds were consistent. Taking into account that the standard deviation of all 

the distance-to-host values (Equation 1.2) for the all GIs in the Pre_GI database was 8.27, the DID of 10 

was selected as the optimal DID cutoff value.  

 

Figure 2. 2 The boxplot frequencies of organisms assigned with GI groups for all DID thresholds of 5, 10, 
15, 20 and 20 combined. 
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Figure 2.3 shows the process diagram for the pseudo code of grouping of GIs in each host organism and 

the procedural implementation of the algorithm. The Pre_GI database was used as the data source and 

every GI with DID value (Equation 1.2) greater or equal than 15 was extracted and evaluated. For each 

organism, the first group of GIs was created for all of the GIs which were found to share 75 or higher 

OUP similarity as well as less than 10 DID-difference between each other. Sequential groups of GIs were 

only created if one or more of the GIs did not share sufficient OUP similarity, or had a higher DID-

difference to members of the G1 group or other existing groups. Thus, G1 was mostly the biggest group 

of GIs in a given organism, and the remaining GIs were clustered into smaller groups G2, G3 and so on.  

It was possible for certain GIs to fall into more than one group given the GI had OUP matches to one or 

more GIs allocated in different groups. In such a case the GI was allocated to one of the groups, based 

on the maximum measure of OUP similarity and the highest amount of OUP matches to every other GI 

in each separate group. In many bacterial genomes the identified GIs showed a significant compositional 

polymorphism that was most likely associated with the acquiring of these GIs from different sources or 

several sequential acquisitions. Those GIs found in the same bacterial genome, which shared OUP and 

DID similarity, most likely resulted from the fragmentation of a longer insert.  

 

Figure 2. 3 Pseudo code for grouping GIs in each organism. 
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Figure 2.4 shows frequency of GI groups in different organisms after completion of the clustering 

procedure with 75 OUP similarity and 10 DID difference cutoffs. Combining GIs in this way produced one 

or more groups of GIs in each organism. Each GI group was denoted as “G” along with a number 

indicating the number of splits in each organism’s GI combinations. For instance, an organism with three 

distinct groups of GIs would have been assigned G1, G2 and G3. A significant proportion of organisms 

was found to contain a single group comprising all of their GIs. In contrast, several organisms with up to 

10 GI groups were observed. These organisms belonged to following genera: Paenibacillus, Bacteroides, 

Hahella, Teredinibacter, Denitrovibrio, Geobacter, Nitrosococcus, Cellvibrio, Spirochaeta, Pyrobaculum, 

Parabacteroides, Desulfovibrio, Corynebacterium and Xenorhabdus.  

 

 

Figure 2. 4 Frequency of bacterial organisms with different numbers of GI groups. 

 

 

Figure 2.5 shows a boxplot for numbers of GIs distributed in every group. The first group of GIs contains 

the most GIs because it was used as the initial container for the first GI comparisons per organism. 

Thereafter, GIs which did not satisfy the OUP and DID criteria of the initial group were combined into a 

second group. In the same manner, additional third, fourth, fifth and so on groups were created until 

every relevant GI was assigned to a group. The steady decline in the number of GIs in each successive 

group translates to fewer OUP similarities between the GIs within the succeeding groups. 
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Figure 2. 5 Distribution of GI counts in each group for DID threshold of 10. 

 

To check the appropriateness of the GI clustering, the relationships between groups were visualized 

using the LingvoCom toolset developed previously, which is available from the SeqWord project web site 

(http://www.bi.up.ac.za/SeqWord/lingvocom/index.html). Figure 2.6 shows 3D projection of GIs from 

Nitrosomonas europaea ATCC 19718 (NC_004757) by comparison OUP similarity values between each 

GI, the host organism chromosome and chromosomes of three distant organisms used as outgroups: 

Clostridium thermocellum ATCC 27405; Salmonella enterica Typhi Ty2 and Acidovorax ebreus TPSY.  

Whole genome and GI patterns are depicted on the 3D-plot by squares and circles, respectively. The GIs 

of Nitrosomonas europaea ATCC 19718 which were assigned to the same groups were marked with “G” 

indicators and color coded (green, purple, black and red for G1, G2, G3 and G4, respectively). In this 

example we observe a significant separation of GIs presumably acquired by the host organism from 

different sources. However, GIs within each group showed consistency in OUP patterns. Interestingly, 

we can see that the GIs in the same group are also spatially bundled together. In particular, GIG3 seems 

much more similar to the sequence patterns of the A. ebreus TPSY genome while GIs of GIG1 showed 

some similarity to Clostridial origin.  
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Figure 2. 6 Example of grouping of the GIs of Nitrosomonas europaea ATCC 19718 in 3D space by 
LingvoCom. Each GIG group is color coded to clearly observe the separations of their GIs. 

 

 

A total of 5577 groups were created from 24,858 GIs accessible in Pre_GI, which were found in 2,407 

different bacterial replicons, with an average of 5 GIs per group. The grouping results were saved to a 

MySQL database for subsequent analysis. In 27 organisms we found extreme counts of ≥ 30 predicted 

GIs assembled into a single group, meaning a single acquisition event followed by significant 

fragmentation. Table 2.1 lists 27 organisms where multiple GIs were clustered into single groups.  
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Species GI Count 

 Clostridium botulinum                   30 

 Delftia acidovorans                     30 

 Sebaldella termitidis                   30 

 Clostridium botulinum                   30 

 Bacillus cereus                         30 

 Bradyrhizobium japonicum                30 

 Bacillus thuringiensis                  31 

 Clostridium beijerinckii                31 

 Streptomyces cattleya                   32 

 Clostridium botulinum                   32 

 Clostridium cellulolyticum              32 

 Haliangium ochraceum                    32 

 Stackebrandtia nassauensis              32 

 Clostridium botulinum                   32 

 Bacillus cereus                         33 

 Verminephrobacter eiseniae              33 

 Corallococcus coralloides               33 

 Bacillus anthracis                      34 

 Clostridium phytofermentans             37 

 Myxococcus xanthus                      44 

 Clostridium ljungdahlii                 44 

 Myxococcus stipitatus                   47 

 Trichodesmium erythraeum                49 

 Clostridium pasteurianum                52 

 Clostridium saccharoperbutylacetonicum  54 

 Methylobacterium nodulans               55 

 Stigmatella aurantiaca                  64 

 

Table 2. 1 Organisms with extreme number of GIs grouped into single G1 groups that indicated a single 
HGT event followed by severe fragmentation. 
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2.2 Calculating of OUP similarity values between groups of GIs 
 

Since all the considered GIs had been grouped, new similarity scores were necessary to enable donor-

recipient inferences between GI groups instead of using of OUP similarity values calculated for individual 

GIs. Two possible scores to measure similarity between groups of GIs were considered. The first score 

was calculated by extracting the maximum OUP similarity values between any two GIs in each separate 

group. This score represented the convergent OUP similarities between the two groups and was 

necessary to mimic a single-linkage state of GI groups. In a single-linkage state, any two observations (or 

GI groups) are only separated by the shortest distance between them (Zhang, et al., 2012). The second 

score was calculated as the average OUP similarity shared among all GIs in both groups. This score 

represented the centroid-linkage state of GI groups. In a centroid-linkage state, the distance between 

two groups is the distance between the means of the observations in the group. Since the process of 

amelioration has such a drastic effect on the composition of GIs in the hosting organisms, we 

hypothesized that the single-linkage state of the groups of GIs would produce more sensitive GI group 

similarity scores as an input to MCL algorithm.  Both the maximum and average group scores were saved 

to a MySQL database to serve as the potential lookup values for MCL analyses. GI group weights 

generated in this way enabled subsequent analyses to initiate from a perspective of unique HGT events.  

