CHAPTER NINE

CONCLUSION

Exhibition Presentation and Photographs
Conclusion
9.1

FINAL PROJECT PROPOSAL:
Exhibition drawings and photographs
South facade view from the recreational landscape
North facade perspective of the structure from the ceremonial boulevard
South facade perspective from the recreational landscape
North facade perspective from Stanza Bopape Street
CONCLUSION

Structural and Tectonic Intentions

Explored monuments illustrating the structural and tectonic intentions of the building. sculpting the landscape through the constructed water channels:

The continuous sculpted landscapes, water channels, and boundary wall are constructed as a continuous tectonic concrete platform, delivering a continuous translation between the ground and lower boundary wall conditions.

The Service and structural core:

The extended structural and service spine is supported by the continuous lightweight roof structure, creating a continuous translation between the structural and service spine, forming the interface between the structural and service spine the suspended nature and structural integrity of the continuous service spine is expressed through the robust nature and bearing of the structural components.

The internal and external edge conditions are serviced by the structural and service core:

The circulation and public space activities skin is constructed as a tectonic steel frame to expose the permeability and cross-sectional organization of the structure, responding to the public, social, and functional requirements.

The internal activities are supported by circular steel members to express the lightness and transparency of the structure and translate its relationship to the constructed material landscape through structure and spaces that are adaptable, organic, and less restricted by commercial and functional conditions.

Continuous Roof Structure:

- Galvanized Corrugated steel sheets
- Cold formed steel sheet channels
- Polycarbonate rooflight
- Galvanized and Humidproof painted steel beams
- Cast-in-situ reinforced concrete gutter

Internal and External Facade:

- Steel circulation ramps as external facade, extending public movement along the facade
- Pre-cast concrete panels
- Expanded metal galvanized mild steel mesh

Structural and Service Core:

- Galvanized and pre-cast concrete columns and beams designed as structural cores and vehicular circulation
- In-situ cast concrete structure for supporting the continuous roof structure, functional circulation, services, and internal and external facade structures

Sculpted Landscape as continuous boundary wall:

- Concrete Service areas as end structures
- Continuous cast in-situ boundary wall as a public circulation ramp

Sculpted Landscape:

- Artfully constructed water channels, wetland and reservoir system
- Concrete outdoor sports areas as detention flooding structure
- Public swimming pool
Development of the exhibition structure spanning the Apies River stormwater Channel

Continuous Roof Structure:
- Galvanized concealed fix roof sheeting
- Cold formed steel lipped channels
- Seamless Aluminum gutter with neoprene sleeve
- Polyurethane insulation ceiling
- Galvanized and intumescent painted steel I-beams roof trusses
- Frameless structural double glazing envelope with stainless steel spider clamps, fixed to steel channel as end to floor slab.
- 260mm cast in-situ suspended floor slab between floor I-beams

Wall as beam structure
Galvanized steel I-Sections, H-columns and angle bracing to create custom composite 500mm deep beam, supporting the roof structure above and first and ground floor suspended structure below.

- Galvanized expanded metal mesh
- Galvanized cold-formed steel substructure fixed to galvanized H-columns and I-beams
- Steel circulation ramp fixed to H-columns and I-beams, projecting from the main structure

Suspended entrance lobby
Concrete cast-in-situ floor slab between steel floor I-beams, suspended from the first floor structure with 114mm Ø circular steel columns.
Development of the structural and service spine supporting internal and external edge conditions

Detail development of the column footings

Sectional diagram of structural intentions: Continuous Structural and Service Core supporting internal and external edge conditions
CONCLUSION

Detail A _ NTS
Structural and Service spine: Concrete gutter as structural continuous structural beam

Detail B _ NTS
Waern deck concrete accessible roof as extension of circulation on external facade

Detail C _ NTS
Service window detail within the concrete end structures

© University of Pretoria
CONCLUSION

Detail D _ NTS

Column, beam, floor and ceiling connection of auditorium structure expressing acoustic considerations through structure and detail

100mm x 25mm Galvanised steel angles, fixed to a 10mm Galvanised steel frame, with rubber acoustic insert located at the base of the frame, with an elegant thin cavity based for added acoustic control, with a 10mm thick Polystyrene panel.

22mm Galvanised steel floor on a 40mm Magnesium Oxide board fixed to high acoustic ceiling tile at 1.5mm thickness, capable of supporting weights above 2.7 tonnes, fixed to underground concrete floor with 20mm x 25mm timber acoustic spacers in rubber sleeves.

