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Abstract 

 

The objective of this study is to provide a direct estimate of the degree of persistence of 

measures of nominal and real house prices for the US economy, covering the longest 

possible annual sample of data, namely 1830-2013. The estimation of the degree of 

persistence accommodates for non-linear (deterministic) trends using Chebyshev 

polynomials in time. In general, the results show a high degree of persistence in the 

series along with a component of non-linear behaviour. In general, if we assume 

uncorrelated errors, non-linearities are observed in both nominal and real prices but this 

hypothesis is rejected in favour of linear models for the log-transformation of the data. 

However, if autocorrelated errors are permitted, non-linearities are observed in all cases, 

and mean reversion is found in the case of the logged prices, though given the wide 

confidence intervals, the unit root null hypothesis cannot be rejected in these cases. 
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1. Introduction 

The recent world-wide financial crisis, emerging from the collapse of house prices, has 

necessitated careful investigation of the time-series properties of both nominal and real 

house prices. While, Leamer (2007) notes that the housing market predicted eight of the 

ten post World War II recessions, Balcilar et al. (2014), goes further and provides 

evidence of the role played by house prices in driving the Great Depression. In general, the 

widely held view is that house prices can forecast (in- and out-of-sample) economic 

growth and inflation (Forni et al., 2003; Stock and Watson, 2003). Given this, the 

persistence property of house prices is of paramount importance, since depending on its 

degree of persistence, the effect of an exogenous shock on house prices may have either 

short-lived or prolonged impact on the economy in general (besides the direct effect on 

house prices itself). 

Against this backdrop, the objective of this study is to provide a direct estimate of 

the degree of persistence of measures of nominal and real house prices for the US 

economy, covering the longest possible annual sample of data, namely 1830-2013. For our 

purpose, instead of relying on tests of unit roots, as commonly done in the literature 

(discussed in detail below), we take a long memory approach. Unlike, standard unit root 

tests, which can only indicate whether a series is stationary or not by looking at 0 or 1 for 

the orders of integration, and have low power especially in cases where the series is 

characterized by a fractional process (Diebold and Rudebusch, 1991; Hassler and Wolters, 

1994; Lee and Schmidt, 1996; and more recently, Ben Nasr et al., 2014); the long memory 

approach provides us with an exact measure of the degree of persistence. This in turn, can 

provide us with a time span that it would take for the shock to die off, if at all.  

However, long memory models are known to overestimate the degree of 

persistence of the series in the presence of structural breaks (Cheung, 1993; Diebold and 



 2 

Inoue, 2001; and more recently, Ben Nasr et al., 2014), which are very likely in our case 

as it covers a long sample of 184 years.
1
 Given this, we supplement our long memory 

model to accommodate for non-linear (deterministic) trends as in Cuestas and Gil-Alana 

(2012), i.e., through the use of Chebyshev polynomials, which, in turn, are cosine 

functions of time. This approach is preferred over the method proposed by Gil-Alana 

(2008), whereby the number of breaks and the break dates in the series are determined 

endogenously, obtained by minimising the residual sum of the squares at different break 

dates and different (possibly fractional) differencing parameters. The reasons are as 

follows: First, from a technical point of view, since we are using low-frequency data, 

structural breaks should ideally be modelled in a smooth rather than an abrupt fashion. 

This smooth transition is also important, since housing market activities are known to be 

sluggish in nature, given the lumpy nature of housing investments. Secondly, conventional 

wisdom argues that housing prices in the US rise more quickly and fully to market events 

that increase the equilibrium price than they do to market events that lower the equilibrium 

price (see Balcilar et al., forthcoming, and references cited therein). For example, the fall 

of housing prices during the recent financial crisis and Great Recession and beyond did 

not occur quickly enough to clear housing markets around the country, significantly 

slowing the recovery process. In other words, house prices are intrinsically non-linear, and 

are also characterized by slow adjustment mechanisms, which we model through the 

Chebyshev polynomials in time. This allows for a non-abrupt change in the time series, 

unlike standard methods of incorporating structural breaks as sharp/sudden changes using 

dummy variables. To the best of our knowledge, this is the first attempt to analyze house 

price persistence accounting for non-linear (deterministic) trends, which in turn, allows us 

                                                 
1
 Further details regarding the dates of structural breaks for the nominal and real house price indices have 

been discussed in the data segment of the paper. 
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to provide credible estimates of persistence by accounting for nonlinearity either because 

of structural breaks or regime-switching. 