First, we analyzed the distribution of OUP similarity values between individual GIs. Figure 2.8 shows 

frequencies of OUP similarity values in all pairs of GIs from Pre_GI database in three ranks (pairs with 

OUP similarity < 75 were ignored). Observation of only a few cases when OUP similarity was > 90 

corresponded to our expectation counting for the effect of amelioration and other mutational pressures 

acting upon newly integrated genomic loci. The bulk of OUP scores fell into category 75 – 85 OUP 

similarity. 

In the next step we were interested to see whether the replacement of OUP similarity values between 

individual GIs with those calculated for GI groups will change the distribution shown in Figure 2.8 or not. 

Expectedly enough, applying of a centroid-linkage approach significantly decreased the number of pairs 

of GI groups linked by a significant OUP similarity (Figure 2.9). It was concluded that the maximum 

linkage approach was better suited for this study, as the use of average values may conceal too many 

important relations between groups of GIs due to significant pressure of genome amelioration 

processes.  
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Figure 2. 7 Frequencies of pair of GI OUP scores as per the Pre_GI database. 

 

 

 

Figure 2. 8 Distribution of average and maximum OUP similarity links between groups of GIs. 
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To validate the precision of the newly generated OUP similarity scores and to confirm preference of the 

maximal single-linkage approach, we analyzed the distribution of similarity scores between different 

taxonomic units. The hypothesis was that groups of GIs harbored by organisms belonging to the same 

taxonomic unit should show a significantly higher level of OUP similarity than those from different 

taxonomic units. Plotting of both the single-linkage and centroid-linkage approaches would indicate 

which of them produced more sensitive output. To illustrate this validation, we performed analyses on a 

subset of organisms belonging to diverse genera counting for a more or less equal abundance of GIs 

from these genera in Pre_GI database. Calculated OUP similarities between groups of GIs within a 

selected reference taxonomic unit were compared to distances calculated between groups from other 

units to the reference one. In a series of experiments, the genera of Escherichia, Bacillus and 

Streptococcus were used as references. The results of comparisons for maximal single-linkage and 

centroid-linkage approaches are shown in Figure 2.10 (A, B, C) and Figure 2.11 (A, B, C) respectively. 

 

             A 
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C 

 

Figure 2. 9 Maximal single-linkage comparison of intra-generic and extra-generic OUP similarities with 
reference genera set for A) Escherichia; B) Bacillus; C)  Streptococcus. 
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            C 

 

Figure 2. 11 Centroid-linkage comparison of intra-generic and extra-generic OUP similarities with 
reference genera set for A) Escherichia; B) Bacillus; C) Streptococcus. 

 

 

It was seen that the average group linkage produced more condensed distributions compared against 

the maximum group linkage, which may hinder appropriate identification of ontological relations 

between groups of GIs found in different organisms. These results demonstrated also that exchange of 

genetic materials between organisms of the same genus occurs more frequently than between genera. 

This conclusion is probably true and for higher taxonomic levels. It is seen in Figures 2.10 and 2.11 that 

Firmicutes organisms (Bacillus, Clostridium and Streptococcus) share a higher level of similarity than 

those of the Enterobacterial species of Escherichia and Vibrio. 
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2.3 Discussion 
 

In order to recognize unique HGT events from a perspective of GI flux relations, GIs detected by 

compositional approaches has to be evaluated in a unified scheme. Fragments of GIs are often scattered 

across the hosting genome due subsequent evolutionary events, i.e. fragmentation, rearrangement and 

gene loss, acting upon them. It greatly complicates identification of donor-recipient and other 

ontological links between multiple fragments of GIs. Consequently, GIs from the Pre_GI database were 

analyzed and grouped according to sequence pattern similarities and congruent amelioration profiles. 

Different thresholds for both of these measures were evaluated to determine which cutoff values 

produced meaningful and sensible GI clusters. The grouping produced 5577 groups from 24,858 GIs 

among the considered replicons, with up to 10 groups of GIs separations in a minority of the organisms. 

From this perspective, the transferred regions were significantly larger and we could evaluate the entire 

summary of the genes obtained by a recipient organism instead of comparison of many disjointed 

regions. Integration of all available GIs into a single group (only one GI group per organism) was 

observed in 1098 bacterial genomes. These observations are indicative of unique sources and reduced 

promiscuity for these organisms. This is probably due to an inability to overcome taxonomic barriers or 

confinement to a specific ecology. The sequence pattern similarity scores produced among groups of GIs 

in different organisms were used to check the applicability of GI group similarity scoring based on the 

single and centroid linkage approaches. We found that the use of either of these approaches would 

influence the structure of the resulting MCL cluster outputs. As per our expectation, the maximal single-

linkage approach allowed for more accurate clustering performance. The reconstruction of complete GI 

entities from fragmented GI regions showed an over representation in the number of HGT from the 

Pre_GI database and produced a framework of unified mobile genetic elements necessary to predict 

fluxes of GIs through bacterial species. This framework may be used to simulate and visualize fluxes of 

GIs on a software platform which will serve as the primary tool for the analysis of GI flux relations.  
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Chapter 3. Development of the web based platform 

for the visualization of fluxes of GIs 
 

3.1 System platform 
 

Using the constructed groups of GIs and their corresponding group weights developed for this project in 

section 2.1.1 and 2.1.2, we could simulate HGT flows through the implementation of Markov Clustering 

(MCL). The design of the system was encapsulated in a PHP web platform, incorporating connections to 

MySQL and Cytoscape server instances. The MySQL database served as the primary source of GI group 

information. Figure 3.1 shows the process diagram of the system execution procedure. The user initiates 

interaction with the system by providing organisms of interest to the system. Moreover, the user may 

opt to select additional inputs by specifying which gene description keywords they intend to study. The 

system will extract the necessary information from the MySQL database for each of the user’s 

selections. This information will be used to start graph construction in Cytoscape. Cytoscape allows for 

remote procedure calls (RPCs) to mimic manual operation which was implemented using the Python 2.7 

scripting language. Each of the GI groups is then implemented as nodes and the GI group weights as 

edges. Once the graph has been constructed, the MCL algorithm will be applied to the structure. The 

resulting visualization is then attributed with custom settings for a variety of descriptors. Node colors 

and sizes are assigned according to the various species and total sequence lengths, respectively. 

Additionally, confirmed BLAST matches between any two GI groups are indexed and depicted by a green 

background. The results from the Python scripts may be retrieved via PHP handlers and displayed on a 

PHP webpage.  

The address for the Flux Visualizer system is http://flux.bi.up.ac.za. The landing page of the website 

provides information on the project with descriptions and usage instructions. Additionally, two links 

from the landing page are shown to enable navigation to the separate interfaces. The first interface was 

designed to explore the grouping of GIs per organism, and the second interface to visualize donor-

recipient relationships based on the user’s selections.   
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Figure 3. 1 Process flow diagram of the Flux Visualizer core operation. 
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3.2 System interface 
 

The Flux Visualizer system provides several functionalities to the users of the site.  The first function 

(View GI groupings navigation link) allows the user to investigate the grouping and functional mapping 

of GIs (as per Chapter 4) by entering and searching either species names for multiple result matches or 

Genbank accession numbers for specific organism retrievals. The results are formatted into a table with 

navigational links ascribed to each individual organism presented. Figure 3.2 shows the usage of this 

interface with the Salmonella species name as an example reference. Figure 3.3 shows the grouping of 

GIs with the sequence starting positions of each GI contained within the group. In turn each GI start 

position may be used as a navigation link which integrates with the Pre_GI website 

(http://pregi.bi.up.ac.za/) to display a visual representation of the GI locations and Genbank coding 

region annotations.  

 

 

 

Figure 3. 2 View GI Grouping Interface on the Flux Visualizer page. The search functionality is used to 
display relevant entries for the Salmonella species keyword. 
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Figure 3. 3 The GI groupings of Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 
(NC_003197). The starting positions of the GIs in each group as well as the organism accession group are 

hyperlinked to the Pre_GI website for additional information. 