Continuous 250mm Galvanized steel channel as primary support between 250mm and 150mm deep, with 300mm stand-off at 800mm c/c spacing, maximum depth to the base plate with a resonant bracketing device for acoustic coupling.

Beam channel to be bolted back to back with a resonant panel and 50mm thick Polystyrene insulation for acoustic control.

400mm x 250mm x 28mm Suspended timber acoustic ceiling panels, fixed to high ceiling, fixed with 250mm x 25mm Galvanized steel angle bars, with 100mm Polystyrene insulation at 800mm c/c spacing.

Detail E _ NTS

Structural and Service spine:
Concrete gutter as structural continuous structural beam

400mm x 8mm Galvanized and Insulated spaced circular steel columns at 900mm x 800mm c/c spacing, welded to 1500mm x 1000mm bar, fixed to the concrete floor with a reinforced steel doubler.

160mm Filler backed, cast in situ reinforced concrete surface test to atmospheric exposure, with acrylic sealer and intumescent paint around circular steel columns and separator joints at maximum 300mm x 400mm distance from the floor with isolation layers.

Surface to be level within 5mm on 400mm centimetre square with minimum 400mm clearance and insulated with pressure sensitive tape. Unit and 100mm radiators on 150mm layers of wall construction glue. It is replace existing cavity with 150mm of the same.

110mm polished steel
The dissertation set out to address the spatially fragmented public realm of the present condition of our cities, resulting from the great divide between nature and culture of the modern paradigm, and from the development of industrialisation and urbanisation that control natural resources in isolated networks of infrastructural systems. Regardless of the multiplication of artificial environments, our cultural influences cannot be removed from our interpretation of nature that establishes us as living beings. Both the cultural constructs and natural entities of cities are manifestations of the relations between natural and cultural developments over time, and collectively influence a city’s distinctive existence (Whiston Spirn 2002:4). Infrastructure has the potential to facilitate an integrated continuum of this nature-culture exchange between natural systems and the resources operating in and shaping our artificially constructed built environments.

Through a concentrated investigation of the spatial consequences of the bureaucratic approach to development and infrastructural implementation in the City of Pretoria, the Apies River Corridor and the identified site, a reinterpretation of our development processes is proposed – a reinterpretation that is concerned with the acknowledgment of non-human natural systems and processes as agents in interventions, and that emphasises the constraints of our cultural practices through the construction of an artificial environment that stimulates a symbiotic relationship between our ecological and socio-cultural existences. Such a reinterpretation requires a fundamental change in perspective concerning the demands that necessitate flexible and resilient infrastructure design to meet the more variable conditions of our future cities.

The programmatic response of a decentralised urban stormwater filtration system and cultural memory park with social, economic and recreational facilities, aims to conserve and sustainably reclaim and reuse water, towards establishing an ecosystemic relationship between ecological processes and socio-economic activities, with the architectural intervention as facilitating agent. The proposed recreational and socio-economic appropriations represent possible scenarios for the animated infrastructure, and therefore an alternative reimagining of a hybrid typology is proposed as an extension of the existing infrastructure of the urban realm, Stanza Bopape Street, and the regenerated Apies River Island, that:

- contains and activates the potential of the recreational landscape;
- offers new public spaces through a relationship between Stanza Bopape Street and the river;
- increases the area’s ecological contribution through reinscribing an identity for it;
- amplifies its historic and cultural significance through relationship between the proposed interventions and historical remnants surrounding the site;
- capitalises on the spatial, material and socio-economic possibilities of infrastructure; and
- provides an enigmatic experience beyond its infrastructural use.

By reimagining existing infrastructure as part of the production of form and space, through innovative design interventions, alternative occupation, and public appropriation of disenfranchised urban spaces, the spatial, material, and socio-economic potential of infrastructure is exploited towards enhancing the precinct’s ecological contribution to and historic significance for the city, and reinstating an enigmatic and recreational experience as well as ecological awareness beyond its infrastructural use.
By reimagining existing infrastructure as part of the production of form and space, through innovative design interventions, alternative occupation, and public appropriation of disenfranchised urban spaces, the spatial, material, and socio-economic potential of infrastructure is exploited towards enhancing the precinct’s ecological contribution to and historic significance for the city, and reinstating an enigmatic and recreational experience as well as ecological awareness beyond its infrastructural use.