The remainder of the paper is structured as follows: Section 2 reviews the 

literature on housing prices mean reversion. Section 3 briefly describes the methodology 

and justifies its application in the context of housing prices series. Section 4 presents the 

data and the main empirical results, while Section 5 contains some concluding 

comments. 

 

2.  Literature review on mean reversion in housing prices 

Time series properties of house prices (e.g., short-run persistence and strong serial 

correlation) have been investigated as early as Case and Shiller (1989, 1990).
2
 In their 

pioneer work, Case and Shiller (1989, 1990), using data of Atlanta, Chicago, Dallas and 

San Francisco / Oakland, stated that housing market is not efficient based on evidence 

of short-run persistence and strong serial correlation. Other empirical studies that also 

obtained notable short-run persistence are that of Meese and Wallace (1994), Englund 

and Ionanides (1997), Røed Larsen and Weum (2008) and Gil-Alana et al. (2014). 

Moreover, like in Case and Shiller (1989), longer-horizon negative serial correlation in 

housing prices is also found by Cappozza and Seguin (1996), Meen (2002), Capozza et 

al. (2004), Gao et al. (2009) and Mikhed and Zemcik (2009) among others. 

Early empirical studies suggest that housing prices experienced a faster mean 

reversion in larger than in smaller metropolitan areas and also that the serial correlation 

of housing prices is greater in metropolitan areas with higher real income and 

population (see, for example, Capozza et al., 2004). A recent study by Gil-Alana et al. 

                                                 
2
 Additional studies on this topic are that of Abraham and Hendershott (1996), Meese and Wallace 

(1994), Englund and Ionanides (1997), Malpezzi (1999), Meen (2002), Capozza et al. (2002; 2004), Gao 

et al. (2009), Mikhed and Zemcik (2009), Beracha and Skiba (2011), Lean and Smyth (2013), André et al. 

(2014), Gil-Alana, Barros and Peypoch (2014), Gil-Alana et al. (2014) and Gupta and Majumdar (2015) 

among others. 
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(2013) focusing on the South African house market, show that affordable and luxury 

house segments have experienced mean reversion dynamics in house prices, but very 

high persistence and lack of mean reversion was observed for the different categories of 

the middle-segment house prices. 

Most of the previous empirical papers focus on metropolitan or regional housing 

prices and tend to use quarterly data. For example, Case and Shiller (1989, 1990) focus 

on data from 4 US cities; Meese and Wallace (1994) analysed 16 municipalities in the 

San Francisco area; Capozza et al. (2004) analysed data for 62 US metropolitan areas; 

Hwang and Quigley (2004) investigated data from Stockholm metropolitan area; Røed 

Larsen and Weum (2008) study housing prices in the city of Oslo; Gao et al. (2009) use 

data from 19 major cities in the US. Recently, Gil-Alana et al. (2013) proposed to take 

into account alternative house price segments such as affordable, luxury and middle-

segments in the South African market. 

Instead of focusing on metropolitan or regional housing prices, in this paper we 

analyze mean reversion using aggregate data for the US covering nearly two centuries. 

Specifically, we estimate the US housing price time series properties (e.g., short-run 

persistence and strong serial correlation) using a long memory model with non-linear 

trends. 

 

3. Methodology 

Let us suppose that yt is the time series we observe. We can consider the following 

model, 

,...,2,1,)(
0

 


txtPy t

m

i

iTit     (1)     

with m indicating the order of the Chebyshev polynomial which are defined below, and 

xt is a fractionally integrated process of order d (and denoted as I(d)) of the form 
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,...,1,0,)1(  tuxL tt
d     (2) 

with xt = 0 for t  ≤  0, and d > 0, where L  is the lag-operator ( 1 tt xLx ) and tu  is 

 0I .
3
 

The Chebyshev polynomials Pi,T(t) in (1) are defined by: 

,1)(,0 tP T  

  ...,2,1;,...,2,1,/)5.0(cos2)(,  iTtTtitP Ti 
 .
 (3) 

(see Hamming (1973) and Smyth (1998) for a detailed description of these 

polynomials). Bierens (1997) uses them in the context of unit root testing. According to 

Bierens (1997) and Tomasevic and Stanivuk (2009), it is possible to approximate highly 

non-linear trends with rather low degree polynomials. If m = 0 the model contains an 

intercept, if m = 1 a linear trend is also included, and if m > 1 the model becomes non-

linear, and the higher m is the less linear the approximated deterministic component 

becomes.  