 

The second function (Flux Analysis navigation link) depicts the core functionality of the system. Users are 

here able to search for organisms of interest by inputs of Genbank accessions or provided suggestions 

from related COG functional classes, and input gene description keywords. The user’s selections are 

then used to create a visual interpretation of the results from the application of the MCL algorithm.  

Figure 3.4 and 3.5 shows the usage of the Flux Analysis page. The user is able to facilitate one of two 

search functions, either through the use of suggested links or custom links.  

Suggested links integrate with the constructed gene networks and additional COG functional class filters 

(as described in Chapter 4) to enable generation of flux clusters based on organisms sharing specific 

gene or functional utilities. The available selections are displayed in the table once the search is started. 

Moreover, the selections from suggested links may be further filtered to show only genes which form 

part of GIs identified as sharing OUP similarities by selecting the checkbox “Compositional Similarities 

Only”.  
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As per Figure 3.4, the table results were extracted for the example organism Escherichia coli str. K-12 

substr. W3110 accession AC_000091, with the “Efflux” gene description keyword. Here the selection 

results provided information regarding the organisms found to share BLASTP hits to the genes within 

AC_000091 and matching gene descriptions of “Efflux”. Furthermore, the selection results could also be 

filtered to show only organisms that have been identified as sharing OUP similarity above 75 on a GI 

level.  

Research studies are often restricted to certain organism involvements which may require a small 

number of inputs. Custom links provide the ability to enter consecutive accession numbers and species 

names to show only relevant resulting retrievals. Accession numbers and species names may be 

combined into a single text input line separated by commas. As per Figure 3.5, the example input 

specified is the following bacteria and plasmids references:  

 

NC_002655 Escherichia coli O157:H7 EDL933  

NC_017319 Shigella flexneri 2002017 plasmid pSFxv_1 

NC_004851 Shigella flexneri 2a str. 301 plasmid pCP301 

NC_016445 Vibrio cholerae O1 str. 2010EL-1786 chromosome 1 

NC_011184 Vibrio fischeri MJ11 chromosome I 

NC_014966 Vibrio vulnificus MO6-24/O chromosome II 

 

The user can subsequently use the “Include” checkboxes to specify which of the organisms are required 

to be included for MCL analysis and visualization. Two selection options are provided to the user once 

selection results have been retrieved. The first option (Visualize Selection) will perform MCL clustering 

on the organisms included, and divert to a new page with the visualization of flux clusters. The second 

option enables the user to download the complete table for personal analysis in a CSV file format. Figure 

3.6 shows a demonstration of the resulting clustering of the reference input specified as per Figure 3.5 
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Figure 3. 4 Example usage of the Flux Analysis navigation link with suggested selections using Escherichia 
coli str. K-12 substr. W3110 accession AC_000091 and “Efflux” gene keyword as reference. 
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Figure 3. 5  Example usage of the Flux Analysis navigation link with custom selections based on accession 
numbers. 
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Figure 3. 6 Example visualization of flux links among the organisms selected in Figure 3.5. 
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The resulting graph in Figure 3.6 shows one MCL cluster with the selected organisms encapsulated 

within. This cluster represents the fluxes of GIs between the organisms with each GI group represented 

as a node and each HGT event presented as an edge. The nodes are color coded to the species legend 

scheme for the identification of different organisms. Tangerine colored links presents high GI group 

weight scores between the specified GI groups while green links specify confirmed BLAST similarities 

among at least one gene contained in each group. While the size of the node is directly related to the 

size of the GI group, the thickness of the edge is related to the strength of the OUP score. Each node and 

edge is clickable and reveals additional information regarding the item clicked in the panel below the 

legend. In Figure 3.6 the node for Escherichia coli O157:H7 EDL933, GI group 3 is clicked for reference. 

The right hand side panel reveals that the GI group is approximately 300,000 base pairs in total 

sequence length, and has an average pattern distance-to-host values of 38% across all of its respective 

GIs. Moreover, each green BLAST link can be selected to visualize the gene BLAST matches through the 

Pre_GI database functionality, as shown between the Shigella flexneri 2a str. 301 plasmid pCP301 

(NC_004851) and Escherichia coli O157:H7 EDL933 (NC_002655) in Figure 3.7 and Figure 3.8.  

 

 

 

Figure 3. 7 BLAST visualization options for GIs with common genes for Shigella flexneri 2a str. 301 
plasmid pCP301 (NC_004851) and Escherichia coli O157:H7 EDL933 (NC_002655). 
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Figure 3. 8 Pre_GI functionality for visualizing BLASTN similarity matches between Shigella flexneri 2a str. 
301 plasmid pCP301 (NC_004851) and Escherichia coli O157:H7 EDL933 (NC_002655). 
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3.3 Discussion 
 

The Flux Visualizer system was developed for the analyses of grouped GIs to envisage HGT interactions 

from a relational perspective. The implementation was done through a pipeline process incorporating 

Python scripts to execute procedural calls to server instances of Cytoscape and MySQL. Groups of GIs 

are clustered together using MCL to identify which organisms show the most probable HGT interactions 

and how the mobile genes were exchanged between the selected organisms. The system provides 

multiple ways for the user to input organisms of interest. Suggested links may prove valuable in 

obtaining examples of HGT partners which have been identified as sharing some form of functional 

commonality. Moreover, the system also provides researchers with the ability to specify explicit 

organism involvements and to include only the necessary. The results of the clustering analysis are 

displayed as a graph, generated from the Cytoscape software package. The elements of the graph are 

further attributed with unique colors and sizes to provide clear distinctions between different species, 

total sequence lengths, GI group weight scores and confirmed BLAST hits. Furthermore, the system 

allows the user to explore the contents of each GI group from a functional perspective as well as provide 

the starting genetic position of each GI in a particular group. Here the GI starting positions integrates 

with the Pre_GI website (http://pregi.bi.up.ac.za/) through hyperlinks and the user may explore each GI 

in more detail there. The clustering of GI groups in this way serves to aid research in providing a visual 

illustration of the HGT relationships between the involved organisms. To further enable specific and 

interest driven selections for the users of the website, we will need to investigate associations of gene 

functions and functional types between groups of GIs. Through the functional attribution of GI coding 

regions we may attempt to separate organisms which show functional similarities and in this way 

provide suggestions of organisms to include in the users analysis. 
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Chapter 4. Functional categorization of genomic 

islands groups 
 

4.1 Genetic functional attribution 
 

4.1.1 COG classifications  
 

The functional attribution of GI coding regions were implemented to investigate relations of shared 

gene contents among groups of GIs to ultimately enable the separation of GI groups based on genetic 

utility. We hypothesized that is was possible to cluster groups of GIs based on specific functional types 

of HGT events. In turn, the separation of GI groups in this way would assist in creating categories of HGT 

and allow for additional analyses based on specific types of functional transfers. We considered 

allocating genes to functional classes from the evaluation of Genbank annotation data. However, due to 

the lack of comprehensive descriptions and standardized cataloging, it was extremely challenging to 

formulate accurate results based on text matching alone. Consequently, the COG database (Tatusov, et 

al., 2000) was used to infer phylogenetic classifications for the assignment of biochemical functions and 

roles to coding regions. We performed PSI-BLASTs of the 392,622 coding regions against the COG 

database to obtain classification hits for each GI group. Because we were not looking for strict functional 

conservations but rather similar functions of homologous proteins, we used PSI-BLAST to obtain more 

sensitive results with regards to distant functional resemblances. In this case PSI-BLAST performed 

better than the standard BLASTP.  A bit score ≥ 100 an e-value of 0.004 was used as a homology 

threshold to protein sequences in the COG database. This relaxed bit score was considered to ensure 

that the majority of CDS were assigned to one of the functionally known categories. The COG database 

consists of 25 categories of functional proteins including poorly characterized, unknown or predicted 

only function. All of the COG functional categories are listed in Table 4.1. Each CDS in GIs was assigned 

to one or more of these categories, depending on mapping to COG protein descriptions with the highest 

bit scores over the threshold value obtained by PSI-BLAST.  
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Representative Letter Functional Description 