The "final" proposal and investigation of the project is therefore rooted in a broader spatial vision – from the scale of the site to the scale of the city – that aims to become a didactic metabolism for activating the specific condition and similar consequential conditions prevalent in the City of Tshwane.
Bibliography:

Accessed March 2015.

Accessed 10 08 2015.

[Accessed 10 09 2015].

Accessed 11 August 2015.

Wuppertal Institut für Klima, 2013. Emscher 3.0, From grey to blue, Bonen: Wuppertal Institut für Klima.
List of Figures

Figure 1.1 Crossing over the Apies River at Arcadia drift. (Hilton T) 3
Figure 1.2 Bon Accord Dam as recreational entity to the Apies River Corridor. (Hilton T) 3
Figure 1.3: Flooding resulting in the cannalisation of the Apies River. (Barnard and van Niekerk 2013) 3
Figure 1.4: Present condition of the cannalised Apies River. 3
Figure 1.5 Urban mapping investigation illustrating the marginal spaces identified within the area of investigation, as well as identified areas of intervention. By framework group 2015 4
Figure 1.6 Urban mapping investigation illustrating the insurgent activites identified alongside marginal spaces within the area of investigation. By Framework group 2015 4
Figure 2.1: Water Infrastructure being implemented on the Kleine Emscher in Duisburg (Wuppertal 2013) Image edited by author 12
Figure 2.2 "Artist's interpretation of Safavid-era Isfahan, typically described as the pinnacle of garden cities interspersed with harmoniously-designed pavilions and spacious thoroughfares" (AJAM Media Collective 2012) 13
Figure 2.3 A graphic illustration for the invitation of the Winter 2011, University of Michigan Taubman College, The Raoul Wallenberg Competition Studios. The competition studio aimed to investigate"...ways of redefining the highway's relationship to the city, the studio will explore possibilities of transforming the often undifferentiated and mono-functional network into a performative and productive urban system, which utilizes their potentials as the "spatial" infrastructure beyond its original utilities of mobility and conveyance." (Hwang & Moon 2011) 13
Figure 2.4 Graphic illustrating the theoretical principles of the First - and Second dichotomy of the Modern paradigm (Latour 1993:11) 16
Figure 3.1: Map 1 - The natural infrastructure of the early Pretoria region. (Author 2015) 24
Figure 3.2: Map 2 - The establishment of the town of Pretoria. (Author 2015) 24
Figure 3.3: Map 3 - The water reticulation network. (Author 2015) 26
Figure 3.4: Map 4 - Electricity and transportation infrastructure. (Author 2015) 28
Figure 3.5: Map 5 - Fragmented urban development due to the implementation of vehicular condition created by the implementation of major transportation networks throughout the city becomes visible as exagerated in the graphic illustration. (Author 2015) 30
Figure 3.6: Map 6 - Two resilient and symbolically significant entities are identified and investigated further. 32
Figure 4.1 illustrates the isolated linear network of water supply from the Fountains Springs and separate water removal system to the Daspoort Wastewater Treatment plant. The fragmented urban condition created by the implementation of major transportation networks throughout the city becomes visible as exagerated in the graphic illustration. (Author 2015) 36
Figure 4.2 Transformations of the Apies River landscape. (Author 2015) 38
Figure 4.3 illustrates the range of principles, as classified by Stephen Kellert (Mador 2008:44), that reflect understanding of the significance of our various associations with water’s potential. (Author 2015)

Figure 4.4 Alte Emscher River with its biodiversity in Duisberg, Germany (Wuppertal 2013)
Image edited by author.

Figure 4.7: Summary of the potential to the precinct when implementing an integrated stormwater approach

Figure 4.5 Proposed decentralised treatment network as adapted from (Armitage et al. 2012:5)

Figure 4.6: The four primary components of integrating urban stormwater strategies

Figure 4.8: The Cheonggyecheon channel before the implementation restoration project, showing the implemented overpass in 1958.

Figure 4.9: The Cheonggyecheon channel before the implementation restoration project, showing the implemented overpass in 1958.

Figure 4.10: The Cheonggyecheon channel after the implementation of the restoration project.

Figure 4.11: The Cheonggyecheon channel activities at night underneath a transportation overpass

Figure 4.12: Photograph illustrating public recreational activity along the reconstructed Cheonggyecheon channel

Figure 4.13: The termination of the constructed channel into a natural reserve.

Figure 4.14: Infrastructure to be investigated in the LA Revitalisation project

Figure 4.15: Community participation in the project proposal.

Figure 4.16: Proposals for the revitalised river areas.

Figure 4.17: The networks and extent of the revitalisation project.

Figure 4.18: Vision for the Apies River Corridor. (Author 2015)

Figure 5.1: Locality map of the identified site

Figure 5.2: Panoramic view from Stanza Bopape street towards the site, Lion Bridge and the confluence of the Eastern suspended site. (Photograph by author 2015)

Figure 5.3: Panoramic view South down the Apies River Stormwater channel, looking towards the Eastern suspended site. (Photograph by author 2015)

Figure 5.4: Panoramic view North towards Stanza Bopape street from the proposed project site.

Figure 5.5: Panoramic view from Stanza Bopape street towards the site.

Figure 5.6: Panoramic view from Stanza Bopape street towards the site.

Figure 5.7: Panoramic view from Pretorius Street towards the site. (Photograph by Author 2015)

Figure 5.8: Existing Isolated networks of infrastructural systems within the site. (Author 2015)

Figure 5.9: Summary of the investigation of Water systems of the Apies River and greater City of Tshwane Metropolitan Municipality

Figure 5.10: Synthesised map illustrating the combined water processes within the precinct and site. (Author 2015)

Figure 5.11: Vegetation identified along the banks of the Apies River channel. (Author 2015)
Figure 5.12: Synthesised map illustrating the combined ecological existence within the precinct and site. (Author 2015) 64

Figure 5.13: Historic curved stone boundary wall and floodlight structure of the Caledonian Sports Grounds. 65

Figure 5.14: Photograph of the heritage pavilion structure at the Caledonian Sports Grounds. (Photograph by author) 65

Figure 5.15: Synthesised map illustrating the combined social infrastructure within the precinct and site. (Author 2015) 66

Figure 5.16: The historic Lion Bridge on Stanza Bopape Street, crossing the Apies River channel. (Photograph by author 2015) 67

Figure 5.17: Synthesised map illustrating the combined transportation infrastructure within the precinct and site. (Author 2015) 68

Figure 5.18: Existing Plan of the site including floodlines, sewage networks, stormwater networks and the positions of the historical Date Palm trees to be retained on site. (Author 2015) 70

Figure 5.19: Section A-A 72

Figure 5.20: Section B-B 72

Figure 5.21: Section C-C 74

Figure 5.22: Section D-D 74

Figure 5.23: Historic curved stone boundary wall and floodlight structure of the Caledonian Sports Grounds. 76

Figure 5.24: Photograph of the heritage pavilion structure at the Caledonian Sports Grounds. (Photograph by author) 76

Figure 5.25: The historic Lion Bridge on Stanza Bopape Street, crossing the Apies River channel. (Photograph by author 2015) 76

Figure 6.1: Dormant potential of the ecological processes to be exploited through a continual architectural reinvention as contextual metabolism. (Author 2015) 81

Figure 6.2: Extracting opportunities 82

Figure 6.3: Illustrates the initial intuitive contextual response to the site and its formal and spatial conditions during a concept development workshop. Model constructed by workshop colleague Marie Oberholzer, through a discussion on the contextual conditions between the author and the workshop colleague. 83

Figure 6.4 locates the site within the identified city framework and vision for the river, while simultaneously illustrating the significant contextual activities observed during an experiential walkabout through the precinct. (Author 2015) 84

Figure 6.5 illustrates an extraction of the main contextual informants from the existing infrastructural maps discussed in Chapter 6: Infrastructure at the Scale of the Site, and synthesises it into a collective map that emphasises the opportunities for intervention and gives a guiding background to the conceptual informants. (Author 2015) 85