Cuestas and Gil-Alana (2012) propose a simple method that is basically a slight 

modification of Robinson (1994). They consider the set-up in (1) and (2) testing the null 

hypothesis: 

,: oo ddH      (4)  

for any real vector value do. Under Ho, and using the two equations,  

,...,2,1,)(
0
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3
 An I(0) process is defined as a covariance stationary process with a spectral density function that is positive 

and finite at the long-run or zero frequency. 
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and given the linear structure of the above relationship and the I(0) nature of the error 

term ut, the coefficients in (5) can be estimated by standard ordinary least 

square/generalized least square  (OLS/GLS). A Lagrange Multiplier (LM) test of Ho (4) 

in (1) and (2) is then 

,ˆˆˆ
ˆ

ˆ 1'

4
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T
R 
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    (6) 
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and )t(P*
T  as the (mx1) vector of transformed Chebyshev polynomials and ̂  

,)(minarg 2
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q
 Euclidean space. Finally, the 

function g above is a known function coming from the spectral density of ut: 
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Note that these tests are purely parametric and, therefore, they require specific 

modelling assumptions for the short-memory specification of ut. Thus, if ut is white 

noise, g  1, and if ut is an AR process of the form (L)ut = t, g = (e
i

)
-2

, with 
2
 = 

V(t), so that the AR coefficients are a function of . 
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Under very mild regularity conditions,
4
 it can be shown that as in Robinson 

(1994): 

,ˆ 2  TasR Md    (7) 

and, based on Gaussiantiy of ut,  it can also be shown the Pitman efficiency theory of 

the test against local departures from the null. That means that if we direct the test 

against local alternatives of form: 

,: 2/1 TddH oa        

where δ is a non-null parameter vector, ,)(ˆ 2  TasR Md   
indicating a non-

central chi-squared distribution with non-centrality parameter which is optimal under 

Gaussiantiy of ut. Note that the method just presented is a testing procedure and 

therefore we do not directly estimate the fractional differencing parameter vector but 

simply present confidence intervals based on the non-rejections for a given set of 

values. Nevertheless, in the empirical application carried out in the following section we 

display estimates of d, which are based on the values that minimize the absolute value 

of the test statistic. This approach is found to be appropriate by means of Monte Carlo 

simulations.
5
 

 

4. Data and empirical results 

The data examined correspond to measures of nominal and inflation-adjusted, i.e., real 

house prices for the aggregate US economy covering the period of 1830-2013. The data 

are sourced from Winans International, and the index measures the nominal and real 

values of price of new homes going back to 1830. We work with both raw and the 

                                                 
4
 These conditions only include moments up to a second order. 

5
 See Cuestas and Gil-Alana (2012). 
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natural logarithms of the nominal and real versions of the Winans international US real 

estate index.
6
 

Figure 1 shows the original (untransformed raw) time series (nominal and real 

house prices), the first differences and the correlogram of the first differenced data. 

While Figure 2 displays the logged time series, the growth rates and the correlogram of 

the growth rates. As we can see, the correlograms of the first differenced data present 

significant values in both series in both cases of non-logged and logged data, suggesting 

that fractional integration may be a plausible approach in the modeling of these series. 

Further, to motivate the use of the non-linear deterministic trends, we carried out direct 

tests of multiple structural breaks using the Bai and Perron (2003) tests, as well as the 

Brock et al., (1996; BDS) test of non-linearity in the non-logged and logged values of 

the nominal and real house price indices. Based on the Bai and Perron (2003) tests of 

structural breaks applied to the regressions of nominal and real house prices on a 

constant only, with a maximum number of breaks set to 5 and an end point trimming of 

15% of the observations; we detected 2 breaks each for both nominal and real raw data 

at the same points: 1960 and 1987. For the logged nominal and real series, we found 4 

breaks each for both, at exactly the same dates: 1879, 1920, 1955 and 1982. Note that, 

even if there exists additional structural breaks within the 15% trimming areas, for 

instance the subprime crisis, they would be captured by the non-linear deterministic 

trends. While, the BDS test overwhelmingly rejected the null hypothesis (with the null 

having a p-value of 0.00 under dimensions 2 to 6) that the filtered series are i.i.d, with 

filtering being done using the first differences of the untransformed and logged nominal 

                                                 
6
 EViews and FORTRAN are used to conduct all the empirical analyses, and the codes are available upon 

request from the authors. 
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and real house prices. Consequently, the results from these two sets of tests suggest that 

there are likely to be non-linear structure in the data.
6
 

 

Figure 1: Original time series, first differences and correlogram of first differences 
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6
 Further details of these tests are available upon request from the authors. 
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Figure 2: Logged time series, growth rates and correlogram of the growth rates 
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Notes: The thick lines in the bottom plots refer to the 95% confidence band for the null hypothesis 

of no autocorrelation; pr. stands for prices. 