J Translation, ribosomal structure and biogenesis 

A RNA processing and modification 

K Transcription 

L Replication, recombination and repair 

B Chromatin structure and dynamics 

D Cell cycle control, cell division, chromosome partitioning 

Y Nuclear structure 

V Defense mechanisms 

T Signal transduction mechanisms 

M Cell wall/membrane/envelope biogenesis 

N Cell motility 

Z Cytoskeleton 

W Extracellular structures 

U Intracellular trafficking, secretion, and vesicular transport 

O Posttranslational modification, protein turnover, chaperones 

C Energy production and conversion 

G Carbohydrate transport and metabolism 

E Amino acid transport and metabolism 

F Nucleotide transport and metabolism 

H Coenzyme transport and metabolism 

I Lipid transport and metabolism 

P Inorganic ion transport and metabolism 

Q Secondary metabolites biosynthesis, transport and catabolism 

R General function prediction only 

S Function unknown 

 

Table 4. 1 COG database functional classifications with representative letters of functional categories. 
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The distribution of COG functional categories from the CDS in predicted GIs were analyzed to obtain a 

consolidated view of over- and under-saturated classes. Figure 4.1 shows the frequencies of CDS in all 

26,744 GIs from the Pre_GI database per COG category. We observed significantly underrepresented 

transfer frequencies of informational and housekeeping genes denoted in COG by categories A and B 

that was consistent with data from literature (Popa, et al., 2011).  Contrary, to the genes belonging to 

categories “Amino acid transport”, “Cell membrane biogenesis” and “Transcription/Translation” 

denoted in COG as E, M, J and K, where most frequently mobilized. However, a significant proportion of 

the genes in GIs were classified either as “Function Unknown” or showed no matches at all to the 

reference proteins in the COG database. 

 

 

Figure 4. 1 Frequencies of GI’s genes by COG functional category. 

 

 

Since each CDS was allocated to one or more of the COG categories, groups of GIs could be evaluated 

from a perspective of functional gene products. The functional classifications for each of the individual 

GI groups (G1, G2, etc.) were used to evaluate the proportions of COG categories among the separate 

groups of GIs in all considered organisms. Since G1 was generally the most abundant group of GIs per 

genome, we anticipated that this group would show increased representations of COG categories 

compared to the other groups. Figure 4.2 shows the distribution of COG category proportions among all 

the groups of GIs. The distributions of COG functional categories remained remarkably similar in all GI 
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groups ordered by abundance from G1 to G10 (see discussion in Chapter 3) with a strong resemblance 

to the overall distribution of the CDS frequencies in Figure 4.1. It may therefore be concluded that the 

distribution of the genetic content of the most abundant (and/or fragmented) GIs in bacterial genomes 

is similar to the distribution in singletons with the exception of unknown and functionally undefined 

genes categories. 

 

 

 

Figure 4. 2 Proportions of COG class distributions per GI group. 

 

To allow the exploration of functional class assignments in GIs, the “View COGs” navigation system was 

implemented in the Flux Visualizer Web interface as shown in Figure 4.3 (A) and (B). Assignments of 

genes to all COG functional categories and their proportions per groups of GIs may be viewed. The 

poorly characterized categories R (Prediction only) and S (Unknown functions) were excluded in the 

system.   
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      A 

 

 

 

      B 

 

 

Figure 4. 3 (A) Arrows depicting the clickable navigation links. (B) Functional class proportions (Excluding 
R and S classifications) for Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 

(NC_003197) GI group 1.  
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4.1.2 Virulence factor assignments 
 

To enable identification of virulence-associated genes in groups of GIs, the MvirDB database (Zhou, et 

al., 2007) was used as a reference for mapping of genes by BLAST similarity. MvirDB is a collection of 

sequences representing known toxins, virulence factors and antibiotic resistance genes. The interface 

allows a user to search or match queries to database records by sequence similarity BLAST search. In 

total  392,622 coding sequences found in GIs of the Pre_GI database were searched by BLASTP for 

matches against the MvirDB database with e-value stringency set to 0.004 and a minimum bit score of at 

least 400. Here we considered a stricter bit score to ensure that the hits against the MvirDB are closely 

related matches. The results revealed 27,995 hits against the MvirDB database distributed among 3347 

groups of GIs in 2002 replicons. The results of identification of virulence factors by search through 

MvirDB were added to our database and may be explored through the Flux Visualizer system by the 

virulence factor links as per Figure 4.4. 

 

 

 

Figure 4. 4 BLASTP hits for Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 
(NC_003197) GI group 1 against the MvirDB. 
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4.1.3 Gene networks 
 

Another functionality of the Flux Visualizer system is to reconstruct possible horizontal gene fluxes 

based on the sharing of similar genes in GIs by different microorganisms. The Pre_GI database contains 

records of significant BLASTP matches among CDS in GIs, which were subsequently used to find 

homologous pairs of genes. These BLASTP matches served for an initial outlining of organisms, which 

might exchange their genes by horizontal gene transfer. For the purpose of exploring mutual functional 

traits, we evaluated the BLASTP hits among 392,622 CDS for all of the replicons in Pre_GI database. 

Genes related to integration or transfer of mobile genetic vectors were excluded to avoid finding links 

between organisms sharing these selfish functions or with unknown functions, which are abundant in 

GIs. In the first step, gene annotations were scanned for keywords among the following: “Integrase”, 

“Transposase”, “Phage”, “Plasmid”, “Hypothetical” and “Unknown”. Any genes containing one of these 

keywords were omitted from subsequent analysis. Only those CDS which shared a bit score of at least 

400 to any other CDS in GIs, were deemed as a connection in a network. Then by the recursive analysis 

of all the CDS matches for the considered genes, whole sets of connections were used to establish each 

gene network. A total of 44,667 unrelated networks were constructed and comprised of 1,104,771 

BLAST hits, reflecting gene homology interlinks between all GIs. The gene networks were saved to the 

MySQL database to serve as a reference of common function indicators. Figure 4.5 shows a heatplot to 

visualize densities of shared homologous genes in GIs for several of the most represented genera in the 

Pre_GI database. The plot is based on the proportion of organisms found to share common genes. 

Organisms from Bacillus and Clostridium showed the highest proportions of BLAST hits to genes in other 

genera which may indicate increased promiscuity among those organisms. Furthermore, Vibrio showed 

particularly high proportions of common genes functions to Bacillus and Escherichia with more than 75% 

of organisms classified under the Vibrio genus, showing significant BLAST references to both Bacillus and 

Escherichia. Other examples of organisms found to show increased common gene functions were among 

Rickettsia and Clostridium as well as Mycoplasma to both Bacillus and Clostridium. 
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Figure 4. 5 Proportions of organisms with common genes in the networks among major genera. 

 

Figure 4.6 shows the proportions of the number of BLAST subjects in all of the networks. Almost 50% of 

the organisms identified as sharing some form of common functionality, were only connected by a 

maximum of 5 other subjects. Likewise, 90% of the organisms were connected by a maximum of 40 

other subjects. Conversely, we observed a minority of networks with up to 418 significant BLAST hits 

between different organisms. The functional categories of these genes which seemed extremely 

popular, were exclusively related to transcription and translation with the majority of annotation 

descriptions among the following: “DNA-dependent RNA polymerase”, “Translation elongation factor”, 

“Carbamoyl phosphate”.  
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Figure 4. 6 Proportions of the of node degree ranges in the gene networks. 

 

To evaluate associations between the identified BLAST hits and their sequence compositional 

similarities, homologous gene pairs which also showed OUP similarities between their respective GIs 

were indexed. The occurrence of both measures would propose strong evidence for HGT among the 

formulated networks. In contrast, lower frequencies of co-occurring BLAST and OUP similarity instances 

may indicate that individually, BLAST similarities are not well suited for the identification of HGT 

relations due to a higher rate of mutations in GIs and they merely serve to infer functional resemblances 

among GIs. We evaluated the GIs of the organisms which showed BLAST hits between their CDS in 

Figure 4.5 and found that on average, 72% of these genes also shared OUP similarities between their 

respective GIs. This indicated that some correlation exists between BLAST revealed sequence similarity 

and the level of compositional OUP similarity among the considered GIs. Figure 4.7 shows the 

proportion of the GIs in organisms sharing common genes as well as OUP similarities among Escherichia, 

Burkholderia and Mycoplasma in their respective genera.  
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Figure 4. 7 Frequency of OUP links > 75% among groups of GI sharing BLASTP sequence hits 

 

In retrospect, the creation of the gene networks assists in the diversification of suggestions to the users 

of the system as per Figure 3. 9 in Chapter 3. Users are able to find organisms which share specific genes 

through the use of genetic keywords which are filtered against the constructed gene networks.  

Interlinks of homologous genes may reveal indirect donor-recipient relationships between organisms 

which do not inherently share strong sequence similarities but are related to each other through 

intermediate organisms. 
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4.2 Co-occurrence of functional categories 
 

To better understand the role of HGT between microorganisms, especially among diverse species, it is 

important to analyze the functional categories of genes which are more likely to be transferred together 

within one GI. All identified GI groups were compared against each other on a basis of shared gene 

categories to primarily attempt the identification of any possible ontological links between the groups of 

GIs, COG categories and associated virulence factor indicators. A unique list of alphabetically arranged 

COG categories was extracted for each GI group to produce a list of all the COG combinations among the 

considered GI groups. This list served as a measure of COG category commonality and was used to 

formulate associations of co-occurring COG categories. We calculated the Phi correlation coefficients () 

of individual COG categories based on their co-occurrence in a distinct list of COG combinations. Phi 

correlations are used to assess correlations between two variables where both variables are 

dichotomous. If we have a 2 × 2 table for two random variables X and Y as per Table 4.2 with a, b, c and 

d as non-negative counts of the number of observations that sum to n, the total number of 

observations, and X- and X+ representing the absence and presence of X respectively, then the two 

variables are considered positively associated if most of the data falls along the diagonal cells (i.e., a and 

d are larger than b and c). In contrast, two binary variables are considered negatively associated if most 

of the data falls off the diagonal. The Phi coefficient () that describes the association of X and Y is 

calculated by Equation 4.1. Phi compares the product of the diagonal cells (a x d) to the product of the 

off-diagonal cells (b x c). The denominator is an adjustment that ensures that Phi is always between -1 

and +1. 

 

 

Table 4. 2 Matrix of two random variables, X and Y, with a, b, c and d as non-negative counts of the 
number of observations. 
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Equation 4. 1 Phi Correlation Coefficient 

  

Figure 4.8 shows a heat map of Phi correlation coefficients for co-occurring COG class frequencies. The 

correlation coefficients produced by this matrix were all positive with a range between 0.05 to 0.51. This 

result showed that no COG category was strongly associated with any other category and because we 

did also not observe any negative coefficients we could not make any assertions regarding the absence 

of individual categories. The strongest positive associations were between the COG category 

combinations of (C-I), (E-G), (K-T), (Q-I), (O-C), and (F-J). In contrast, the COG categories, D and N showed 

the lowest Phi coefficients (little or no association) to every other category. 

 

 

Figure 4. 8 Heatmap of the correlation matrix encompassing the frequency of co-occurrence of the COG 
categories. 
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Moreover, we investigated the associations of virulence factor frequencies to each of the COG 

categories by using the number of genes classified by MvirDB in each GI group (Section 4.1.3), to 

estimate which of the COG categories were more likely to be associated with the presence of virulence 

factors. For every COG category the frequencies of virulence factors F1 and F2 were calculated if the 

specific COG category was present in a GI group’s COG combination (for positive associations), and also 

if the COG category was absent (for negative associations). The linkage association was calculated as:  

 

𝐿 =  
𝐹1/𝑛 −  𝐹2/(𝑁 − 𝑛)

𝑀𝐴𝑋(𝐹1/𝑛, 𝐹2/(𝑁 − 𝑛))
 

Equation 4. 2 Virulence factor linkage association 

 

Where N is the total number of GI groups, and n – the number of GI groups containing genes of the 

current COG category. 

Table 4.3 shows the results of the virulence factor linkage associations for each of the COG categories. 

Positive associations to virulence factors were identified among the COG categories of N, Q and U. 

Microbial secondary metabolites (COG category Q) include among others, antibiotics, toxins, effectors of 

ecological competition and symbiosis, enzyme inhibitors and immunomodulating agent utilities. We may 

therefore expect this category to reflect a high degree of associated virulence. COG category N 

comprises cell motility proteins including bacterial pili, which are regarded as important virulence 

factors.  Pili are recognized as crucial role-players in many virulence associated processes such as 

adhesion, biofilm formation and virulence factor secretion (Johanna & Westerlund-Wikström, 2013). In 

combination with COG classes “Intracellular trafficking and secretion” (COG category U), we may also 

expect genes classified under categories Q and N  to show alleviated virulence factor linkage 

associations purely based on the combined attributes that are gained from each of these categories 

conjunction with COG category U. In other words, a combination of genes from each of these categories 

may serve to provide greater virulent utilities than genes from each separate category.  
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Linkage of virulence factors to COG categories 

C D E F G H I J K 

-0.34993 -0.15591 -0.30076 -0.37689 -0.30935 -0.20287 -0.28937 -0.37952 -0.24752 

L M N O P Q T U V 

-0.06251 -0.08723 0.33333 -0.29051 -0.17532 0.312128 -0.21457 0.258938 0 

 

Table 4. 3 Virulence factor linkage associations for each of the COG categories. 

 

Conversely, negative associations were found among COG categories C, F and J. The COG categories of 

“Energy production”, “Nucleotide transport” and “Translation” represent common and genetic functions 

which we may expect to be present in most horizontally transferred regions. It is therefore no surprise 

that these classes are disassociated with the identified virulence factors because they are more related 

to housekeeping and informational roles, necessary for general cell functioning.  

To enable the separation of groups of GIs, firstly by their characterization of COG category 

combinations, and secondly by the frequency of virulence factor linkage, it was necessary to calculate a 

new similarity measure for the MCL clustering of GI groups by functional profile. The functional 

similarity of groups of GIs were calculated as follows:  

𝐹𝑠𝑖𝑚 = 𝐼 ×
(𝑎 + 𝑏)

(𝑎 × 𝐿𝑎  +  𝑏 × 𝐿𝑏)
 

 

Equation 4. 3 GI group functional similarity measure 

 

where I is intersection, the number of COG categories shared by a query and subject GI group; a and b is 

the total number of groups of GI represented by query and subject COG category combinations, 

respectively; La is number of COG categories in the query GI group and Lb, the number of COG categories 

in the subject GI group. All GI groups pairs were compared against each other using this formula to 

produce GI group functional similarity scores. In turn, these functional similarity scores were used to 

evaluate the MCL clustering of GI groups with different similarity cutoffs. The execution of the MCL 

algorithm with a similarity cutoff of 0.97 and inflation value of 350 produced the result in Figure 4.9. The 

clusters were named by their central nodes with singletons and pairs of nodes removed. The red nodes 

are the top 10% of GI groups with the highest frequency of virulence factors. From Figure 4.9 we 
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observe several small clusters with high virulence factors frequencies. In particular, clusters with central 

nodes of NQ, NU, NV, INQ and MNO present strong evidence for virulence associations and we may 

expect GI groups harboring these COG combinations to exert some degree of virulence. In contrast, the 

densest cluster (top left) presents the combination of the most versatile COG categories among the 

groups of GIs, where virulence factors are sparsely distributed.  

The second densest cluster, characterized by the central node KMNTU, also presents a common COG 

combination which is indicative of increased virulence association. Here we might conclude on a similar 

premise, that organisms which engage in HGT and exchange genes which represent this category 

combination, may also be expected to show some degree of associated virulence. 

 

 

 

Figure 4. 9 Separation of GI groups sharing COG category combinations. The red nodes are the top 10% 
of groups of GIs with the highest frequency of virulence factors. The clusters are titled by their central 

nodes.  
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4.3 Associations of shared gene matches among groups of GIs 
 

The assessment of common functional traits in HGT events among the replicons listed in the Pre_GI 

database, provided a foundation for the analyses of donor-recipient relations between a myriad of 

species. To identify a set of candidates which may be used to validate the functionality of the system, 

frequencies of BLAST sequence similarities found among the constructed groups of GIs were evaluated.  

Organisms identified as sharing a significant number of similar genes between their GI groups were 

perceived as prime candidates for a case study as they would most likely contain common genes 

acquired by true HGT events, as opposed to containing similar genes by chance. GI groups were 

evaluated to find similar genes in other GI groups based on BLAST similarities captured in the generated 

gene networks. Each of the 44,667 gene networks (as described in Section 4.1.3) were used to assess the 

number of similar genes found among each pair of GI groups.   

A total of 452,259 BLAST hit references were identified between all considered GI group combinations. 

We found that 67% of all the GI group combinations shared only one significant BLAST match. As the 

number of common genes found between the GI groups combinations increased, the frequency of such 

occurrences diminished rapidly. Table 4.4 shows the proportions of BLAST hit frequencies between the 

considered GI groups. This measure served as an indicator for the identification of significant BLAST 

match frequencies between groups of GIs and we postulated that GI group combinations containing 

only one gene match did not indicate sufficient evidence for subsequent analysis. Figure 4.10 reveals 

the COG class descriptions among GI groups sharing only one BLAST hit. These genes were distributed 

mainly among the functional classifications of transcription and translation as well as the nucleotide and 

amino acid transport classes. We may expect these over-represented genes to form part of a backbone 

of genes necessary for the process of successful HGT integration and speculatively, expect most GI 

groups to harbor at least some of them.  

Number of BLAST similarities Frequency Proportion 

1 301733 66.72% 

2 84087 18.59% 

3 34980 7.73% 

4 9813 2.17% 

≥5 5176 4.79% 

 

Table 4. 4 Proportion of BLAST similarities between GI groups. 
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Figure 4. 10 Frequency of single BLAST matches among GI groups per COG class. 

 

In contrast, we may expect significant frequencies of GI groups containing sequence similarities between 

related strains or organisms within the same species. Consequently, we considered filtering the GI group 

combinations to show only sequence similarities between organisms of diverse taxonomic ranks. As per 

Table 4.5 and 4.6, the frequency and proportions of GI groups sharing more than one gene further 

decreased when we considered only sequence similarities between GI groups belonging to different 

species, orders and phyla. 
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Proportion 

Number of 
BLAST 
similarities 

Same 
Species Different Species Different Orders Different Phyla 

1 66.72% 65.56% 54.75% 36.37% 

2 18.59% 17.61% 14.15% 9.47% 

3 7.73% 7.04% 5.55% 3.19% 

4 2.17% 1.54% 0.76% 0.34% 

 

Table 4. 5 The proportion of sequence similarities between groups of GIs from different taxonomic ranks. 

 

 

 

 

 

Frequency 

Number of 
BLAST 

similarities 
Same 

Species Different Species Different Orders Different Phyla 

1 301733 296501 247627 164497 

2 84087 79660 64001 42846 

3 34980 31829 25114 14439 

4 9813 6980 3423 1518 

5 5176 2993 973 409 

6 4082 2241 603 258 

7 2391 1059 170 72 

8 1716 640 141 73 

9 1283 461 38 26 

10 1133 413 91 58 

 

Table 4. 6 The frequency of sequence similarities between groups of GIs from different taxonomic ranks. 
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We subsequently assessed groups of GIs sharing either the most BLAST similarities between their GI 

groups, regardless of taxonomic classification, or multiple BLAST matches from different phylogenetic 

ranks. Therefore, GI group combinations which showed the highest degree of common genes were not 

the only sets of organisms considered. We also considered a set of diverse organisms to compensate for 

the expectation of organisms within the same species sharing substantial gene BLAST indexes. We used 

inter- and intra-species combinations of organisms showing multiple BLAST matches between their GI 

groups and observed a significant number of such occurrences between two sets of organisms. Firstly, 

two Bacillus anthracis strains (Bacillus anthracis str. Sterne NC_005945; Bacillus anthracis str. A0248 

NC_012659) were found to share the most BLAST similarities between their GI groups and secondly, 

various Mycobacterium and Streptomyces species were identified to share the most BLAST similarities 

between the groups of GIs from different taxonomic background. The GI group combinations from these 

organisms were selected for a case study using the Flux Visualizer system as described in Chapter 5. 
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4.4 Discussion 
 

The distribution of COG categories among groups of GIs is in agreement with the results obtained by 

Popa et al., (2011). It is no surprise that genes relating to transcription, translation and recombination 

were among the highest ranking functional classes as these are necessary proteins involved in DNA 

integration and strongly linked to the process of HGT. However, we also observed other COG classes 

such as “Cell wall/membrane/envelope biogenesis” and “Amino acid transport and metabolism” as 

highly regarded gene representatives. This indicates that even beyond the genes required for the 

process of HGT, certain functional classes are favored, probably because they provide host organisms 

with more advantageous abilities. The COG categories most frequently identified (“Carbohydrate 

transport and metabolism” and “Amino acid transport and metabolism”) among groups of GIs, 

represent the utilities which are most common among transfer events, apart from genes related to the 

actual integration itself. Additionally, we observed similar distributions of COG functions in each 

separate GI group (Figure 4.2). This is interesting as it proposes that there might be a template of COG 

category combinations which can be associated with the abundant spread of HGT, even if the genes 

provide diverse utilities. Several positive co-occurring COG category combinations were found. We may 

expect these categories to complement each other, for example COG category combinations of E and G, 

which are typically associated with uptake of nutrients or the excretion of metabolic waste products, 

where the transport system corresponds to a sensor for external stimuli and is tightly linked to common 

controls between the carbohydrate metabolic pathways. COG categories N,U and Q seemed to not only 

show the strongest virulence factor linkage associations but combinations of these categories are 

trademarks for HGT characterized by virulence gene exchanges, as identified by the clustering of GI 

group functional similarities. Furthermore, many organisms were found to share common functionalities 

through horizontal gene transfer based on significant BLAST matches. The indexes of genes shared in 

this way, were used to generate gene networks. The gene networks enabled for the provision of 

suggestions of organisms to the users of the system based on common functional traits. Lastly, to 

identify sets of organisms which may be evaluated using Flux Visualizer system, frequencies of BLAST 

sequence similarities found among pairs of GIs groups were assessed and two sets or candidates were 

selected for flux analyses in Chapter 5.  
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Chapter 5 Investigation of HGT relationships using 

the Flux Visualizer 
 

 

In this chapter we considered several case studies as examples of practical applications of the Flux 

Visualizer. For these case studies, the following organisms were selected: Bacillus anthracis str. Sterne 

NC_005945 and Bacillus anthracis str. A0248 NC_012659 as representatives of organisms which showed 

the most BLAST matches between their GI groups from similar taxonomic backgrounds, and various 

organisms from Mycobacterium and Streptomyces as they shared the most BLAST similarities between 

the groups of GIs from different taxonomic backgrounds. 

 

5.1 Case study for Bacillus anthracis 
 

The maximum number of sequence similarities found between all considered GI groups was 91 genes. 

These matches occurred specifically for HGT between Bacillus anthracis str. Sterne (NC_005945_GIG1) 

and Bacillus anthracis str. A0248 (NC_012659_GIG1). The virulence of most B. anthracis strains are 

associated with two plasmids namely, pXO1 and pXO2. The plasmid pXO1 is required for synthesis of the 

anthrax toxin proteins. Plasmid pXO2 harbors genes required for the synthesis of an antiphagocytic 

capsule. The Sterne strain of Bacillus anthracis lacks the plasmid pXO2 which results in an avirulent 

phenotype (Okinaka, et al., 1999). Although the pXO2 genes are not self-transmissible, they may be 

transferred via conjunctive plasmids originating in B. thuringiensis (Koehler, 2002). In both organisms we 

observed grouping of each organism’s respective GIs into a single large group (GIG1). As per Figure 5.1, 

the GI genetic positions between these strains are very similar. This proposes that both strains either 

share a common donor and comparable recombination hotspots, or they descended from the same 

ancestral organism, which possessed already all these GIs. It is then not surprising that we observed a 

large amount of common genes as per the two example GI (positions 467KB & 1008KB) BLASTP 

visualizations in Figure 5.2 (A & B).  
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Figure 5. 1 Genetic positions of GIs in two closely related Bacillus anthracis strains. 

 

A 
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B 

 

 

Figure 5. 2 Example BLASTP visualizations of two GIs loci pairs (A & B) between Bacillus anthracis str. 
Sterne (NC_005945) and Bacillus anthracis str. A0248 (NC_012659). 

 

We performed additional analysis on these strains to identify potential HGT partners outside of the 

Bacillus genus. Okinaka et al. (1999), suggests the sources of pXO1 may have a rare and perhaps unique 

origin of replication. The authors evaluate various gene clusters within the pXO1 plasmid and provide 

evidence of possible HGT from diverse organisms belonging to Staphylococcus aureus, Streptococcus 

pyogenes, Bordetella pertussis and Clostridium species, among others.  We included these reference 

genera to obtain some estimation of organisms which seem to have strong influences related to the 

spread of genes among these B. anthracis, or which might play important roles as intermediate gene 

flow agents, specifically linked to B. thuringiensis, which has been reported as the carrier for the pXO2 

plasmid in the case for virulent strain Bacillus anthracis str. A0248. Figure 5.3 to 5.6 shows the results of 

the Flux Visualizer execution steps.  
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The available plasmids from B. thuringiensis were used together with both B. anthracis strains to obtain 

a schematic of the OUP similarities among these organisms. Interestingly, we found all of the plasmids 

shared sequence similarities with Bacillus anthracis str. A0248 and only one plasmid (Bacillus 

thuringiensis serovar konkukian str. 97-27 plasmid, NC_006578) shared sequence similarity to Bacillus 

anthracis str. Sterne. As per Figure 5.3, this indicated possible restricted plasmid interaction to Bacillus 

anthracis str. Sterne (NC_005945) which might have played a role in the obstruction of the pXO2 capsule 

genes. However, this plasmid (NC_006578) was also found to uniquely contain the only BLAST match 

available in the database from the Bacillus thuringiensis species to Bacillus anthracis str. 'Ames Ancestor' 

plasmid, pXO2 (NC_007323) as per Figure 5.4. The 'Ames Ancestor' strain is considered to be the "gold 

standard" for virulent B. anthracis strains. It is therefore more likely that Bacillus anthracis str. Sterne 

(NC_005945) obtained the pXO2 genes at some stage, and subsequently experienced gene loss of the 

entire integron. 

 

 

Figure 5. 3 Flux Visualizer image of B. thuringiensis (yellow) plasmid gene fluxes to both Bacillus 
anthracis strains (red). 

 

http://137.215.75.112/pre_gi_gene.php?source_accession=NC_007323&gi_accession=NC_007323:1
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Figure 5. 4 BLASTN visualization between Bacillus anthracis str. 'Ames Ancestor' plasmid, pXO2 
(NC_007323) and Bacillus thuringiensis serovar konkukian str. 97-27 plasmid NC_006578) 

 

The distribution of HGT between all available Streptococcus pyogenes showed sequence composition 

similarities to the two B. anthracis strains and the related B. thuringiensis plasmids as per Figure 5.5. In a 

similar manner we observed the distribution of Staphylococcus aureus and Clostridium HGT also 

centralized among the considered Bacillus organisms as per Figure 5.6 and 5.7. The gene sharing 

relationships for Bacillus anthracis str. Sterne in all these considered fluxes were seemingly disconnected 

to plasmid interactions and due to this limited connectivity, we may consider this strain as less 

compatible for HGT to the B. thuringiensis plasmids, compared to its virulent counterpart. However, 

since we did not observe any significant separation of the Bacillus organisms into second or third 

clusters, it remains unclear where the toxin gene cluster in pXO1 originated from. In contrast, we 

observed a number of BLAST confirmations (as denoted by the green highlighted lines) between Bacillus 

anthracis and afore mentioned families. Therefore HGT between these organisms did indeed occur at 

some stage and the specific gene clusters of the pXO1 plasmid probably consist of several gene sets 

from various donor families.    
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Figure 5. 5 Flux Visualizer image of B. thuringiensis (yellow) plasmid gene fluxes to Streptococcus 
pyogenes (green) and Bacillus anthracis strains (red). 

 

Figure 5. 6 Flux Visualizer image of B. thuringiensis (yellow) plasmid gene fluxes to Staphylococcus 
aureus (green) and Bacillus anthracis strains (red). 
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Figure 5. 7 Flux Visualizer image of B. thuringiensis (yellow) plasmid gene fluxes to Clostridium difficile & 
perfringens (green & blue) and Bacillus anthracis strains (red). 
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5.2 Case study for Streptomyces & Mycobacterium 
 

There are several known species of Streptomyces, many of which are important producers of industrial 

antibiotics. Streptomyces is also known as a prolific source of novel secondary metabolites which has 

impacts on wide range of biological activities, including antibiotic resistances (Emerson, et al., 2012). 

Secondary metabolisms offer the ability to stimulate production of secondary metabolites which are not 

critically required for the survival of the organism. Streptomyces are considered to have crucial 

influences on soil environments due to their capacity to degrade the insoluble remains of other 

organisms. In contrast, Mycobacterium includes pathogens known to cause serious and often fatal 

diseases in mammals, including tuberculosis.  Mycobacterial infections are particularly difficult to treat 

as the bacteria are naturally resistant to a number of antibiotics and they can survive long periods of 

exposure to various harsh environments (Feltcher, et al., 2010). Since these two families have shown to 

share a significant number of BLAST matches between their GI groups, we postulate that Streptomyces 

may serve as a potential reservoir of genes, related to the secondary metabolisms of these 

Mycobacteria. Figure 5.8 shows an example of BLASTP visualization between Streptomyces 

violaceusniger Tu 4113 (NC_015957) and Mycobacterium tuberculosis H37Ra (NC_009525), the 

attenuated mutant of the virulent strain H37Rv.  

 

Figure 5. 8 The BLASTP visualizations between Streptomyces violaceusniger Tu 4113 (NC_015957) and 
Mycobacterium tuberculosis H37Ra (NC_009525). 
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We evaluated the highest ranking Mycobacterium and Streptomyces GI group combinations as per Table 

5.1. Only two organisms from Streptomyces were found to share a significant amount of genes to the 

rest of the Mycobacterium GI groups, namely Streptomyces violaceusniger Tu 4113 (NC_015957) and 

Streptomyces bingchenggensis BCW-1 (NC_016582). The references from these organisms were used as 

input to the Flux Visualizer system. As per Figure 5.9, we observed extreme cases of HGT with confirmed 

BLAST similarities between all of the included organisms. Upon closer inspection we observed that the 

BLAST hits between these organisms related exclusively to genes appointed to secondary metabolite 

biosynthesis as per Table 5.2. The gene descriptions were mainly assigned to ‘Polyketide synthase 

modules and related proteins’.  This suggested that these two Streptomyces strains served as active HGT 

hotspots to the Mycobacterium species, specifically for genes related to secondary metabolite 

biosynthesis.  

 

 

No BLAST 
Similarities GI Group Combinations 

49  Streptomyces violaceusniger  - Mycobacterium marinum       

42  Streptomyces violaceusniger  - Mycobacterium bovis         

40  Streptomyces violaceusniger  - Mycobacterium marinum       

38  Streptomyces bingchenggensis - Mycobacterium marinum       

35  Streptomyces violaceusniger  - Mycobacterium tuberculosis  

34  Streptomyces violaceusniger  - Mycobacterium canettii      

33  Streptomyces bingchenggensis - Mycobacterium bovis         

32  Streptomyces violaceusniger  - Mycobacterium canettii      

32  Streptomyces bingchenggensis - Mycobacterium marinum       

31  Streptomyces violaceusniger  - Mycobacterium bovis         

31  Streptomyces violaceusniger  - Mycobacterium bovis         

31  Streptomyces violaceusniger  - Mycobacterium bovis         

31  Streptomyces violaceusniger  - Mycobacterium tuberculosis  

31  Streptomyces violaceusniger  - Mycobacterium tuberculosis  

25 
 Streptomyces bingchenggensis - Mycobacterium 
tuberculosis  

 

Table 5. 1 No of BLAST similarities among GI group combinations of Mycobacteria and Streptomyces. 

http://pregi.bi.up.ac.za/pre_gi_island.php?source_accession=NC_016582
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Figure 5. 9 Extreme HGT confirmed by BLAST similarities (green lines) from the Flux Visualization of 
secondary metabolite genes shared between Mycobacterium and Streptomyces. 

 

Streptomyces Accession 
Mycobacterium 
Accession 

Functional Group 
No Blast 
Matches  

 NC_015957                             NC_012207                          Secondary metabolites    37 

 NC_015957                             NC_008769                           Secondary metabolites    37 

 NC_015957                             NC_002945                           Secondary metabolites    37 

 NC_015957                             NC_019950                           Secondary metabolites    38  

 NC_015957                             NC_015848                           Secondary metabolites    39 

 NC_015957                             NC_009565                           Secondary metabolites    42 

 NC_015957                             NC_016804                           Secondary metabolites    51 

 NC_015957                             NC_010612                           Secondary metabolites    108 

 NC_016582                             NC_010612                           Secondary metabolites    83 

 NC_016582                             NC_012943                           Secondary metabolites    30 

 NC_016582                             NC_012207                           Secondary metabolites    29 

 NC_016582                             NC_008769                           Secondary metabolites    29 

 NC_016582                             NC_002945                           Secondary metabolites    29 

 NC_016582                             NC_019950                           Secondary metabolites    28 

 NC_016582                             NC_015848                           Secondary metabolites    27 

 

Table 5. 2 Blast matches between Streptomyces and Mycobacterium reveal exclusive functional 
preferences to Secondary metabolites 
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5.3 Discussion 
 

The evaluation of BLAST match frequencies between all available GI group combinations revealed a 

large proportion of organisms sharing only one gene between their groups. These genes were 

distributed mainly among functional classifications for HGT transference and integration, with over-

represented COG classes among “Transcription”, “Translation” and “Nucleotide transport and 

metabolism”. In contrast, we found examples of extreme gene sharing indices among GI group 

combinations, specifically for two B. anthracis strains, due to their similar GI recombination loci. As 

mentioned, this may be expected because these organisms share very similar evolutionary backgrounds. 

Nevertheless, using the Flux Visualizer system we were able to conclude that the HGT relationships 

between them were shaped by parallel donors and at some time the avirulent Sterne strain, underwent 

a major gene loss event (probably to ensure other genetic material could be integrated, if you take into 

account the size of the Bacillus anthracis str. Sterne GI group). Furthermore, we showed that, from two 

Streptomyces strains, genes related to secondary metabolisms were primarily shared by many 

Mycobacteria, where the aforementioned were used as a reservoir of genes to provide novel survival 

mechanisms for the various harsh environments of the Mycobacteria. Here the Flux Visualizer has 

proved to be valuable in obtaining an understanding of the possible gene spread outcomes, and 

facilitated meaningful results necessary to understand the gene sharing relationships in both sets of 

organisms in this case study. Both of these candidate sets were evaluated and subjected to analyses 

with the Flux Visualizer system to reveal the roles of HGT among them. This was set out as one of the 

major goals to achieve for implementation of this system (as per Chapter 1). Hence, we successfully 

showed that through the evaluation and grouping of fragments of GIs, we were able to simulate the HGT 

relationship structures through the use of graph theory and clustering techniques, among a multitude of 

bacterial organisms. 
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Concluding remarks 
 

The Flux Visualizer website is a tool aimed at visualizing bacterial genetic vector distributions through 

analyzing GI compositional similarities, GI fragment BLAST matches and shared gene functional 

classifications. The following achievements and discoveries resulted from this project: 

1. We have investigated the level of fragmentation of GIs in the Pre_GI database. The working 

hypothesis was that the number of events of horizontal gene transfer were overestimated in the 

Pre_GI database due to fragmentation of GIs. This study demonstrated that many GIs in 

bacterial genomes shared significant levels of compositional similarity and were either acquired 

independently at the same time from a single source, or, that which is more likely, were 

transferred all together within a genetic vector (conjugative plasmid of phage) and fragmented 

in the bacterial chromosome. An attempt was made to group available GIs from the Pre_GI 

database to estimate the real number of HGT events and to enable more accurate evaluations of 

the impact of GI acquisitions on bacterial evolution by the analysis of the functions of the 

acquired genes. Number of GI groups per genome varied from 1 to 10 following Poisson 

distribution (see Figure. 2.4)    

2. A system for visualization of HGT events based on oligonucleotide usage similarities was 

successfully implemented as set out by the second goal of this project.  The web address for the 

Flux Visualizer system is http://flux.bi.up.ac.za. Here users may use two links from the landing 

page of the website to navigate to the separate interfaces. The first interface allows the users to 

explore the grouping of GIs per organism, and the second interface allows the users to visualize 

donor-recipient relationships based on the user’s selections of interest as shown in Chapter 3.   

3. Annotations of all the identified GIs from the Pre_GI database were checked and the COG 

category descriptions were assigned to their genes. Then, using Markov Clustering we allocated 

groups of GIs in such a fashion as to represent accurate gene sharing structures between 

recipient organisms. We showed that GI groups could be separated based on genetic utility from 

the functional categories of the COG database as set out in the third goal of this project. This 

revealed that the COG categories combinations of NQ, NU, NV, INQ and MNO may be viewed as 

trademarks for HGT characterized by virulence gene exchanges. Additionally, we analyzed gene 

networks based on successive gene BLAST matches per COG functional category to formulate 

suggestions to include in the users analyses. Users of the Flux Visualizer website are therefore 
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able to include selections based on their own interests or suggested inclusions per specified 

functional category.  

4. The system developed for this project aids in finding patterns of gene exchanges among a large 

number of diverse bacterial species. This may prove valuable in identifying pathogenic gene 

spreads and assist in predicting when and where virulence gene acquisitions occur. As per this 

projects’ last goal, we demonstrated the successful use of the system and further extrapolated 

that it might be used for specific organisms of interest as in the case of the B. Anthracis. We also 

showed that the visualization of HGT relationships in this way, assists in painting a fuller picture, 

as was evident in the case for the wealth of secondary metabolism genes which were provided 

by the Streptomyces strains to various Mycobacterium species.  

Results of this project were summarized and prepared as a manuscript for submission to PloS One 

journal. 
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