Figure 6.6: Existing movement and access points around the site. (Author 2015) 86
Figure 6.8: Proposed integration of water processes within the site. (Author 2015) 86
Figure 6.7: Proposed significant pedestrian movement through and around the site connecting significant spaces within the precinct. (Author 2015) 86
Figure 6.9: Identifying the main intervention edges as the Stanza Bopape ceremonial boulevard as well as the industrial edge along Walker Spruit. (Author 2015) 86
Figure 6.10: The development of the conceptual diagrammatic response to the site, illustrating the integration of the ground level linear water systems as a directional process, integrated with the exploitation of its ecological, social and economic opportunities, through an architectural intervention that facilitates these processes and their opportunities, creating spatial experiences that enhances these opportunities while simultaneously protecting and preserving the site's historic and environmental significance. (Author 2015) 88
Figure 6.11: Summary of the conceptual intentions of the site and building that aims to become an architectural filter as an extension of the existing infrastructure of the urban realm, Church Street and the regenerated Apies River Island. (Author 2015) 90
Figure 6.12 illustrates a diagrammatic summary of the various identified public and private stakeholders, as well as some of the significant initiatives that could benefit the development of the proposal. (Author 2015) 92
Figure 6.13: Diagrammatic journal sketches of auditorium spatial requirements and sightline calculations. (Author 2015) 94
Figure 6.14: Diagrammatic journal summary of acoustic investigation for material requirements. (Author 2015) 94
Figure 6.15 illustrates locating the proposed programmatic response to the site’s contextual conditions. (Author 2015) 97
Figure 6.16 illustrates the development of the programmatic response to the existing and proposed contextual conditions. (Author 2015) 98
Figure 6.17 illustrates a further development of the programmatic response to the existing and proposed contextual conditions. (Author 2015) 98
Figure 6.18: Chand Baori Stepwell in Rajasthan, India 101
Figure 6.19: Chand Baori Stepwell in Rajasthan, India 101
Figure 6.20: Agrasen ki Baoli, Jantar Mantar, New Delhi 101
Figure 6.21: Adalaj Stepwell, Gujarat, India 101
Figure 6.22: Rani ki 101
Figure 6.23: North Elevation drawing 102
Figure 6.24: Section drawing 102
Figure 6.25: Exploded structural drawing 102
Figure 6.26: Axonometric drawing 102
Figure 6.27: Entrance facade of the Cartier Foundation 103
Figure 6.28: Ground Floor open threshold
Figure 6.29: Relationship to the adjacent existing building
Figure 6.30: Integration of the structure and the landscape
Figure 6.31: Aerial photograph of the Schaustelle in context
Figure 6.32: Schaustelle activity at night
Figure 6.33: Longitudinal Section through the building illustrating the Main auditorium /
 exhibition space and social platforms above. (Kaltenbach 2014)
Figure 6.34: Building components of the Schaustelle transported to be reused after being dismantled
Figure 7.1: Plan diagramme of the conceptual intentions for the site, illustrating the primary
 continuing the infrastructure of the ceremonial boulevard across the Apies River
 channel as architecture emphasising boundary and filtration into the landscape. (Author 2015)
Figure 7.2: Section diagramme of the conceptual intentions for the site, illustrating the sculpting
 of the landscape that activates and integrates water ecological and socio-economic intentions.
 (Author 2015)
Figure 7.3: Perspective diagramme illustrating the primary intervention as extension of the
 Ceremonial Boulevard Infrastructure and continuation of public activities along the
 street edge, while simultaneously acting as boundary and filtration structure to the
 potential of the landscape. (Author 2015)
Figure 7.4: Conceptual diagramme illustrating the intentions of iteration 1: A return to the
 natural significance (Author 2015)
Figure 7.5: First site development of the intervention within the existing concrete channel and
 proposal of the constructed wetland and adjacent structures. (Author 2015)
Figure 7.6: First site development of the structural interventions as contextual and programmatic
 response within the constructed wetland. (Author 2015)
Figure 7.7: Further development of the structural interventions as contextual and programmatic
 response, containing the central constructed wetland landscape. (Author 2015)
Figure 7.8: First conceptual sectional development of the spatial and programmatic opportunities
 within the reconstructed landscape. (Author 2015)
Figure 7.9: First sectional development of the structure as a response to the reconstructed
 'natural' landscape and natural water processes of the site. (Author 2015)
Figure 7.10: First sectional development of the structural interventions as contextual and programmatic
 response towards the internal landscape and external street conditions. (Author 2015)
Figure 7.11: First sectional development of the structure as a response to the reconstructed 'natural'
 landscape and natural water processes of the site. (Author 2015)
Figure 7.12: as parti diagram to the site vision, illustrates the reconstruction of the artificial landscape
 through the creation of four primary elements, as discussed below. (Author 2015)
Figure 7.13 illustrates the processional water channel and related water process informing the sculpting of the recreational landscape through harvesting stormwater runoff collectively throughout the site, and channelling it to a central small-scale constructed wetland, from which it is channelled to an underground storage reservoir for reuse within the precinct, with excess water fed back into the Apies River Corridor. (Author 2015) 116

Figure 7.14 illustrates the programmatic and spatial activation of the site, developed from the iteration parti diagram as a simultaneous response to the sculpting of the landscape shown in Figure 7.12. (Author 2015) 118

Figure 7.15: Further development of the primary building and structural interventions during iteration 2. (Author 2015) 119

Figure 7.16 illustrates the sectional development of the continuous sculpted ground floor and water channel extending through the building, creating open thresholds from the street into the landscape. The external façade on the first floor contains and encloses activities to the open internal edge conditions that extend into the landscape. (Author 2015) 121

Figure 7.17 illustrates a further sectional development of the internal and external edge conditions through the extended landscape sunken below street level, continuously becoming the boundary wall to the structural and service spine that extends throughout the building and facilitates public circulation ramps to higher levels. (Author 2015) 121

Figure 7.18 illustrates a first translation of the section and plan to elevation, considering an appropriate spatial and formal translation between the mass and scale of the adjacent buildings. (Author 2015) 122

Figure 7.19: Northern birds eye view perspective drawing of the structural, formal and spatial development during iteration 2. (Author 2015) 122

Figure 7.20: Southern birds eye view perspective drawing of the structural, formal and spatial development during iteration 2. (Author 2015) 122

Figure 7.21: Conceptual diagramme of the development of the constructed water channel and landscape. (Author 2015) 123

Figure 7.22: Site parti diagramme illustrating the intentions of iteration 2 as a reconstructed artificial landscape. (Author 2015) 123

Figure 7.23: The building parti diagramme illustrating the intentions of the structural towers, circulation and water channel becoming the structural core and supporting 123

Figure 7.24: Site Plan 126

Figure 7.25: First Floor Plan 128

Figure 7.26: Second Floor Plan 130

Figure 7.27: Sectional development of the structure spanning the Apies River channel during Iteration 3. (Author 2015) 131

Figure 7.28: Development of section a-a during iteration 3, as a response to site activities, the sculpted landscape as well as water processes along the building and site. (Author 2015) 132
Figure 7.29: Diagrammatic section of the water processes along the roof and ground level as informant to the sectional development of the structural and service spine of the building. (Author 2015)

Figure 7.30: South Elevation

Figure 7.31: Section A-A

Figure 7.32: Photographs of model development during iteration 3 (Author 2015)

Figure 7.33: Photographs of model development during iteration 3. (Author 2015)

Figure 7.34: Plan parti diagramme illustrating the conceptual intentions of the development of the structural core as horizontal continuous element throughout the building. (Author 2015)

Figure 7.35: Sectional diagramme illustrating the conceptual intentions of the development of the structural core as vertical continuous element throughout the building. (Author 2015)

Figure 7.36: Conceptual diagramme of the elevation development in iteration 4. (Author 2015)

Figure 7.37: Site plan development during iteration four illustrating the resolution of conceptual intentions to the organisation of spatial relationships. (Author 2015)

Figure 7.38: First floor plan development during iteration four. (Author 2015)

Figure 7.39: Second floor plan development during iteration four. (Author 2015)

Figure 7.40: Perspective development of the building and structural development of the central spanning exhibition spaces. (Author 2015)

Figure 7.41: Section A-A

Figure 7.42: Section B-B

Figure 7.43: North Elevation

Figure 7.44: Northern and Southern birds eye view perspectives of the structure in context as developed during iteration four. (Author 2015)

Figure 7.45: Plan parti diagramme illustrating the conceptual intentions of the development of the structural core as horizontal continuous element throughout the building

Figure 7.46: Sectional diagramme illustrating the conceptual intentions of the development of the structural core as vertical continuous element throughout the building

Figure 7.47: Conceptual diagramme of the elevation development in iteration 4

Figure 7.48: Sectional development 1 of the internal and external spatial conditions

Figure 7.49: Sectional development 2 of the internal and external spatial conditions

Figure 7.50: Sectional development 2 of the internal and external spatial conditions

Figure 7.51: Site Plan

Figure 7.52: First Floor Plan

Figure 7.53: Second Floor Plan

Figure 7.54: Section A-A

Figure 7.55: Section B-B

Figure 7.56: North Elevation
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.57</td>
<td>South Elevation</td>
</tr>
<tr>
<td>8.1</td>
<td>Exploded axonometric of the main components of the structure and site (Author 2015)</td>
</tr>
<tr>
<td>8.2</td>
<td>Conceptual illustration of materials used and construction methods as elaborated in the material palette (Author 2015)</td>
</tr>
<tr>
<td>8.3</td>
<td>The circulation route and activities around the site, activated or influenced by the continuous water channel (Author 2015)</td>
</tr>
<tr>
<td>8.4</td>
<td>Three dimensional technical resolution of the landscape continuously becoming the surface bed, the water channel and the ramp as wall structure. (Author 2015)</td>
</tr>
<tr>
<td>8.5</td>
<td>Section A-A (2)</td>
</tr>
<tr>
<td>8.6</td>
<td>Plan diagramme illustrating the conceptual intentions of the structural and service core. (Author 2015)</td>
</tr>
<tr>
<td>8.7</td>
<td>Section diagramme illustrating the conceptual intentions of the structural and service core. (Author 2015)</td>
</tr>
<tr>
<td>8.8</td>
<td>Perspective diagramme illustrating the conceptual intentions of the structural and service core. (Author 2015)</td>
</tr>
<tr>
<td>8.9</td>
<td>Detail development of the window details</td>
</tr>
<tr>
<td>8.10</td>
<td>Axonometric of the continuous concrete boundary wall and service structures. (Author 2015)</td>
</tr>
<tr>
<td>8.11</td>
<td>Development and perspective illustration of the structural towers and bracing connections as well as development of the spanning structure across the Apies River channel. (Author 2015)</td>
</tr>
<tr>
<td>8.12</td>
<td>Detail of the concrete gutter and roof sheeting connections. (Author 2015)</td>
</tr>
<tr>
<td>8.13</td>
<td>Section of the external facade on Stanza Bopape Street illustrating the circulation as facade activity from ground floor extending throughout the building (Author 2015)</td>
</tr>
<tr>
<td>8.14</td>
<td>Photographs of the structural development of the exhibition structure spanning the Apies River channel through model exploration. (Author 2015)</td>
</tr>
<tr>
<td>8.15</td>
<td>Structural investigation towards developing an appropriate resolution for the conceptual, aesthetic, functional and spatial requirements. (Author 2015)</td>
</tr>
<tr>
<td>8.16</td>
<td>Exploded axonometric of the exhibition structure spanning the Apies River channel. (Author 2015)</td>
</tr>
<tr>
<td>8.17</td>
<td>Section B-B</td>
</tr>
<tr>
<td>8.18</td>
<td>Development of the auditorium structure (Author 2015)</td>
</tr>
<tr>
<td>8.19</td>
<td>Detail of the concrete footing, surface bed and circular steel column connection</td>
</tr>
<tr>
<td>8.20</td>
<td>Detail cross section through the auditorium central steel channels</td>
</tr>
<tr>
<td>8.21</td>
<td>Detailed section of the auditorium structure (Author 2015)</td>
</tr>
<tr>
<td>8.22</td>
<td>Detailed section of the auditorium structure. (Author 2015)</td>
</tr>
<tr>
<td>8.23</td>
<td>SBAT investigation of the site's sustainability potential (Author 2015)</td>
</tr>
</tbody>
</table>
Figure 8.24: Diagramme of the integration of water services and environmental systems of the site. (Author 2015) 186
Figure 8.25: Site diagramme illustrating the integrated water services and systems throughout the site, including rainwater, stormwater runoff and greywater. (Author 2015) 188
Figure 8.26: Diagrammatic investigation of the cooling tower requirements (Author 2015) 193
Figure 8.27: Photograph of the CH2 cooling towers lit up at night, Photo by Dianna Snape (CH2 2013) 194
Figure 8.28: Photograph of the air inlets at the top of the cooling towers, Photo by Melbourne Council House, Australia 194
Figure 8.29: Diagrammatic illustration of the cooling towers, by DesignInc (CH2 2013) 194
Figure 8.30: Potential proposed plant species to be used (Author 2015) 195
Figure 8.31: Existing vegetation on site to be retained (Author 2015) 195
Figure 8.32: Existing vegetation on site to be removed 195
Figure 9.1: Diagramme of approach to project and its contribution to the discourse of Architecture 224