  

 In Table 1, we display the estimated values of d and their corresponding 95% 

non-rejection intervals in the model captured byequations (1) and (2), for the cases of m 

= 0, 1, 2 and 3 and white noise errors. The first observation is that non-linearities (m = 

3) are detected in the two unlogged series, while linear process (m = 1) are observed in 

case of the two logged series. Thus, it seems that by taking log-transformations, we may 
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remove the non-linearity of the data. Focusing on the fractional differencing parameter, 

d is equal to 1.14 for the nominal prices and 1.11 for the real ones, and in both cases the 

deterministic terms are statistically significant up to m = 3 (see Table 2). Moreover, in 

these two cases, the unit root null hypothesis (d = 1) is rejected in favour of higher 

degrees of differentiation. However, the estimated orders of integration are 1.05 and 

1.04 respectively for the logged nominal and real prices. Thus, the unit root null cannot 

be rejected, and only an intercept and a linear trend are required to describe the 

deterministic part of the processes. (See Table 2). 

Table 1: Estimates of d and 95% confidence intervals with white noise errors 

 m = 0 m = 1 m = 2 m = 3 

Nominal pr. 
1.18 

(1.11,   1.27) 

1.18 

(1.12,   1.26) 

1.17 

(1.10,   1.25) 

1.14 

(1.06,   1.23) 

Real pr. 
1.15 

(1.09,   1.23) 

1.16 

(1.12,   1.24) 

1.15 

(1.08,   1.22) 

1.11 

(1.03,   1.20) 

Log nominal pr. 
1.03 

(0.92,   1.19) 

1.05 

(0.94,   1.20) 

1.03 

(0.90,   1.19) 

1.00 

(0.85,   1.19) 

Log real pr. 
1.02 

(0.91,   1.17) 

1.04 

(0.93,   1.18) 

1.01 

(0.89,   1.17) 

0.99 

(0.83,   1.17) 

     Notes: In bold, the significant cases at the 5% level. 

 

 

Table 2: Estimated coefficients of the selected models in Table 1 

 m = 0 m = 1 m = 2 m = 3 

Nominal pr. 
34787.35 

(2.483) 

-32051.29 

(-1.717) 

33107.57 

(1.940) 

-25258.08 

(-2.108) 

Real pr. 
33234.54 

(2.661) 

-29873.26 

(-1.969) 

27245.13 

(2.006) 

-20476.60 

(-2.366) 

Log nominal pr. 
8.6745 

(6.153) 

-1.6587 

(-1.679) 
--- --- 

Log real pr. 
8.5489 

(6.454) 

-1.5673 

(-1.690) 
--- --- 

     Notes: In parentheses, the corresponding t-values. 

 

Tables 3 and 4 are similar to Tables 1 and 2 above but imposes autocorrelated 

errors. However, instead of using standard autoregressive (AR) process here, we use a 

non-parametric approach due to Bloomfield (1973). This model produces 
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autocorrelations that decay exponentially as in the AR case. Another advantage of this 

approach is that this method is stationary for all its coefficients, as opposed to what 

happens in the AR model. In Bloomfield (1973) the model is exclusively presented in 

terms of its spectral density function, which is given by: 

,)(cos2exp
2

);(
1

2














 



k

r

r rf 



     (8) 

where k indicates the number of parameters required to describe the short run dynamics 

of the series. Bloomfield (1973) showed that the logarithm of an estimated spectral 

density function of an ARMA(p, q) process is often found to be a fairly well-behaved 

function and can thus be approximated by a truncated Fourier series. He showed that (3) 

approximates it well, where p and q are of small values, which is usually the case in 

economics. Moreover, this model fits very well in the context of Robinson’s (1994) 

parametric tests.
7
 

Table 3: Estimates of d and 95% confidence intervals with autocorrelated errors 

 m = 0 m = 1 m = 2 m = 3 

Nominal pr. 
1.27 

(1.16,   1.49) 

