The technification of the design is supported by the technical concept that was already mentioned in the design chapter. It does become more specific however and will be discussed henceforth. It leads to the structural and technological intentions and also informs the systems.

TECHNICAL CONCEPT

The structure becomes the threshold between the permanencies of

- solid brick and mortar,
- heavy concrete and stone,
- robust form and mass of the city fabric.

And the ephemerality of

- transparent glass and leaves,
- intersecting joints and shoots,
- light steel and tree branches.

Structural Intentions

The primary structure consists of a 990mm fenestrated concrete and brick wall that provides gravity to the whole device. The wall becomes the support for the secondary structure; a steel colonnade. The steel colonnade connects to the east of the wall and forms a portal frame that supports the floors. The third level in the structural hierarchy is a combination of light weight steel, perforated cladding material with levels of translucency and a clear glass curtain wall that forms the skin on the eastern façade. The fourth level in the structural hierarchy consists of light weight steel boxes (clad with steel and/or glass and solar protection) that protrudes from the portal frame, pushes through the skin and extends out to punctuate the eastern façade. Similar boxes will spill out of the fenestration of the brick wall on the western side.
Primary structure:
1255mm fenestration concrete and brick wall that provides gravity to the whole device. The wall becomes the support for the secondary structure.

Secondary structure:
A steel colonnade. The steel colonnade connects to the east of the wall and forms a portal frame that supports the floors.

Third level:
Light weight steel, perforated cladding material with levels of translucency and a steel mesh that forms the skin on the eastern façade.

Fourth level:
Light weight steel and timber boxes (clad with steel/timber and/or glass and solar protection) that protrude from the portal frame, pushes through the skin and extends out to punctuate the eastern façade. Similar boxes will spill out of the fenestration of the brick wall on the western side.

Environmental system:
Temperature comfort will be tested in the protruding steel boxes housing various programmes. To achieve the comfort zone between 18°C to 22°C for 70% of the time, devices such as solar shading, insulation material and methods to prevent thermal bridging will be used.

Service system:
Rainwater harvesting from the roofs and ground surfaces will be stored for plant irrigation. From storage it will be pumped into the irrigation system. Pumps will be solar powered with photovoltaic panels. Greywater will be harvested and cleaned through a system of filters, microbe additives and oxygen injectors. It will then be stored and pumped for the reuse in the flushing of toilets. The municipal water supply will support the programmes of water for drinking and cleansing.
Technological Intentions

Everything will be done in situ. Initially the wall was intended to be solid brick work with arched opening. It is however not feasible if labour and material costs are considered. To stay true to the essence of the concept the wall will be in situ cast concrete with brick finish. The openings will therefore not be arches, but horizontal concrete lintels. Concrete, being rooted in the site (the béton brut of the State Theatre) is an appropriate material to use as the primary structure. It is however very harsh and brick is therefore used to bridge the scale to the human scale. Brick has a haptic quality that concrete does not have. The concrete core will be exposed where it functions as the primary structure.

The specifically designed steel columns and beams will be pre-ordered and delivered on site in the correct lengths with the correct assembly fixtures. Joints will primarily be bolted. The assembly will happen on site. The floor shuttering will be assembled with the steel structure. The floors will be concrete in situ on permanent shuttering with cast in reinforcement mesh. The light steel boxes will be assembled and attached to the main steel portal frame on site. The glass curtain wall and cladding will be pre-ordered to specific segmental sizes that fit the grid of the design and can be assemble on site.

Service System

Water supply and distribution will be the service system focussed on. Rainwater harvesting from the roofs and ground surfaces will be stored for plant irrigation. From storage it will be pumped into the irrigation system. Pumps will be solar powered with photovoltaic panels. Greywater will be harvested and cleaned through a system of filters, microbe additives and oxygen injectors. It will then be stored and pumped for the reuse in the flushing of toilets. The municipal water supply will support the programmes of water for drinking and cleansing.
Environmental System

Temperature comfort and daylighting are the two systems that will be tested and iterated. Temperature comfort will be tested in the protruding steel boxes housing various programmes. To achieve the comfort zone between 18°C to 22°C for 70% of the time, devices such as solar shading, insulation material and methods to prevent thermal bridging will be used. For the underground dance studio, sufficient daylighting will be tested. Devices to achieve the desired 300lux will include light shafts, interior surface materials and colours, and additional artificial lighting.

Sustainability

Locally manufactured materials will be used. This includes bricks, steel work, aluminium wares, cladding materials and glass. Local builders and contractors will be sourced. Furthermore the structure will be able to house other programmes of a similar nature, its architecture does not limit its ability to adapt. The grid however limits the programmes to small businesses and services ideal for the entrepreneur trying to get into the market. The primary structure of brick, steel and concrete on a fixed grid can be supplemented with a myriad of other light fill-in partitions to adapt it for specific programmes.
Clinic section

Figure 7.10 ~ Clinic site section.psd

Figure 7.11 ~ Clinic section.psd
Figure 7.12 ~ Site.psd

Floor plans

Existing Library

Existing Clinic

Existing Retail and Offices

Gundelfinger and Kynoch buildings

MADIBA (VERMEULEN) STREET

SISULU (PRINSLOOD) STREET

HELEN JOSEPH (CHURCH) STREET

SERVICE ACCESS ROOF

PHOTO VOLTAIC PANELS

SLOPE

CONCRETE AND BRICK WALL

PEDESTRIAN BRIDGE

SUNKEN COURTYARD

PEDESTRIAN BRIDGES

RESTAURANT | CLUB OFFICES

SOLAR CHIMNEYS

AMPITHEREATRE

ZERO ENERGY MEDIA WALL

STAGE (CATWALK)

RAINWATER STORAGE TANK

EXPANDED METAL FACADE SCREEN

SITE SLOPE 1:50

168

THE URBAN INSURGENT

TECHNIFICATION

© University of Pretoria
Figure 7.28 - Steel box section.psd
Figure 7.29 - Timber box section.png