1.26 

(1.17,   1.40) 

1.25 

(1.14,   1.38) 

1.19 

(1.04,   1.35) 

Real pr. 
1.28 

(1.17,   1.49) 

1.27 

(1.18,   1.40) 

1.26 

(1.15,   1.41) 

1.20 

(1.08,   1.36) 

Log nominal pr. 
0.89 

(0.78,   1.10) 

0.92 

(0.76,   1.13) 

0.81 

(0.60,   1.10) 

0.55 

(0.27,   1.02) 

Log real pr. 
0.87 

(0.76,   1.11) 

0.91 

(0.76,   1.14) 

0.80 

(0.61,   1.09) 

0.54 

(0.23,   1.01) 

     Notes: In bold, the significant cases at the 5% level. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
7
 See Gil-Alana (2004) for further details. 
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Table 4: Estimated coefficients of the selected models in Table 3 

 m = 0 m = 1 m = 2 m = 3 

Nominal pr. 
21352.05 

(2.237) 

-21579.44 

(-2.382) 

30438.49 

(2.334) 

-23592.16 

(-1.778) 

Real pr. 
15597.10 

(2.208) 

-16075.65 

(-2.342) 

23532.86 

(2.255) 

-18096.05 

(-1.971) 

Log nominal pr. 
8.88165 

(46.551) 

-1.7277 

(-15.561) 

0.5269 

(6.119) 

-0.3321 

(-4.719) 

Log real pr. 
8.7690 

(49.431) 

-1.6292 

(-15.614) 

0.4828 

(5.923) 

-0.3322 

(-4.965) 

     Notes: In parentheses, the corresponding t-values. 

 

 Using the Bloomfield model for the I(0) error term, the results in terms of the 

estimation of d are presented in Table 3. Table 4 displays the estimated coefficients of 

the selected models. It is observed now that non-linear trends are required in all of the 

four series, and we also observe substantial differences depending on whether the series 

are log transformed or not. Thus, in the original series, the differencing parameter is 

equal to 1.19 for the nominal price index, and 1.20 for the real one. As in the previous 

case of white noise disturbances, the unit root null is rejected in favour of d > 1. 

However, a very different picture is obtained in the log-transformed case. Here, the 

estimated differencing parameter is equal 0.55 for the log-nominal price index and 0.54 

for the real one. But the confidence intervals are so wide that the null of unit root cannot 

be rejected for either of the two series. 

 

5. Concluding comments 

In this paper, we provide a direct estimate of the degree of persistence of measures of 

nominal and real house prices for the US economy, covering a long annual span (1830-

2013) data set, using long memory procedures, and incorporating non-linear 

deterministic trends, to account for both structural breaks and regime-switching. This is 

a clear deviation from previous empirical studies on housing prices that have analysed 

the persistence property of house prices in US regional and aggregate housing markets 



 14 

(see, for example, Case and Shiller, 1989, 1990; Abraham and Hendershott, 1996; 

Meese and Wallace, 1994; Capozza and Seguin, 1996; Englund and Ionanides, 1997; 

Englund et al., 1999 and Malpezzi, 1999 and recently Gil-Alana et al., 2014 among 

others). 

The main results of the paper can be summarized as follows: In general, high 

orders of integration are observed in all cases, with it being higher for the non-logged 

data. We note that the unit root null hypothesis (i.e. d = 1) is rejected in favour of higher 

degrees of differentiation (d > 1) for the nominal and real prices in the two cases of 

white noise and correlated errors; however, this hypothesis (d = 1) cannot be rejected if 

the logged values are used. In fact, under the assumption of autocorrelated errors, the 

estimated value of d is significantly low in both nominal and real log-prices (0.55 and 

0.54 respectively), but the confidence intervals are so wide that the unit root null cannot 

be rejected. Overall, our results suggest that US house prices have historically been 

highly persistent, with the results continuing to hold even after controlling for structural 

breaks and inherent nonlinearity in the data generating process of real and nominal 

values of house prices. The result implies that the effect of an exogenous shock on 

house prices may have prolonged impact on the economy in general, given the well-

established leading indicator role of both nominal and real house prices. 
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	The Chebyshev polynomials Pi,T(t) in (1) are defined by:

