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Executive Summary 
Engineering a product for optimal reliability at minimal life cycle costs (LCC) has been a challenging 
aspect to nearly all industries. Uncertainties complicate control over these costs, with many LCC 
models having been developed to determine the optimal design. 

This project aims to find the best reliability level for a low-cost paediatric prosthetic knee (PPK) 
under development by the Council for Scientific and Industrial Research (CSIR) and minimise its LCC. 
An agent based simulation in combination with system dynamics techniques is utilised to reach this 
goal. A pilot version of the agent based model is compared with an analytical Monte Carlo simulation 
in order to validate the use of the agent based simulation. The LCC are especially important, as the 
CSIR do not intend to make a profit from the PPK and all costs will be attributed to research and 
development. A mathematical expression capable of predicting the time to failure based on user 
patterns is developed, which will assist prosthetists and parents with future financial planning for 
the eventuality of a failure. 

What is to be learnt from this project is the important link and interaction between reliability and 
product performance, culminating in its LCC. The end-beneficiaries are essentially the children who 
will receive a well-designed product to use and improve their lives. Future low-cost prosthetic 
products may also be able to use this combined modelling approach and minimise their expenses. 
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Chapter 1 

Introduction 
 

1.1 Background on the Paediatric Prosthetic Knee 
Paediatric prosthetics are based on simplicity and dependability. Components must fit the child’s 
developmental phase, supporting his / her capabilities and life activities. A completely functional 
prosthesis will assist the child in their development and adaptations as an amputee (Oglesby and 
Tablada, 1992) . Lower limb prosthetic products have come a long way in becoming sophisticated to 
support the life activities of child amputees and enhance their quality of life. There are a variety of 
paediatric prosthetics knee (PPK) products on the market.   They are mainly categorized according to 
articulation types they offer. These range from simple single-axis models to complex ones with 
polycentric multi-bar linkages, hydraulic swing phase controls, foot rotations, extension assist 
mechanisms and robotics. They allow children to do a multitude of functions, also assisting them in 
their gait and ease of use (Andrysek et al., 2004).  

The primary challenge has now shifted from improving the functional and mechanical capabilities of 
the prosthesis to the availability and accessibility thereof. The main reason behind inaccessibility is 
not only the high manufacturing and distribution costs, but also the uncertainty with regards to 
future life cycle expenses (Kickham and Nowlan, 2014). South Africa’s resource constrained public 
health system cannot provide all child amputees with the required prosthesis, and not all medical 
insurers are prepared to fund expensive prosthesis over a long period of time. 

Stanford University, in conjunction with the Bhagwan Mahaveer Viklang Sahayata Samti (BMVSS) 
organisation in India, have developed the Stanford-Jaipur knee to provide a low-cost option to 
resource-poor patients. Time magazine has named this product as one of the 50 best inventions of 
2009 (Samti, 2013). Figure 1 illustrates a child using the Jaipur knee. 
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Figure 1: A child walking with the Jaipur knee (Greig, 2009)  

It would seem that the Jaipur knee will be able to fill the demand for PPK’s  in South Africa; however 
it was found after evaluation that this product would not be able to stand up to the harsher African 
conditions. The CSIR has therefore decided to develop a low-cost PPK to be manufactured and 
distributed locally, with the requirement for higher durability to suit for the African conditions and 
children’s high activity levels.  

The Jaipur knee is made from oil impregnated nylon (Samti, 2013) with yield strength between  55 
and 83 MPa (Callister and Rethwisch, 2011). Materials such as steel, titanium and aluminium alloys 
have been traditionally used in prosthetic manufacturing. Some carbon-fibre limbs have also been 
developed (Uellendahl, 1998). These materials have got much higher yield strengths than that of 
nylon, making them more durable for the use in prosthetics. The design team is implementing steel 
and aluminium alloys in their design, as it is much less costly than titanium and carbon fibre 
composites (Callister and Rethwisch, 2011) and they have easy access to these materials. With the 
product in the early stages of development, the design is still open to changes. 

 

1.2 About This Project 
There are four main areas where Industrial Engineering can make a positive difference in the costs, 
quality and availability of prosthetic products, as outlined by Zhang and Wang (2014): 

1. Optimisation of manufacturing processes 
2. Incorporating ergonomics into the design 
3. Optimising the supply chain 
4. Providing testable predictors with regards to LCC for medical insurers 
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This project is focused on the fourth area: to launch an investigation into the expected life cycle 
costs (LCC) associated with the supply and use of the PPK under development. These costs are 
subject to uncertainty, and are significant in the delivery of the PPK.  

The knee prosthesis has the following basic components (Zhang and Wang, 2014): 

 Knee joint 
 Pylon (functioning as the lower leg) 
 Foot 
 Custom made socket, which is the main interface between the residual limb and the 

mechanical knee 

Figure 2 shows a basic knee prosthesis (Orthrotics, 2012). 

 

 

Figure 2: A basic knee prosthesis (McCleve Prosthetics and Orthotics, 2012)  

The scope of this project is limited to the mechanical knee only, consisting of the knee joint, the 
pylon and the foot. The socket component is excluded, as it is subject to other factors outside the 
field proposed for this study. 

The CSIR is the designer and will be the manufacturer and main distributor of the prosthetic knee 
joint. The joint will be assembled together with standardised pylon and foot components to make up 
the mechanical knee. The expected demand for the PPK will influence the production rate of the 
joint, as well as the order rate of the pylon and foot. Currently, the CSIR is estimating an initial 
production of 1800 joint units in 2016. Demand from new fittings is expected to be between 1 and 5 
units per week based on feedback from prosthetists in industry who are involved with paediatric 
knee fittings. Table 1 is breakdown of the current costs. 
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Table 1: Cost Summary 

Activity Costs (in Rand value) 
Design 3 060 000 

Manufacturing (per knee joint) 3700 
Selling price (1st time) 2400 

Warranty Price 3400 
Validation 700 000 

 

The selling price is payable when the child receives a PPK for the first time. Any replacements 
afterwards will incur the warranty price. The manufacturing costs remain the same for both new 
units and those replaced. The warranty costs constitute the difference between the manufacturing 
price and the warranty price – i.e. R 300. 

1.3 Needs Requirement 
Uncertainty with regards to future demand as well as associated LCC has prompted the following 
questions: 

1. What are the associated LCC over 5 years? 
2. What is the expected demand, i.e. how many units will be replaced and manufactured over 

the course of the project? 
3. What effective design changes can be made to reduce the LCC, i.e. what is the optimal 

design policy? 
4. When will a child require a replacement? 

The answers to the questions will all have significant influences on decisions taken during the 
development of the PPK, before it is put out to market. Ultimately, the aim is to minimise the LCC 
associated with the PPK. The results will assist the CSIR in design, production and delivery planning. 
This information can also be of benefit to the public and private health care industries, medical 
insurers as well as investors who wish to support the prosthetic project.  The government has in 
recent times announced its plans for the National Health Insurance scheme, known as NHI, with the 
objective of providing access to quality health care to all South Africans (Matsoso and Fryatt, 2013). 
The results can assist the government in providing enough financial assistance towards an amputee’s 
continuous health and prosthetic requirements.  

1.4 Project Approach 
This project will attempt to answer the questions posted in a systematic process. This process is 
outlined in the following steps: 

1. Conduct a literature review to explore and investigate the fields of product development, 
LCC and solution methods applicable to these areas 

2. Outline the life cycle of the PPK as a system and identify major factors affecting the costs 
3. Develop the method to calculate LCC  
4. Verify and validate the method  
5. Link product development and LCC in monetary terms, using the selected solution method 
6. Optimise the design in terms of its development and minimum LCC 
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7. Deliver the solution and results to the CSIR. 

A preliminary literature review identified Monte Carlo (MC), Agent Based Simulation (ABS) and 
System Dynamics (SD) modelling as viable tools to solve product development problems (Fang and 
Zhaodong, 2015, Maisenbachera et al., 2014). This project will be utilising the functionalities of ABS 
and the SD library in Anylogic software, making use of parameters and variables identified in Step 2. 
A MC simulation will be run using the statistical programming language R, in order to compare the 
results with that of the ABS. The ultimate aim is to find the optimised level of development and 
minimising LCC. Variables to be used include the following: 

 Design variables 
 Selling and Warranty price 
 Manufacturing parameters 
 Human factors 
 Economic factors 

Modification in design variables will drive the simulation, as all future events depend on how the 
product was designed. The model will be tracing the effects of these changes and the associated 
costs. Verifying and validating the model is an important step as to determine the credibility of the 
results, to support the decision making process to be undertaken by the CSIR development team.  
The selling and warranty price will be lower than the production costs; this deficit is assigned to 
Research and Development (R & D), adding to the importance of these decisions. 
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Chapter 2 

Literature Review 
 

This review investigates the relation between product development and LCC, as well as exploring 
simulation as a technique to mathematically express this link. Systems thinking is applied to 
demonstrate the life cycle of a product as a system, with each phase representing a component of 
the system influencing the next phase.  

Several articles, conference proceedings and academic books were consulted to complete the 
review and find evidence to support the utility of LCC during product development. The collected 
works also explored the various simulation methods used to compute LCC. From this evidence base, 
a feasible simulation method to be used in this project was found, and is presented in Chapter 3. 

 

2.1  Product Development and Life Cycle Factors 
The life cycle of a product is characterised by four main phases, namely (Yuling et al., 2009): 

 Design 
 Manufacturing / Production 
 Service / Operational use 
 Retirement  

2.1.1 Design 
A product is designed and manufactured to fill a void in the market and must meet customers and 
consumer requirements. The design and manufacturing stages are often jointly referred to as the 
development phase. It is during this phase that the product quality, and hence its future 
performance, is determined. The process of synchronized engineering by a multidisciplinary team of 
engineers has proven to improve the quality of products (Levin and Kalal, 2003). However, this phase 
is challenged by uncertainties with product performance in the future. An over-engineered product 
will consume company resources and not find its use amongst consumers. The reverse side also 
holds true, as a poorly developed product will not satisfy the ever increasing knowledgeable 
customers’ demand for quality. To solve this problem, Levin and Kalal (2003) suggested that the 
concurrent engineering process be extended to the entire life cycle of a product. 

A product’s faults or future failures can be summarised by the term dependability, which constitutes 
its reliability, availability, maintainability, quality and safety (Kleyner and Sandborn, 2008). The 
dependability of a product is determined during its development, and is proportionally linked to its 
performance during service. Poor dependability will result in poor performance, while a highly 
dependable product will perform to its expectations. Designing a product while taking its entire life 
cycle into account will benefit both the developing company and the consumer. 
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Of the several functional requirements (FR) that a prosthetic product must meet, security in its 
performance is most important. The prosthesis must support any physical activity performed by the 
user. It must be robust, resilient and reliable (Soares and Rebelo, 2014). Design of the PPK depends 
on the FR’s of children and parents. These include ease of use, steadiness, fatigue- and falling 
factors. The requirements surmise to overall dependability of the knee, as well as being affordable 
(Andrysek et al., 2004). This brings to mind an important consideration that must be taken into 
account: the number of replacements required until the child has reached adulthood. It is therefore 
important for designers to keep this thought in mind, as each replacement incurs costs. Designing 
with awareness of failure rates will influence the demand for replacements later on. 

2.1.2 Manufacturing 
As mentioned the manufacturing of a product is synchronised with its design. Prototype testing and 
revisiting of manufacturing methods will contribute to a higher quality product. Prosthetic products 
require quality surface finishes, fine tolerances and conservation of material strength. Computer 
numerical control (CNC) machining, laser cutting, 3D-printing and moulding are used in the 
manufacturing of prosthetics and medical devices (Groover, 2013). The CSIR has decided to make 
use of CNC methods, as materials required for the 3D-printing of medical devices are too expensive, 
and laser cutting will not be sufficient. However, as the technology will become more affordable in 
future, the CSIR plans to incorporate 3D-printing into the manufacturing process. 

2.1.3 Service 
The service phase starts once the product has been put out to market. The performance and quality 
of a product during its service stage is determined by the preceding phases, namely design and 
manufacturing. A product’s reliability during operation depends on the design and the environment 
in which it will be operating (Matsuyama et al., 2014). Availability of a product plays an important 
role during this phase. Consumers will become frustrated with extended downtime of systems or 
unavailability for use of a product, as it results in losses and inconveniences. In order to maintain a 
product’s availability for use during this phase, manufacturers must be able to repair or replace a 
product still under warranty (Kleyner and Sandborn, 2008).   

Production volumes are therefore determined by both new product sales and warranty claims. A 
product with a longer mean time to failure (MTTF) will require a smaller amount replacements or 
repairs than a less reliable product. A link is therefore made between dependability and product 
replacement demand. The CSIR developed a policy to fully replace a failed component rather than 
repair it, thereby lowering logistical supply chain expenses. This is also referred to in the literature as 
the repair-by-replacement concept, and directly impacts the spare part inventory required to fill the 
demand (Öner et al., 2010). Availability of the product can be delayed if the spare parts are not 
readily available, an event the CSIR would want to avoid. 

2.1.4 Retirement 
Once the demand for a product has declined or the product has become outdated, a company must 
decide on retiring the product and replacing it with a new, more advanced product (Levin and Kalal, 
2003).  The CSIR did not impose a time for the product to retire, but will consider to renew or 
improve the product once new technology becomes available that can contribute to making the 
product more affordable. The remaining units, if any, will be stored for future use, as there will 
always be a demand. 
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2.2  Product Reliability and Life Cycle Costs 
Reliability and availability of a product have remarkable influences on the LCC of the product. The 
end-user will typically decide upon a product based on its LCC  (Yuling et al., 2009). However, the 
reliability and MTTF of a product or component are subjected to uncertainty, and hence the LCC are 
also uncertain (Levin and Kalal, 2003). This complicates control over LCC of a product. 

Life cycle costs are a function of development (design and manufacturing) and warranty (or 
replacement) costs. These costs form a relationship in such that a higher reliability will increase 
development cost, while decreasing the warranty costs. However, a point will come where the 
development cost exceeds the replacement costs, becoming infeasible for both producer and end-
user. Their sum is graphed as a U-shaped curve, as illustrated in Figure 3. The minimised LCC is found 
on the lowest point on the total costs curve (Kleyner and Sandborn, 2008), which is the point of 
indifference for development and replacements. This trade-off between investment in reliability and 
warranty expenses is an important step in the product development process (Öner et al., 2010). 

 

Figure 3: Development versus Warranty Costs with Improved Reliability (Kleyner and Sandborn, 2008) 

The service phase is the longest of the four phases, accounting for between 50 – 60% of the total 
LCC. Design and production cost accounts for 10% and 20-30% respectively (Yuling et al., 2009). 
Costs to make changes to the design or fix mistakes is lower to recover during the design and 
manufacturing phase than the service phase (Nasar and Kamrani, 2007), and the amount of control 
over the product’s features decreases (Chao, 2010). Figure 4 graphs the costs associated with each 
phase, linking it with the amount of control over the product changes during each phase.  
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Figure 4: Life Cycle Costs and Control (Chao, 2010) 

It would therefore be ideal to make changes to the product during the development phase, as well 
as deciding on the reliability level to design for. Reducing the failure rate will have a significant 
impact on LCC. In an experiment on failure rate reduction of aviation equipment, substantial savings 
in LCC were observed. This is graphically depicted in Figure 5  (Fang and Zhaodong, 2015). 

 

Figure 5: Reduction in Failure Rate and Decreases in Life Cycle Costs (Fang and Zhaodong, 2015) 
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Many researchers have developed costing models for products still under development or 
undergoing design changes, in order to find the optimal reliability level and hence minimising LCC. 
These include Monte Carlo-, SD- and ABM simulation methods and will be discussed in this 
document. Being able to estimate the warranty expenses within a known degree of uncertainty, 
provides the developer with an engineering and competitive advantage in the market (Kleyner and 
Sandborn, 2008). Prosthetic products are subject to minimum standards (Soares and Rebelo, 2014), 
thereby already allocating an amount of investment to secure reliability and performance. The CSIR 
can however exceed this minimum level of quality, trading it off with future warranty expenses.  
 

2.3  Life Cycle Cost Estimation  
Cost estimation from an engineering perspective is done by using engineering judgment, 
quantitative principles and techniques to solve costing problems and improve control over project 
expenses. Since it is an estimate, this approach provides decision makers with an acceptable range 
within which the costs will fall (Nasar and Kamrani, 2007).  

2.3.1 Cost Estimation Categories 
Three categories of cost estimation have been outlined by Nasar and Kamrani (2007), namely: 

 Screening  
This category assists the decision maker in which direction to go, or whether it will be 
beneficial to accept the project. 

 Budgetary 
This category extends into more detail for cost allocation. 

 Definitive 
The estimation is much more accurate than the previous categories and takes a longer 
amount of time to reach a decision.  

This project will deliver the screening cost estimate for the PPK, and assist the developers on the 
way forward. Applying LCC methods, these costs will be found within a certain degree of certainty. 

2.3.2 Life Cycle Costing Methods 
Various quantitative life cycle costing methods (LCCM) have been developed to estimate LCC within 
the mentioned categories. These include, but are not limited to the following (Nasar and Kamrani, 
2007): 

 Opinion estimates by experts 
 Conference estimation 
 Comparison 
 Unit estimates 
 Cost and time relationship 
 Power law and sizing model 
 Probabilistic 
 Simulation 

 
Due to the uncertainties and future elements involved in the product development arena, attention 
is given to the Probabilistic, Cost and Time Relationship and Simulation methods.  
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 Cost and Time Relationship 

The same amount of money will have a different value at various points in time, due to inflation. Life 
cycle costing necessitates the calculation of future maintenance, repair and warranty costs with 
respect to the time value of money. The expected future cash outflow is converted to its present 
value using inflation as a discount factor before an investment is made (Dhillon, 2013). The net 
present value of a project or a new product will assist the decision makers in whether it is a viable 
investment to pursue. This method will grant the CSIR the opportunity to evaluate the total future 
warranty and R & D costs of the PPK in terms of today’s value, assisting them in determining the way 
forward.    

 Probabilistic  

Full or partial use of probability methods can be applied as a LCCM. Probability is used to predict the 
possibility of an occurrence of a risk factor. The anticipated value of such a risk occurring is then 
used to estimate costs (Nasar and Kamrani, 2007). However, a realistic distribution must be used to 
determine the lifetime of a system or product, in order to warrant the probabilities of failure do not 
exceed some tolerable level (Tobias, 2013). 

As the LCC is linked to a product’s reliability, probability methods used in reliability engineering are 
applicable to this project. The following statistical distributions are most generally used 
(Montgomery and Runger, 2011): 

 Exponential  
 Erlang  
 Gamma 
 Weibull  

All these distributions are concerned with finding the MTTF and probabilities of a failure in a certain 
opportunity frame. Where the exponential random variable describes the interval until a first count 
is obtained in a Poisson process, the Erlang and Gamma distributions are concerned with the length 
until the rth counts come about in a Poisson process. They are applicable in stand-by systems where 
more than one component must fail before the system has failed – i.e. r components must fail to 
constitute a system failure (Montgomery and Runger, 2011).  

The Weibull distribution is used to model the time to failure in electrical and mechanical 
components and physical systems, where the failure rate can either increase or decrease with time 
or remain constant (Montgomery and Runger, 2011). This failure rate is linked to the mode of 
failure, which can be categorised as an infant mortality, random or wear out.  Most mechanical 
failures are either in the random or wear out category (Schop, 2008). Mechanical parts are subjected 
to varying loads over time. A component that was designed to withstand a certain static load, may 
fail earlier when placed under a dynamic load. The flexibility of the Weibull distribution makes 
provision for this change in failure rates linked with periodical loads (Tobias, 2013).  

There are different Weibull probability functions, of which the 2-parameter function is mentioned 
here. There are two main parameters: the shape β and characteristic life or scale parameter δ. These 
parameters are obtained from the experimental output data during validation testing and plotting it 
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onto a Weibull graph. It can take on the features of another distribution, based on the value of β. 
The probability density function (pdf) for the random variable X of the 2-parameter Weibull 
distribution is as follows: 

  (2.1) 

It can be derived from this function that with β = 1, the Weibull distribution reduces to the 
exponential distribution in the random failure mode category with its rate parameter λ = 1/δ. A β-
value of between 1 and 4 falls within the early wear out category, whereas a β-value beyond 4 is 
categorised as old-age rapid wear out. The β-value is also referred to as the slope on the Weibull 
plot. The characteristics of the Weibull distribution means that a steeper slope implies a smaller 
variation of the times to failure, as units will fail within a short period of each other (Schop, 2008). 

A case study presented at the PLOT Seminar demonstrated the effective use of the Weibull 
distribution in finding failure probabilities for steering links in 18-wheeler trucks. The β-value of 3.26 
implied wear out as failure mode. The results were then used to predict the time of failure and how 
many failures there would be. Subsequent planning could be done to prepare for the eventuality and 
counteractive steps was taken to solve the design issues (Schop, 2008).  Another case study 
presented in the Engineering Statistics Handbook illustrates the Weibull distribution’s use in the 
fatigue life testing of Aluminium strips that were subjected to periodical loadings. It proved to be the 
best representation of the failure times of the strips (Tobias, 2013).  

As the PPK is a mechanical product exposed to dynamic loading, the Weibull distribution is 
considered to be the most applicable probability method. Once test data are obtained from the CSIR, 
it can be fitted onto 2-parameter Weibull plot to determine the parameters. These parameters will 
serve as input for random variable generation in the simulation models.  

The failure rate of the PPK is measured in number of steps up to failure, i.e. one failure in x amount 
of steps. Incorporating the number of steps an average child amputee takes per day, the opportunity 
frame can be approximated to time in days – i.e. the number of days up to failure. Once a failure 
occurs in the future, the costs of a replacement is calculated using the time value of money and 
added to the total expenses. 

 Simulation 

A computer-generated model is made of the real product, system or project. The virtual product is 
taken through its life phases by use of probabilistic algorithms. During each phase, the associated 
costs are calculated using the time value of money and added to the total LCC  (Nasar and Kamrani, 
2007). The output data is an estimate of the future LCC, which is compared with the initial 
investment required to calculate the expected payoffs. The simulation will also deliver results in 
terms of time of failures based on each child’s activity level. This can aid parents and medical 
insurers to be financially prepared, having an estimate of the time frame at which the child will 
require a replacement for the knee. 
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2.4 Systems Thinking and Simulation Modelling  
The model must be sufficiently complex to capture the salient features, but also simple enough to 
make the simulation tractable. It must maintain a balance between the most important details and 
simplicity. 

2.4.1 Thinking in Systems 
A system can be defined as a co-dependent group of subjects creating a united behavioural pattern. 
The outcomes of such a behavioural pattern are called events. Applying systems thinking, the 
system’s behaviour is determined by its inherent structure. Although the behaviour of a system 
creates certain events, problems cannot be solved if only the behavioural pattern is addressed. A 
higher degree of leverage over the problem is found when changing the inner structure of a system 
(Kirkwood, 1998). Figure 6 illustrates this concept. 

 

Figure 6: Leverage over Problem Solving in a System 

Changes in the structure of a process will result in changes in behaviour or generate a behavioural 
pattern, in the end creating events as outcomes. The outcomes can provide support to foundational 
decisions that must be taken, or what to expect from the system in the future (Kirkwood, 1998). 
Knowing what behavioural pattern a system will display, the future risks or rewards may be 
identified. This identification will aid in correct planning for such behaviour, or develop mechanisms 
to mitigate risks. 

In a product development environment, the life cycle can also be viewed as a system, as each phase 
influences the following one. The product’s performance (behaviour) during its operational stage 
depends on how it was designed (its’ structure), with the event being a failure of that product at a 
certain point in the future. This failure will incur a replacement cost, which will start adding up as 
more products fail. The escalating costs can be seen as the outcome or the event in the system.   

 

2.4.2 The Paediatric Prosthetic Knee’s System 
The notion is to trade-off the costs of changes during design and manufacturing (or development), 
with warranty or replacement costs incurred during the long-term service phase. All the costs are 
influenced by inflation as the system moves through time. The selling and warranty price are lower 
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than the manufacturing costs. The deficit is attributed to R & D.  Figure 7 illustrates the system of the 
PPK, with its input parameters and output variables. 

 

 

Figure 7: The Life Cycle of the PPK with Input and Output at each stage 

 

Outcomes that will vary during the service phase for varying failure rates are as follows: 

 Time elapsed between replacements of components (i.e. MTTF) 
 Number of replacements  
 Total service costs associated with replacements, also referred to as warranty costs 
 Opportunity costs to R & D 
 Production rates per year 

 

Production Rate 

The production rate is determined by new child amputees that require a knee and the replacements 
due to failure. The inventory policy is of importance, as it will determine the amount of stock to be 
ordered from the manufacturer. Demand for a single unit may arise at any given time, complicating 
the determination of a reorder point. In such cases, the continuous review policy is recommended 
(Winston, 2004). This policy uses two parameters to determine the order size – minimum allowable 
stock level, denoted by s, and the maximum level, S. They are combined into a single notation, (s, S). 
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An order is placed when the actual stock level is equal or less than s. The size of the order raises the 
stock level to the maximum, S. Stock is released to users until the inventory again reaches or falls 
below s.  

 

Human Factors 

The human factors play an important role in the failure of a part. A typical child amputee falls in the 
K-4 level of activity, as per the Medicare Functional Classification Level. This implies an activity level 
of 2500 – 5000 steps per day onto the prosthesis (Rosenbaum-Chou et al., 2014). The steps taken 
per day by a child is thereby linked to the time of failure, as the failure rate is expressed as one 
failure in x amount of steps. The weight of a child plays an important role due to the 45 kg weight 
limitation placed on the knee joint. Once the child exceeds this weight, he / she are no longer a 
candidate for use of the PPK, and will be allocated to an adult prosthetic knee. If the unit is still in an 
acceptable condition, it will be allocated to another child.  

 

The System’s Expected Behaviour 

Referring back to Figure 3, the system is expected to display two main behavioural patterns. The first 
will follow the upward curve, representing higher development costs as the product is improved. 
The second will be that of warranty costs on the downward curve, decreasing as the reliability is 
improved. At some ideal point, the lowest point on the combined U-curve would be found, which 
will represent the optimum reliability level to design for. Behavioural patterns for both R & D costs 
and production rates are expected to follow an upward trend as time progresses, while that of MTTF 
will follow an upward tendency as the product becomes more reliable and a downward trend for the 
total number of warranties issued. Figure 8 illustrates the expected behaviour of the system. 

 

Figure 8: Expected Behaviour of the System in terms of Time and Reliability 

 

2.4.3 Simulation Modelling of Systems 
Simulation modelling is defined by Robinson (2014) as the experimentation of an operation or 
system as it advances through time. The purpose is to better comprehend the process and identify 
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possible areas of improvement. The system’s behaviour can be controlled by adjusting its 
parameters, in essence its structure, of which the event outcomes can be measured.  Simulation 
incorporates the inherent variability, interconnectedness and intricacy of a system to represent the 
real world problem as close as possible (Robinson, 2014). It is essentially an extended laboratory in 
which experiments can be done on a non-existing system, or when real-life tests become too 
expensive and risky. 

Simulation models range from being simple and modest in order to understand the overall system, 
to very complex models to support high-level decision making. To distinguish between them, three 
modes of simulation practice have been identified by Robinson (2014), namely: 

 Software Engineering 
 Process of Organisational Change 
 Facilitation 

The process of organisational change is most applicable in the product development environment, as 
the main purpose of such a model is to understand the problem and find a solution for it. Decision 
making time is short and financial investment lower; therefore models are small-scaled in 
comparison with software engineering. It takes a few months to complete and must provide a 
solution for a single decision (Robinson, 2014). The CSIR will base their decision with regards to the 
reliability level on the screening cost estimate, delivered as the final output of the simulation model.  

Operational simulation has been found supportive in the early design phase of a new product. It 
enables the developers to investigate and test the design concepts in a generic operational 
environment (Schumann et al., 2011). The authors indicated two main ways in which the simulation 
model aided the development of a new Unmanned Aviation Vehicle (UAV). It was first used as an 
optimisation tool in the product’s operational environment and secondly, it provided feedback with 
regards to product characteristics such as allowable future costs.  

The credibility of any simulation model must be established before the final decision is taken. A 
sensitivity analysis, verification and validation of the model must be completed.  Sensitivity analysis 
will account for the effect of uncertainties on the output of the model and is an important step to 
establish which input parameters dominate the model’s behaviour (Raychaudhuri, 2008).  
Verification links the conceptual model with the numerical model, and asks the question – is the 
computerised model doing what the conceptual model says it must?  Validation deals with the 
relationship between reality and the numerical model, asking whether the computerised model 
adequately represent the real world (Oberkampf and Roy, 2010).  

Summarising, sensitivity analysis evaluates the robustness of the simulation, while verification and 
validation determines the usefulness of the model. Both these methods determine the credibility of 
the model, and play a vital role during decision making.  

 

2.5  Simulation Modelling Methods 
Simulation modelling methods can be static in nature, or dynamic. Static models are time-
independent, where-as dynamic models depends on time. A static model deals with a system in 
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fixed states, taking snapshots of the system’s state at a particular time. It does not deal with how the 
system evolved to reach such a state. Dynamic modelling, however, is concerned with the 
continuous variation in output of a system as time progresses to reach a particular state, and how it 
transfers between states (El-Haik and Al-Aomar, 2006). 

Four key simulation methods have been identified by Robinson (2014), namely: 

 Monte Carlo 
 Discrete Event 
 System Dynamics 
 Agent Based Modelling 

These four methods are discussed in the following paragraphs. 

2.5.1 Monte Carlo 
This method of simulation modelling is independent of time, i.e. it is static. Monte Carlo simulation 
uses recurrent random sampling from a certain distribution, to generate input parameters. Each set 
of output data is linked to a set of input parameters. Monte Carlo simulation has many uses, 
including in reliability engineering.  In this field, it estimates the time frame in which a component 
might fail with a certain probability. This method is then used to evaluate product development and 
LCC of the part or the system (Raychaudhuri, 2008).  

Kleyner and Sandborn (2008) used MC techniques to simulate the relationship between reliability, 
product validation and life cycle costing for electronic components in the automotive industry. The 
aim was to minimise the LCC, based on uncertainties in reliability. One disadvantage of the MC 
simulation is that it only provided answers for the current costs, not including the time value of 
money. It is however, a simpler method than ABM and SD modelling. The net present value can still 
be calculated by applying the time value of money to the MC simulation output. 

2.5.2 Discrete Event 
Discrete event simulation (DES) captures objects that go through a sequence of queues and 
modification or service events at definite points in time. They have mainly been used in the 
manufacturing sector to simulate production processes, however this method of modelling has been 
extended to the service sector as well (Robinson and Tako, 2010).  This method have also been 
employed in supply chain management, as a product moves from raw material right up to delivery at 
the retailer or consumer (Anylogic, 2014). Discrete event simulation can be employed in product 
development to represent the manufacturing and delivery phases, where production and delivery 
rates will be the main input variables using the continuous review policy as described earlier. 

2.5.3 System Dynamics 
System dynamics (SD) modelling is often used to illustrate the performance of a system or a process 
over time. It makes use of the cause-effect principle and causal loop diagrams. The cause-effect 
principle is born from the search process for the root cause of a problematic event. The cause of one 
event may in itself be the event caused by a preceding event. In this way, an analyst can continue 
indefinitely trying to find the root cause of the final event. Applying systems thinking, a cause for the 
event and its preceding behavioural pattern must be found within the system’s structure (Kirkwood, 
1998).  
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Causal loops are a graphical representation of the cause-effects taking place within a system, and 
can be classified as either being a closed or open loop. Closed loops result from an entity indirectly 
influencing itself (Kirkwood, 1998). He uses the example of an inventory problem. Inventory is 
influenced by production and shipment. Production will cause an increase in inventory levels, while 
shipments will decrease it. When inventory reaches a desired level, production rates may be 
lowered or shipments will be scheduled to move the inventory out. In this way, the level of inventory 
indirectly influences itself. Summarising, production rate adds to the inventory levels (positive end), 
while the shipment decreases the inventory level (negative). Such a loop is called a feedback loop. 
Open loops on the other hand, do not incorporate the feedback component. Kirkwood (1998) 
indicates that the open loop cause-effect analysis do not fully evaluate the result of an action on the 
system. Figure 9 is an illustration of a causal loop diagram based on the inventory problem. 

 

Figure 9: Simple Causal-loop Diagram for the Inventory Problem 

The escalating warranty costs in a product’s life cycle system can be seen as the outcome or the 
event in that system. Product reliability and warranty costs influence each other in such that as 
warranty costs increases beyond a desired level, a re-design of the product’s reliability will be 
considered. A more reliable product will incur less warranty costs. In this way, warranty costs have 
indirectly influenced itself, forming a closed feedback loop. This is illustrated in Figure 10. 

 

Figure 10: Causal-loop for Warranty and Reliability 

 

System Dynamics modelling is more concerned with high level activities and strategic planning. The 
day-to-day complex detail of operations is aggregated into quantitative entities without their 
individual properties (Osgood, 2009). For example, the aggregate rate of coal transported on a 
conveyor to a depot is 1000 kg / hour, without stating where each kilogram came from. This high 
level modelling can be used to ease cost calculation. Using dynamic variables, the various in- and 
outflow rates of a financial entity can be combined, thereby simplifying the calculation.  

This principle is useful in reliability engineering for the calculation of LCC. All the warranty or 
maintenance expenses over a certain period are aggregated into a rate equation. The costs 
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consequently increase as a function of time, not directly due to individual warranty or maintenance 
events. System dynamics have been used to determine corrective maintenance costs of aviation 
equipment  (Fang and Zhaodong, 2015). The reliability parameters were adjusted to find the optimal 
design policy – i.e. where the reliability costs and maintenance costs strike a balance. The effect of 
changes in failure rates on maintenance and LCC were analysed to provide support for decision 
makers. 

This modelling type can incorporate the probabilistic and time value of money methods into an 
aggregated calculation of warranty and R & D costs for the PPK. These costs can be traded off with 
that of the development costs of the PPK, in order to find the lowest point on the combined U-curve 
(refer to Figure 3).  

2.5.4 Agent Based Modelling  
Agent based modelling (ABM), also referred to as agent based simulation (ABS), have become a 
powerful tool in the simulation environment. It is a bottom-up approach where system components 
are represented as entities capable of making independent judgments. The entities are referred to 
as agents with individual set of rules or behaviours (Macal and North, 2010). By modelling each 
individually and per interaction, the full effect of their behaviour on the system can be captured. 
Figure 11 explains the interactions (Macal and North, 2010).   
 

 
Figure 11: Agent Based Modelling Structure (Macal and North, 2010) 

 
Railsback and Grimm (2011) define an ABM as a model that addresses problems concerned with the 
rise or emergence of behaviour. The system’s dynamics become apparent as the individual agents 
making up that system interact with each other and the environment. The agents can also modify 
their own behaviour, based on the state of the system or the environment. Agent based modelling 
can therefore answer two questions (Railsback and Grimm, 2011): 

1. What is the impact on a system based on the individuals actions and 
2. What is the impact on the individuals based on how the system behaves? 
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The ability to look at both the individual and the system as a whole is why ABS finds applications in a 
wide array of fields. This range from the physical, biological, social, engineering and management 
sciences (Macal and North, 2010). A single agent can contain System Dynamics and Discrete Event 
models in its own structure (Anylogic, 2015), enabling an ABM to represent complex problems in 
these fields that mathematical models purely based on formulas, cannot. This is because an ABM 
can include important processes that is simply too complex to model using pure mathematics 
(Railsback and Grimm, 2011).  

For product development, an ABS can deliver insight into the associations between development 
and service or performance of the product. Each end-user will display unique patterns of use of the 
product. The product’s behaviour will also vary, due to uncertainties in the inherent reliability and 
availability. This interaction between user and product can therefore be modelled using ABS.  

Agent based simulation’s applicability in product-service systems, where the end-user pays for the 
functionality of the product, has been found useful in creating sustainable products and promoting 
customer satisfaction (Maisenbachera et al., 2014). The computer software program Anylogic (2014) 
illustrates an example simulation of a product’s life cycle by representing the phases as states 
making up the system, of which the parameters can be changed. They have also developed an 
illustration model in the maintenance of wind farming equipment. A failure of a wind turbine 
initiates repair responses, demanding resource allocation of repair equipment. Due to the 
individualistic structure of the various entities with regards to failure rate of turbines, availability of 
resources and location of a wind turbine in the sea, the interactions that occur between the entities 
results in emergence of operational behaviour that would not otherwise be visible. Stakeholders can 
consequently make informed decisions during early operational planning for maintenance practices.  

Agent based modelling in Anylogic was used in optimising the design of a new development in the 
civil aerospace industry (Schumann et al., 2011). The design of the product, a Search-and-Rescue 
UAV, was partly based on the results of an operational simulation model. The output of the model 
delivered parameters such as fuel used, maintenance, repair and erosion of airframes. This output 
information was used to subsequently value the product design and optimise it. This model 
illustrates the applicability of ABM in the product development setting, and proved to be a valuable 
asset during decision making.  

For this project, a unique pattern of use of the PPK will emerge as the number of steps taken per day 
and growth rate of each child vary.  An ABM can incorporate this variability into each entity and link 
it to the failure rate of the PPK, thereby conveying the time of failure in days or months as an output. 
As it is dynamic modelling method, the time value of money can easily be implemented using the 
appropriate discount factor. The model will be able to track the child’s growth, and remove the 
entity from the simulation once they have reached the weight limit.  

 

2.6  Conclusion 
The literature provided illustrations of a relationship between a product’s development features and 
its LCC. Little information in this regard was found specifically linked to prosthetic products.  
However, by defining prosthesis as a mechanical device, the link between its reliability and LCC can 
be made. 
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Life cycle costing methods must be applied in the correct context. Due to the uncertainties involved, 
the probabilistic and simulation methods are applicable to this project. Focus was placed on the 
Weibull distribution for the probabilistic failure modelling of mechanical components. The time-
money relationship is also important, and will be incorporated into the model.  

Simulation modelling has demonstrated to be a viable way of determining expected LCC of products 
and systems. Monte Carlo simulation was most often in reliability engineering. For this project, the 
feedback loop technique will be employed to demonstrate systems thinking and where to balance 
the development and warranty costs until the optimal reliability level is found at the minimised LCC. 
The actions of the agents in the ABM will bring about the changes in the PPK’s life cycle system’s 
structure and behaviour; finally calculating the demand for replacements and minimising the LCC.  

As the ABM approach to product development is still fairly novel, a MC simulation will be 
implemented and the cost results compared with that of a pilot ABM in order to validate the ABS 
method. The success of this project is not limited to the decision support delivered to the CSIR. This 
project will also provide another case study where ABM was applied in the product development 
environment and reliability engineering.  
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Chapter 3 

Method 
 

 

3.1 Solution Process 
The solution process consists of:  

1. Constructing a feedback loop diagram 
2. Testing a pilot ABM versus an analytical MC simulation 
3. Optimising the reliability level using an extended ABS 
4. Repeated simulation runs to find the mean value of the minimised LCC at the optimal 

reliability level 
5. Regression Analysis to find a mathematical expression for the prediction of time of failure 

 

Recall that LCC are a function of development (design and manufacturing) and warranty (or 
replacement) costs. Thereby, a more reliable product may have higher developing costs, but will 
have lower warranty costs. On the other hand, a less reliable product may incur lower development 
costs but will have higher warranty costs (refer to Figure 3). All the LCC associated with the PPK will 
be attributed to R & D. The development team must find the balance between development and 
warranty expenses.  

 

The feedback loop diagram from the System Dynamics approach is depicted in Figure 12, with two 
loops: 

1. An inner loop with links between expected life and design costs 
2. An outer loop formed between expected life and warranty costs 
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Figure 12: Feedback Loop Diagram between R & D costs and Expected Life 

On the outer loop, linking with warranties, a balancing loop is formed. This means as expected life is 
increased fewer failures will occur and lower the demand for warranties. The costs associated with 
warranties are lowered, resulting in a decrease in LCC attributed to R & D.  Along the inner loop, a 
longer expected life will improve the reliability level and increase the design costs, which will add to 
the R & D costs. This higher investment in R & D will lead to an increase in expected life. These two 
loops are traded off until the optimal reliability level is found, where the LCC are minimised. 

 

3.2 Conceptual Model 
The conceptual model explains the logic and mathematical calculations that are to be used in the 
simulation models. The LCC model explains the sequence of events for the calculations. 
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3.2.1 The Life Cycle Costs Model 
Figure 13 gives an overview of the model on how the LCC are calculated in the simulation models. 

 

Figure 13: Model Diagram for LCC Calculation 

Starting at Step 1, a demand is initially generated from all 1st time users. In Step 2, the inventory 
policy is applied. This policy dictates how many units must be manufactured to maintain a minimum 
stock level available to the users. The manufacturing costs are calculated each time a batch is 
delivered using Step 5. Step 3 generates a random Weibull variable for the unit supplied to a child. 
The child’s physical activity (i.e. number of steps taken per day) is used to determine the time of 
failure. Once a unit has failed, it is recorded in Step 4 where the replacement is added to the 
associated year. A request for a replacement adds to the demand and the process is repeated from 
Step 1. New child amputees are added at a certain rate each week, thereby also generating demand. 
They then follow the same process as those already in the system. However, the pilot ABM and the 
MC will only execute steps 3 to 5, as it does not simulate the ongoing use-replace cycle nor does it 
add new amputees to the model. 

After the warranty replacement is recorded, Step 5 calculates the warranty costs for the associated 
year. The manufacturing, sales and warranty costs are all added to the R & D costs. Step 6 is only 
completed when the entity has reached the weight limit. This entity is removed and plays no further 
part in the model. Again, this step only applies to the extended ABM. 
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3.2.2 Variables and Output 
The output of the model is as follows: 

 Future values of yearly LCC for 5 years 
 Total value of the LCC after 5 years 
 Number of units manufactured, replaced and sold for each year 
 A cash flow diagram tracking each year’s expenses 

To deliver the output, the following input parameters are required: 

 Design 
o Expected life of the knee joint, δ 
o Shape parameter, β 
o Costs of improved design and component quality 

 Production 
o Entry rate of new users 
o Selling and warranty price 
o Manufacturing costs 

 Human Factors 
o Child growth rate in weight (varies over time and within each child) 
o Activity level (steps taken per day) 

 Economic 
o Inflation 

Table 2 summarises the variable assignments. 
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Table 2: Operator Assignments 

Symbol Assigned value 
β Shape parameter for Weibull distribution 
δ Expected life (in number of steps) of the PPK 

RVw Random variable from Weibull distribution 
Mn Total number of units manufactured for year n (both new and those for replacements) 
Wn Total number of warranty replacements for year n 
Sn Total number of units sold new in year n 
Pw Present warranty price 
Pm Present manufacturing costs 
Ps Present sales price 
Fn Future LCC of year n 

PVD Present value of design costs 
PVV Present value of validation costs 
R Total number of replacements required over lifetime of PPK 

LCCP Total Present Value of the LCC 
K Total number of children in the model 
At Activity level (number of steps taken on day t) 
i Inflation (constant at 4.7%, for August 2015 (Taborda, 2015)) 

hk Weight of child k in kilogram 
ak Age of child k in months 
cj Growth percentile curve j, with j є (1, 9) 
rk Counting factor of replacements for child k 

 

3.2.3 Failure Modelling 
The Weibull distribution is used to model the failure of mechanical components subjected to 
variable and dynamic loads (Tobias, 2013). The PPK will undergo such loading as the user steps onto 
the unit. A random variable from the Weibull distribution with shape parameter β and expected life 
δ is generated: 

  (3.1) 

The activity level, At, is uniformly distributed between 2500 and 5000. For each passing day t, the 
steps are summed until the total number of steps equals or surpasses the random variable, and a 
failure occurs at day T.  

Therefore, a failure will occur when: 

 (3.2) 
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The counting variable rk increases with one for that child. The summative value R is the total number 
of replacements over the life time of the PPK project. It is expressed as: 

  (3.3) 

A child receives a replacement unit, and a new random variable is generated. The process is 
repeated for as long as the child is in the system or until the simulation period has stopped at 5 
years.  

3.2.4 Manufacturing, Sales and Replacements 
The variables Mn, Sn and Wn are set at 0 at the start of each year. The variable Wn keeps track of the 
number of replacements and is increased with one each time a unit fails, irrespective of which child 
entity it originated from. The units sold to new amputees, Sn, is a rate with a uniform distribution of 
between 1 and 5 units per week. The number of units manufactured, Mn, is dependent on the 
demand from both warranties and new sales.  

3.2.5 Cost calculations 
Future LCC, Fn, is a function of the number of units manufactured, replaced and sold as new for the 
year n. The unit is sold at a loss – this loss is to be included in the LCC 

 (3.4) 

The present worth of the total LCC over the 5 year period, LCCp, is a function of design and validation 
costs and the future LCC costs for each year.  

 (3.5) 

It’s this value that is the objective function which is to be minimised in the ABM. The minimised 
value will be a function of the optimum reliability level, i.e. expected life δ, of the unit. 

These calculations will be repeated for different failure rates, to determine the optimal reliability 
level – i.e. the lowest point on the combined U-curve, as explained in Figure 3.  The lead engineer 
estimates an increase of R 250 000 in development costs for every three month extension in 
expected life.  

3.2.6 Human Factors 
The weight of children is normally distributed for each age interval. Growth charts were developed 
by the Centre for Disease Control in the United States and transformed to fit onto percentile curves 
from the 3% up to 97%, nine in total (Kuczmarski RJ et al., 2002). See Figures 14 and 15 for the charts 
for both male and female children as constructed by the CDC. The percentile curves are different for 
each. The child’s weight is a function of a percentile curve cj and their age, ak, on the x-axis of the 
chart. 

 (3.6) 

A random gender, starting age and percentile curve will be assigned to each child entity. They will 
remain on the specific percentile curve for the rest of their life. Once they have reached the weight 
limit, the entity will be removed from the simulation.  
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Figure 14: Growth Chart for Males: 2 to 20 years (Kuczmarski RJ et al., 2002)  

 

Figure 15: Growth Chart for Females: 2 to 20 years (Kuczmarski RJ et al., 2002) 
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3.2.7 Assumptions 
The models will make the following assumptions: 

 Inflation remain constant over 5 years 
 No other increases in manufacturing costs 
 The PPK is used for its intended purposes 

The units have not yet gone through the quality tests for their reliability performance, due to delays 
at the CSIR’s manufacturing facilities. The lead engineer decided to make use of scenarios to model 
the life cycle of the PPK project. The minimum required expected life for prosthetic knees is set at 
3 000 000 step cycles (ISO, 2006). This will also serve as the initial assumed expected life, δ, of the 
units. A failure below this level will constitute a sub-standard product which will not be allowed to 
proceed to manufacturing. For the shape parameter, the lead engineer decided to use β = 2, to 
simulate failure of mechanical units due to wear out (Schop, 2008). These Weibull parameters are 
subject to change at a later stage.  

 

3.2.8 Constraints and Limitations 
Data related to child growth in South Africa are scarce and incomplete. Tables by the CDC are used, 
but were developed in the US and revised in 2000. Although there are charts developed by the 
World Health Organisation (WHO), these only go up to 24 months of age. The CDC’s data tables and 
charts are prescribed by the WHO to measure child development from this age on (Wei, 2000) which 
will therefore also be used as input into this project’s model. 

There is limited available data on child amputees in South Africa. Historic demand figures from 
prostheses supplying units to children are used as estimates by the developers of the PPK for the 
rate of new arrivals and subsequent new sales. 

 

3.3 Numerical Model 
Four models were completed for this project to answer the research questions in Chapter 1. They 
are as follows: 

1. A pilot ABM in Anylogic 
2. Monte Carlo (MC) simulation using R  
3. Extended ABM in Anylogic 
4. Regression model to determine MTTF for activity levels in R 

Models (1) and (2) are basic reliability models. The pilot ABM was constructed to simplify functions 
and to perform basic testing on concepts that is to be contained in the extended ABM. Its results are 
also compared to the results of the analytical MC simulation. This is to ensure that the calculations 
and logic of the ABM model are correctly executed. The extended ABM will be based on the pilot 
version; however it will continue the use – replace cycle for a period of 5 years. It is essentially a 
repetition of a MC simulation, but with each new unit starting its life at a different time. The 



 

Page 37 of 71 
 

regression model must determine the expected time of failure for fixed activity levels. It will make 
use of the MC simulation for time to failure data, but stop short of cost calculations.  

3.3.1 The Basic Pilot Agent Based Model and the Monte Carlo Simulation 
Pilot ABM 

The Pilot ABM completes Steps 3 to 5 from the LCC calculation model. It follows an initial number of 
units through their life up to failure and records the time of failure, adds it to the counting variables 
and determine the warranty costs for the associated year. The model consists of two agents – Main 
and Unit. The Unit agent has a state chart with two possible states – in-use and failed. The in-use 
state is re-entered every day to add to the number of steps. The transition condition is when the 
total steps surpass the random Weibull variable generated at start-up for each unit entity, as per 
Step 3 of the LCC model and equation 3.2. Figure 16 illustrates the interaction between the Main 
and Unit entities, together with the steps from the LCC model.  
 

 

Figure 16: Interaction between Unit and Main Agents in the pilot ABM 

In the Main agent, arrays are used update the number of warranties, Wn, for each year, after it has 
been determined that a unit has failed. This is Step 4. A dynamic variable is used to calculate the 
yearly costs, as per equation 3.4.  All costs are then added to the present value for R & D in the 
dynamic variable, as per equation 3.5. This constitutes the final Step 5 of the process.  
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Monte Carlo 

The aim of the MC simulation is to confirm the output from the Pilot ABM. It will sample from the 
same Weibull distribution with set input parameters, calculate time of failures and perform the 
necessary cost calculations.  

The Monte Carlo simulation in R applies a failure function for each unit, using the activity level, i.e. 
At, as input. A random Weibull variable is generated at the start of the function, which is the number 
of steps at which the unit will fail. The code is then repeated to increment the total steps, until the 
failure condition is satisfied, as per equation 3.2. For each passing day, the counting variable for days 
up to failure is increased with one. The function breaks when the total steps surpass the random 
variable, and the data are collected into an array.  

The pseudo-code is as follows:  

 

{Create the empty arrays for data collection 

Set the random Weibull variable  

Set the total steps and days to failure to 0 

Repeat: 

Generate new daily steps-value 

Add this daily steps to the total steps 

  Count the days to failure 

Stop: when the total steps taken are greater or equal to the random variable 

 Collect the total steps and time of failure into arrays 

End the function 

 

Perform cost calculations over the arrays 

Repeat the experiment 

Perform statistical analysis  

End the simulation 

} 

The time of failure in days are stored into another array to calculate the year (as an integer) in which 
the failure took place. Cost calculations are then applied to each entry using a for-loop across the 
year array and storing it into separate cost arrays. Finally, this experiment is repeated in order to bin 
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the results of each replication to calculate the means, standard deviations and draw histograms of 
the LCC output. The times to failure in days and steps, associated year and costs are delivered in a 
data frame as output. 

The output of these two models is compared to determine the applicability of an ABM in reliability 
engineering.  

3.3.2 Extended Agent Based Model in Anylogic 
This is an extension of the pilot Anylogic model, and is more complicated. The continuous cycle of 
receive-and-replacement of units is to be captured in this model, as well as taking the growth factor 
and addition of entities as time progresses, into account. 

 

Four agents were created in this model to capture the complex behaviour of the system: 

 Main 
 Child 
 Supply 
 Statistics 

Interactions between agents 

Figure 17 depicts the interaction between the agents, as well as the step completions from the LCC 
model in Figure 13.  
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Figure 17: Interactions between Agents for the Extended ABM 

The Child agent’s state chart is more complicated than that of the unit for the pilot ABM. Each 
generated child entity, which is done in the Main agent, starts in the New state. It can transition to 
Use once a unit is available by applying the inventory policy, as per Step 2, in the Supply agent. 
When a unit has failed, the state returns to waiting for a replacement unit. The inventory policy is 
applied and once a child receives the replacement, the warranty variables are updated in the Stats 
agent for that year. A new random variable is generated for the next cycle (Step 3). Steps and days 
up to failure are reset to 0 for each repeat of the cycle. In this way, the use-fail-replace cycle is 
continued. When a child has reached the weight limit, they transition out of the Active state to be 
removed from the simulation (Step 6 from the LCC model).  

The Supply agent must also update the number of units manufactured in the Stats agent, each time 
a batch is delivered. The Main agent has much the same functions as the pilot version. However, it 
uses the counting variables from the Statistics agent to do the yearly LCC calculations, as per step 5 
from the LCC model.  

Minimisation of LCC 

The main aim of this model is to minimise the total present value of PPK project, with the objective 
function being as follows: 

  (3.7) 
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The independent variables are the yearly future LCC, Fn and the fixed development costs, namely 
design, PVD and validation PVV.  Recall that the yearly future LCC are a function of the number of 
units manufactured, replaced or sold as new for that particular year. Referring to Figure 3, the 
increase in developmental costs is traded off against the future LCC for an array of reliability levels, 
until the minimum present value is found. This minimum value is calculated at the optimal reliability 
level, or expected life, δ. This model is to be used to optimise the design, rendering the knee both 
dependable and affordable. 

In Anylogic, the Optimisation functionality is utilised to minimise the LCC. It essentially iterates 
through the range of expected life values and calculates the costs for each level. It finally delivers the 
expected life for the lowest total LCC value. Once the optimised expected life has been found, the 
simulation is to be replicated 50 times at this value using the Parameter Variation of Anylogic. This 
final experiment then delivers the means, standard deviations and confidence intervals of the 
minimised LCC output.  

Input for the Model 

As mentioned before, the development or design costs increase with R 250 000 for every three 
month extension in expected life of the unit. The 3 month extension is converted to number of 
steps. The lead engineer decided to only look at two extension intervals. Table 3 contains the input 
parameters for the model. 
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Table 3: Input Parameters for the Extended ABM 

Parameter Value 
Expected Life Intervals (δ) 

3000 000 – 3 337 500 
3 337 501 – 3 675 000 

Total Development Costs (R) 
3 740 000 
3 990 000 

Shape parameter β 2 
Manufacturing costs R 3700 

Warranty price R 3400 
Initial sales price R 2400 

Inflation 4.7 % 
Arrival rate of new amputees ~Uniform(1, 5) per week 

Activity level in steps ~Uniform(2500, 5000) 
Starting age in months ~Uniform(24.5, 120.5) 

Growth curve ~Uniform(1, 9) 
Continuous Review Inventory Policy 

(s,S) 
(20, 50) 

 

The only values to change during the experiment are that of the expected life and the development 
costs. All other parameters remain constant. The arrival rate of new amputees as well as starting 
ages are based on feedback from prosthetists in industry. The activity level in number of steps per 
day is based on the K-4 level of activity for amputees, as per the Medicare Functional Classification 
Level (Rosenbaum-Chou et al., 2014). Inflation rate of August 2015 is used (Taborda, 2015). The 
growth curve is randomly selected from the child growth tables developed by the Centre for Disease 
Control (Kuczmarski RJ et al., 2002). The inventory policy figures for both s and S were an arbitrary 
choice, as no inventory related decision has been made. 

3.3.3 Regression Model for Activity Levels 
A regression analysis is performed to explore the relationship between the activity level and time to 
failure of the PPK. In the simulation models, randomness is not only attributed to a single variable 
(the Weibull for the PPK’s reliability), but also the varying activity levels of the users. By using the 
activity level as a known input value rather than a random variable, a more exact prediction on the 
mean time to failure can be simulated. In this model, the activity level will be the independent 
variable and the time to failure the dependent (or response) variable.  

The profile that the output data points will take on the scatter plot (time to failure versus activity 
level) will determine the type of regression to be performed, i.e. linear, exponential etc. A function is 
generated of the regression line, which may be used to mathematically predict the time of failure. In 
a linear regression model, the response variable, Y, is dependent on the variable x, by the straight-
line relationship (Montgomery and Runger, 2011): 

  (3.8) 

The uniform distribution of the activity levels from the pure MC simulation is replaced with fixed 
values between 500 and 5000, so that the model can be pushed to its extremes. Table 4 contains the 
input parameters to be used in the MC simulation to obtain the time to failure data. 
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Table 4: Input Parameters for the Regression Model 

Variable Value 
Shape parameter, β 2 

Expected Life, δ 3 000 000 (ISO, 2006) 
Activity sequence in steps Min = 500 

Max = 5000 
Increment by 100 

 

The rational of the output function of the regression model is therefore to give the prostheses and 
users an indication of when a unit will fail, based on a fixed activity level, x. This may assist them in 
the timing of replacements and to be financially prepared for the eventuality of a failure.  

3.4  Model Validation 
The experiments of the simulation models must investigate the influence of changing variables in the 
models on the final outcomes. The system’s behaviour will become more apparent as sensitivity of 
the outcomes to certain variables becomes visible. Due to the randomness and uncertainty in the 
failure modelling of mechanical units, the final answers to the research questions will be delivered as 
a range and not just a single figure. 

 

In this experiment, the LCC are delivered using a single Weibull distribution, with input parameters 
as set out in Table 5: 

Table 5: Input for Basic Reliability Experiments 

Variable Value 
Shape parameter, β 2 

Expected Life, δ 3 000 000 (ISO, 2006) 
Number of initial units 1800 

 

The pilot ABM and a pure analytical Monte Carlo simulation, as described in Section 3.3.1, perform 
this experiment. The means, standard deviations and confidence intervals of the output are 
compared in the final results, as a way to substantiate the applicability of an ABM in reliability 
engineering. The experiment stops once all the units have failed. This experiment is limited as it does 
not display the behaviour of the repair-by-replacement cycle as found in the extended ABM.  

Results from 100 replications of these experiments have shown consistency in the outputs between 
the pilot ABM and the Monte Carlo simulation.  At an expected life of 3 000 000 steps, it was found 
that most units failed within the 1st two years of operation, peaking during the 2nd year. The 
following table contains the values for the outputs: 
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Table 6: Outputs from Pilot ABM and MC simulations 

Variable Output 
Warranties in year 1 (units) ABM: 349 

MC: 354 
Warranties in year 2 (units) ABM: 675 

MC: 646 
Total Warranty Costs in year 1 (in Rand) ABM: 101 900 

MC: 105 100 
Total Warranty Costs in year 2 (in Rand) ABM:  216 630 

MC: 202 850 
Mean of the Present Value of LCC (in Rand) ABM: 6 617 090 

MC: 6 617 357 
Standard Deviation of Present Value of LCC (in 

Rand) 
ABM: 931.8 
MC: 877.7 

5th percentile (from MC) of LCC (in Rand) 
95th percentile (from MC) of LCC (in Rand) 

6 615 800 
6 618 800 

  
 

The histogram constructed from the MC simulation is displayed in Figure 18, showing both the mean 
and 5th and 95th percentiles.  

 

Figure 18: Histogram for the LCC output from the MC simulation 

The similar results indicate that an ABM can be used to determine LCC of mechanical units. The basic 
principles, logic and concepts contained in the pilot ABM simulation have therefore been confirmed 
to be reliable and fit for use. The extended ABM will now make use of these concepts to further the 
experiment to answer the research questions. The basic reliability models’ final output for the LCC 
has been verified by manual calculations performed on the yearly manufacturing-, warranty and 
sales data from randomly selected simulation runs.   
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Chapter 4 

Results 
 

The output from the various models provided useful information that can be used to answer the 
research questions posted in Chapter 1: 

1. What are the associated LCC over 5 years? 
2. What is the expected demand, i.e. how many units will be manufactured and replaced over 

the course of the project? 
3. What effective design changes can be made to reduce the LCC, i.e. what is the optimal 

design policy? 
4. When will a child require a replacement? 

 

4.1 Results 

4.1.1 Optimisation of Design and Life Cycle Costs  
This experiment must answer questions 1 to 3 from the research questions. The LCC was minimised 
at the expected life of 3 675 000 steps, at a minimum total LCC of R 8 294 800. The output from 
repeated simulation runs at this reliability level is tabulated in Table 7.  

  



 

Page 46 of 71 
 

Table 7: Output from the Optimisation Experiment 

Variable Mean Standard Deviation 
Total Value (TV) of LCC in Rand 8 428 000 46 246 

Yearly costs (R): 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2 872 000 
429 600 
492 800 
525 700 
548 030 

 
38 081 
60 051 
55 237 
63 494 
57 602 

Warranties issued: 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
236.7 
606.5 
772.1 
792.4 
777.8 

 
15.24 
22.12 
25.89 
25.84 
26.46 

Units Manufactured: 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2227 
764.5 
927 

948.6 
932.5 

 
20.35 
27.73 
30.19 
33.14 
33.05 

Sales over 5 years 2580 24.84 
 

The frequency histogram of the total LCC is presented in Figure 19, with the 5th and 95th percentiles 
shown. 

 

Figure 19: Frequency Histogram of the Present Value of the LCC for the PPK 
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The associated percentiles of the LCC are outlined in Table 8. 

Table 8: Percentiles for the LCC 

Minimum 5% 25% 50% 75% 95% Maximum 
8 294 800 8 356 900 8 403 700 8 427 400 8 452 500 8 504 800 8 530 700 

 

The median is slightly smaller than the mean, almost coinciding with the difference only R 600. The 
histogram is therefore judged to be symmetrical. The 95% confidence interval estimate for the true 
value of the mean total LCC was calculated as:  

 (3.10) 

 

4.1.2 Regression Analysis Experiment 
This experiment is based upon the regression model as described in Section 3.3.3. It will answer 
Question 4 from the research objectives. Three weighted regressions using the standard deviations 
were performed, namely: 

1. Linear 
2. Exponential 
3. Hyperbolic 

The output summaries from the regression analyses are shown in Table 9. The scatter plot, together 
with the fitted lines and error bars, are shown in Figure 20. The linear transform of the hyperbole is 
inserted onto the figure. The error bar indicates the spread of 1 standard deviation from the mean 
value for each activity level.  
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Table 9: Output from the Regression Analysis 

Linear Model 
 Value p-value 
Intercept 3280 2 x 10-16 
Independent Variable  -0.682 5.43e-12 
R2-value 0.6642  
95 % Confidence Interval Lower Upper 
Intercept 2830 3730 
Slope -0.829 -0.535 
Function   

 
Exponential Model 

 Value p-value 
Intercept 7.834 2 x 10-16 
Independent Variable  -3.292 x 10-4 2 x 10-16 
R2-value 0.929  
95 % Confidence Interval Lower Upper 
Intercept 7.727 7.942 
Slope -3.57 x 10-4 -3.015 x 10-4 
Function   

 
 

Hyperbolic Model  
 Value p-value 
Intercept -12.28 0.399 
Independent Variable 2 686 600 2e-16 
R2-value 0.9882  
95 % Confidence Interval Lower Upper 
Intercept -41.35 16.8 
Independent Variable 2 597 400 2 775 800 
Function  
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Figure 20: Scatter Plot and Fitted Lines for the Regression Models 

 

4.2 Results from Sensitivity Analysis 
Four parameters are identified to use for a sensitivity analysis, namely: 

 Shape parameter, β  
 Scale parameter, δ 
 Warranty price  
 Sales prices  

A higher shape parameter will influence the variability in failure times. An increase in the expected 
life will improve the reliability and failures will occur at a later stage. Both these parameters will 
impact the number of warranties issued during a particular year.  Increases in both the warranty and 
sales prices will narrow the gap between income from sales and warranties and the manufacturing 
costs. The sensitivity analysis is done by changing one value at a time. 

4.2.1 Effect of Increase Shape Parameter on Life Cycle Costs 
Increase in the β-value, i.e. from 2 to 4 and 6, while keeping all the other parameters as per the 
optimised model, resulted in the changes in output formulated in Table 10.  
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Table 10: Model Output for Increases in β-values and Expected Life of 3 675 000 

Output Variables Original  
β = 2 

β = 4 
(100% increase) 

β = 6 
(200% increase) 

 Original Value New Value Percentage 
Change 

Change in 
Value 

Percentage 
Change 

Total LCC in Rand 8 428 000 8 320 000 -1.278 8 267 570 -1.9002 
Yearly costs (R): 

Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2 872 000 
429 600 
492 800 
525 700 
548 030 

 
2 807 600 
364 600 
565 600 
490 470 
521 995 

 
-2.25 

-15.13 
14.76 
-6.709 
-4.751 

 
2 797 749 
308 969 
639 920 
414 438 
529 838 

 
-2.593 

-28.085 
29.843 
-21.171 
-3.3197 

Warranties issued: 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
 

236.7 
606.5 
772.1 
792.4 
777.8 

 
 

35.08 
428 

951.4 
686.5 
715.9 

 
 

-85.18 
-29.43 
23.23 
-13.36 
-7.968 

 
 

4.7 
264.3 

1182.4 
469.34 
715.74 

 
 

-98.014 
-56.421 
53.151 
-40.767 
-7.9836 

Units Manufactured: 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
 

2227 
764.5 
927 

948.6 
932.5 

 
 

2026 
585.3 
1109 
841.3 
871.1 

 
 

-9.046 
-23.44 
19.6 

-11.31 
-6.582 

 
 

1995.1 
419.12 
1338 

624.96 
872.96 

 
 

-10.437 
-45.174 
44.348 
-34.118 
-6.383 

 

 

4.2.2 Effect of Increase in Expected Life on Life Cycle Costs 
The δ-value was increased with from 3 675 000 to 4 593 750 (25% increase) and to 5 512 500 (50% 
increase), while maintaining β = 2. The results are shown in Table 11. 
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Table 11: Model Output for Increases in Expected Life and Shape Parameter of 2 

Output Value Original  
at δ = 3 675 000 

New Value  
at δ = 4 593 750 

 (25% increase) 

Change (%) New Value  
at δ = 5 512 500 

 (50% increase) 

Change (%) 

Total LCC in 
Rand 

8 428 000 8 183 200 -2.901 8 022 300 -4.811 

Yearly costs 
(R): 

Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
 

2 872 000 
429 600 
492 800 
525 700 
548 030 

 
 

2 846 700 
365 000 
433 380 
470 000 
468 800 

 
 

-0.8899 
-15.04 
-12.06 
-10.6 

-14.45 

 
 

2 828 900 
316 800 
385 800 
417 680 
449 900 

 
 

-1.509 
-26.26 
-21.71 
-20.55 
-17.91 

Warranties 
issued 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
 

236.7 
606.5 
772.1 
792.4 
777.8 

 
 

152 
419.8 
569.7 
617.2 
623.4 

 
 

-35.74 
-30.77 
-26.21 
-22.1 

-19.86 

 
 

107 
298.1 
432 

489.1 
505.6 

 
 

-54.77 
-50.84 
-43.93 
-38.27 

-35 
Units 

Manufactured 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
 

2227 
764.5 
927 

948.6 
932.5 

 
 

2144 
577.8 
727.9 
773.1 
774.4 

 
 

-3.73 
-24.41 
-21.47 
-18.5 

-16.95 

 
 

2097 
452 
589 

646.7 
662.2 

 
 

-5.873 
-40.88 
-36.45 
-31.83 
-28.99 

 

4.2.3 Combined Effect of Increased Scale and Shape Parameters  
Combinations of increased expected life and shape parameters delivered the output as per Tables 12 
and 13. 
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Keeping δ = 4 593 750 and increasing β to 4 and 6. 

Table 12: Model Output for Expected Life of 4 593 750 and Increases in Shape Parameter 

Output Variables Original  
β = 2 

δ = 3 675 000 

β = 4 
(100% increase) 
δ = 4 593 750 

β = 6 
(200% increase) 
δ = 4 593 750 

 Original Value New Value Change (%) New Value Change (%) 
Total LCC in Rand 8 428 000 8 086 300 -4.051 8 029 000 -4.731 
Yearly costs (R): 

Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2 872 000 
429 600 
492 800 
525 700 
548 030 

 
2 805 200 
2 77 100 
452 800 
515 600 
428 700 

 
-2.335 
-35.51 
-8.131 
-1.926 
-21.78 

 
2 793 300 
238 600 
439 200 
577 340 
365 300 

 
-2.749 
-44.47 
-10.88 
9.815 
-33.34 

Warranties issued: 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
236.7 
606.5 
772.1 
792.4 
777.8 

 
13.68 
191.3 
607.6 
738.7 
507.3 

 
-94.22 
-68.46 
-21.3 

-6.777 
-34.78 

 
1.26 

71.02 
587.1 
914.7 
310.7 

 
-99.47 
-88.29 
-23.96 
15.44 
-60.06 

Units Manufactured: 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2227 
764.5 
927 

948.6 
932.5 

 
2005 
346 

768.2 
895.9 
660.9 

 
-9.992 
-54.74 
-17.12 
-5.556 
-29.12 

 
1991 
224.4 
744 

1070 
464.4 

 
-10.63 
-70.64 
-19.73 
12.75 
-50.2 
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Keeping δ = 5 512 500 and increasing β to 4 and 6. 

Table 13: Model Output Expected Life of 5 512 500 and Increases in Shape Parameter 

Output Variables Original  
β = 2 

δ = 3 675 000 

β = 4 
(100% increase) 
δ = 5 512 500 

β = 6 
(200% increase) 
δ = 5 512 500 

 Original Value New Value Change (%) New Value Change (%) 
Total LCC in Rand 8 428 000 7 935 700 -5.838 7 953 800 -5.624 
Yearly costs (R): 

Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2 872 000 
429 600 
492 800 
525 700 
548 030 

 
2 794 200 
245 780 
358 670 
453 000 
457 000 

 
-2.716 
-42.79 
-27.22 
-13.84 
-16.6 

 
2 800 200 
224 960 
324 080 
497 900 
487 340 

 
-2.507 
-47.64 
-34.24 
-5.298 
-11.07 

Warranties issued: 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
236.7 
606.5 
772.1 
792.4 
777.8 

 
6.56 
96.1 

344.3 
601.9 
552.8 

 
-97.23 
-84.15 
-55.4 

-24.04 
-28.93 

 
0.24 

24.38 
230.3 
728.7 
607.6 

 
-99.9 

-95.98 
-70.17 
-8.029 
-21.89 

Units Manufactured: 
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2227 
764.5 
927 

948.6 
932.5 

 
1994 
249.9 
500.3 
755.8 
706.2 

 
-10.47 
-67.32 
-46.02 
-20.33 
-24.27 

 
1992 
177.9 
390 

884.1 
763.8 

 
-10.58 
-76.72 
-57.93 
-6.797 
-18.09 

 

4.2.4 Effect of Change in the Cost Structure 
Increase in Warranty Price 

The warranty price was increased from R 3400 to R 3500, i.e. a 2.9% increase. The rest of the cost 
structure remained the same as per the original model.  
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Table 14: Total and Yearly Life Cycle Costs output for Increased Warranty Price 

Output Value Original Price of 
R3400 

Warranty price of  
R 3500 

Change (%) 

Total LCC in Rand 8 428 000 8 109 840 -3.772 
Yearly costs (R): 

Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2 872 000 
429 600 
492 800 
525 700 
548 030 

 
2 839 426 
356 930 
408 477 
433 035 
460 500 

 
-1.142 
-16.92 
-17.12 
-17.63 
-15.97 

 

Increase in Sales Price 

A 50% increase in the sales price, i.e. form the original R 2400 to R 3600, showed the changes in 
Table 15. The rest of the cost structure remained the same as per the original model.  

Table 15: Total and Yearly Life Cycle Costs output for Increased in Sales Price 

Output Value Original Price of  
R 2400 

New Value 
Sales Price of  

R 3600 
Change (%) 

Total LCC in Rand 8 428 000 5 330 000 -36.76 
Yearly costs (R): 

Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2 872 000 
429 600 
492 800 
525 700 
548 030 

 
412 834 
223 168 
277 188 
302 877 
312 704 

 
-85.63 
-48.06 
-43.76 
-42.39 
-42.94 

 

Combined Effect of Change in Cost Structure 

The sales price was increased with 50%  to R3600, but the warranty price was decreased with 10% to 
R 3060. 

Table 16: Total and Yearly Life Cycle Costs output for the Combined Changes in Cost Structure 

Output Value 
Original Prices:  
Sales: R 2400 

Warranty R 3400 

New Value 
Sales Price: R 3600 

Warranty Price: R 3060 
Change (%) 

Total LCC in Rand 8 428 000 6 414 500 -23.88 
Yearly costs (R): 

Year 1 
Year 2 
Year 3 
Year 4 
Year 5 

 
2 872 000 
429 600 
492 800 
525 700 
548 030 

 
512 300 
430 300 
589 500 
607 900 
658 100 

 
-82.16 
0.1436 
19.62 
15.63 
20.08 
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4.2.5 Effect of Increased β-value on Regression Models 
Table 17 contains the output of the regression models for the higher β-values. 

Table 17: Regression Model Changes for Increased Shape Parameter 

Linear Model 
 Original Output 

β = 2 
β = 4 β = 6 

R2-value 
Function 

0.664 
 

0.680 
 

0.692 
 

 
Exponential Model 

 β = 2 β = 4 β = 6 
R2-value 
Function 

(Exponential form) 

0.929 
 

0.945 
 

0.945 
 

    
Hyperbolic Model  

 β = 2 β = 4 β = 6 
R2-value 
Function 

0.988 

 

0.997 

 

0.999 

 
 

 

4.3 Discussion 
The results proved to be of value to the engineering team at the CSIR and have answered all four the 
research questions. 

4.3.1 Design Optimisation and LCC 
The main aim of this experiment was to optimise the design – i.e. to decide on the best reliability 
level at the lowest LCC. Also, it had to indicate the expected demand for replacements and new sales 
over the 5 year period. This directly impacts the number of units to be manufactured, and therefore 
also the LCC. 

Present Value of the LCC and Design Optimisation 

The extended ABM simulation in Anylogic optimised the design at an expected life of 3 675 000 steps 
for a shape parameter of 2. At this reliability level, the minimised LCC are R 8 294 800. However, this 
is the minimum costs that were obtained only once. It is therefore unrealistic to expect the real costs 
to be true to this value. It is more important to know what the mean LCC at this reliability level 
would be over the 5 year period.  

The simulation provided a mean LCC of R 8 428 000 and a maximum of R 8 530 700. This is a total 
range of R 235 900 from minimum to maximum and is 0.28% of the mean. Referring to the 
symmetrical nature of the histogram (see Figure 19), the LCC may be considered as distributed 
normally and expressed as: 
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The small spread of the data, the standard deviation being only 0.55 % of the mean value, implies 
that the data is reliable to use to predict the LCC with some probability. The 5th percentile indicates 
that there is a 5% probability of the LCC being equal or below R 8 356 900, with the 95th percentile 
indicating a 5% probability of LCC being greater or equal to R 8 504 800.  

 

Expected Demand and Yearly LCC 

For production data, the number of units manufactured and those replaced (the warranties) seems 
to stabilise during year 3, as can also be seen in Figure 21. The high number of units manufactured in 
year 1 is due to the start-up of the project, where each entity received a new unit. Thereafter, the 
manufacturing and warranties tend to move towards each other and then maintain a balance. 

 

Figure 21: The Manufactured and Replaced Units over 5 years 

From the graph it is evident that warranties make up a large proportion of the manufactured units. 
Over the course of 5 years, a mean total of 4000 units were manufactured and 780 sold as new, 
excluding the initial 1800 units manufactured and sold at the beginning. A mean total of 3186 
warranties were issued. This implies that 79.7% of manufactured units were allotted as warranties, 
with only 20.3% attributed to new sales. These figures are indicative that the quality of the PPK must 
be revised, as nearly 4 times as many units are replaced than sold new. Figure 22 is a bar plot of 
these figures. 
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Figure 22: Bar plot for Dispersion of Demand 

 

The yearly cash flow diagram (not drawn to scale) in Figure 23 indicates a high costs during the first 
year, mostly accredited to the initial manufacturing volume. The LCC for year 2 is then lower, after 
which there is a steady rise in future values, mostly attributed to the effect of inflation. 

 

Figure 23: Yearly Cash Flow of Future Costs 
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4.3.2 Impact of Changes in Design Parameters on the Life Cycle Costs  
Increased β-value and Maintaining δ = 3 675 000 

The greatest reduction for the total LCC is observed for the β-value of 6 at 1.9%. The only positive 
changes, i.e. increase in figures, are observed for year 3 as shown in the tornado diagrams in Figure 
24.  

 

Figure 24: Tornado Diagrams for Increased Shape Parameters and Expected Life of 3 675 000 

The higher β-value concentrated the spread of failures around the 3rd year, explaining the increases 
in warranties issued when compared to the original β-value. The costs also increased for this year, 
due to the higher number of warranties issued and units manufactured. The number of warranties 
issued during the 3rd year for the β-value of 6 is larger than that of the β-value of 4. This supports the 
notion that the increase in the shape parameter narrows the spread of failure times, although the 
MTTF remained the same.  

Another prevalent change for the increases in the β-values is seen in the decrease in the number of 
warranties issued during the 1st year, although this is not significantly reflected in the year’s costs. 
Recall that the number of sales is highest for the 1st year, which accounts for the largest part 
expenses for that year. 

 

Increased Expected Life (δ) and Maintaining β = 2 

The greatest change in LCC is observed for a δ-value of 5 512 500 at a 4.81% decrease from the 
original value. Figure 25 shows the tornado diagrams for the two increases in the expected life 
values.  
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Figure 25: Tornado Diagrams for Increases in Expected Life with Shape Parameter Constant at 2 

The number of warranties issued for each year decreased due to the improved reliability level, with 
the most reduction seen during the 1st two years. All the yearly costs have therefore also been 
reduced. However, the spread of failure times has remained much the same as the β-value was 
unchanged.  

 

Combined Effect of Increased δ- and β-values 

Figure 26 contains the tornado diagrams for the effects on outcomes for the combination of 
parameter changes. The increases in δ-values resulted in major reductions of warranties issued 
during the 1st three years. The only positive changes are for warranties issued during the 4th year for 
the δ-value of 4 593 500 and β-value of 6. The number of warranties issued peaks during the 4th year 
for all the combinations. However, for the β-value of 6, more units failed in the 4th year when 
compared to the β-value of 4 for both the δ-levels. 

This pattern is also reflected in the decreased yearly costs for all combinations, with the exception of 
the increase in costs for the 4th year for a δ-value of 4 593 500 and β-value of 6. Overall, the total LCC 
is reduced the most at 5.838% for the combination of δ = 5 512 500 and β = 4. The different total LCC 
values for the changed parameters are plotted onto a single graph in Figure 27. 
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Figure 26: Tornado Diagrams for Combined Effects of Weibull Parameter Changes 
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Figure 27: Life Cycle Costs for Combinations of the Weibull Parameters 

 

Increase in Warranty Price and Maintaining all other Parameters 

The total LCC decreased by 3.77% at a higher warranty price of R 3500. This is a lesser change than 
what was brought on by the combined increases in δ- and β-values. The tornado diagram for this 
parameter change is shown in Figure 28. 

 

Figure 28: Tornado Diagram for Increased Warranty Price 
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Increase in Sales Price and Maintaining all other Parameters 

The 50% increase in sales price resulted in a 36.76% lowering in the total LCC. This is by far the most 
significant reduction when compared to the other parameters. The tornado diagram is shown in 
Figure 29. 

 

Figure 29: Tornado Diagram for Increased Sales Price 

 

Combined Effect of Changes in Cost Structure 

The increase in sales price allowed for a reduction in the warranty price, this combination also led to 
a reduction of the total LCC. The most significant change is observed for the costs of the 1st year. This 
is attributed to the sales being highest in this year. For the rest of the time, the warranties issued far 
exceed the number of sales, which would explain the increases in yearly costs for the next 4 years. 
Figure 30 shows the tornado diagram for the combined changes. 
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Figure 30: Tornado Diagram for Combined Changes in Cost Structure 

 

Conclusion 

The LCC – output is more sensitive to the increases in δ-values than increases in β-values. This is due 
to the improved reliability level, implicating fewer failures and thereby a lowering in total warranty 
costs.  However, the spread of warranties issued over 5 years is more affected by changes in β than 
increases in expected life. The most significant reduction in LCC is due to the increase in sales price 
alone; however this vast improvement allowed for a decrease in the warranty price. This 
combination resulted in the second highest reduction in total LCC. Further changes to the prices in 
this fashion can be tested to find an acceptable cost structure. 

  

4.3.3 Regression Models 
The main purpose of these models is to predict the time of failure, based on the activity level of the 
user. The models provided did deliver good results to a certain extent, but is limited in its use due to 
large standard deviations observed in the data. 

Of the three models generated, the hyperbolic function has the highest correlation coefficient, 
indicating that 98.8% of the variability in the output is attributed to the function. The null-
hypothesis, i.e. slope’s value is equal to zero, may be rejected. The generated function in Table 6 is 
therefore accepted. The hyperbolic line on the scatter graph (Figure 20) also matches the data points 
on the plot best. The insert on Figure 20 shows the linear transform of the hyperbolic function. The 
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inverse of the activity levels are on the x-axis. The data points are closely scattered around the 
straight line. 

The exponential function has the 2nd highest correlation coefficient with the variability of the model 
assigned to the function 92.9% of the time. The null-hypothesis, i.e. that both the intercept’s and the 
slope’s values are zero, may be rejected and the function in Table 6 be accepted. Further inspection 
of the fitted lines on the scatter plot in Figure 20 shows that the exponential line closely matches the 
data points from a 1000 steps and onwards, albeit not as close as the hyperbolic line. 

The linear model produced the lowest correlation. This indicates a poor fit, with only meagre 
accuracy in prediction. It is also evident from the scatter plot that this function will not accurately 
predict the time to failure. This function will not be used. 

It must be noted that large standard deviations were observed for the time to failure, for each 
activity level (from 500 steps up to 5000). The mean of the standard deviations is 730. This equals to 
two years. A large deviation from the mean such as this may render the functions undependable to 
use to predict the time of failure.  

Referring to the characteristics of the Weibull distribution, a steeper slope (the shape parameter, β) 
implies a smaller variation of the times to failure and more predictable results (Schop, 2008). The 
variation seen in the times of failure from this simulation may be the result of the less steep slope, 
i.e. the β-value of 2, which places the PPK within the early wear-out category of mechanical failure. 
Figure 31 generically illustrates this concept. 

 

Figure 31: Effect of the Shape Parameter on Spread of Failure Times 

On the steeper gradient (β = 3.5), the difference between 0 failures and reaching 63.2% of failures is 
0.18 time units (the intercept with the red line). On the line with the gradient of β = 1.5, the failures 
up to the 63.2% mark are more dispersed at 0.45 time units. The steeper gradient results in failures 
being close together, thereby predicting the time of failure is within a smaller window. However, a 
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higher β-value does not imply a shorter MTTF, as both these cases display a MTTF of 0.75 time units. 
Therefore, to obtain more accurate forecasting of times to failure, it is advised to improve the design 
to obtain a higher β-value, preferably greater than 4 as well as a longer expected life. This will place 
the PPK within the old-age rapid wear-out category (Schop, 2008), and make predictions for time of 
failure more accurate.  

Should the development team decide to still use the regression models, it is advised to use the 
Hyperbolic function to forecast the time of failure, albeit with caution due to the large standard 
deviations observed.  

 

4.3.4 Impact of Changes of the Parameters on the Regression Models 
The fitted lines are redrawn on Figure 32 and illustrate how the standard error bars are reduced for 
the higher β-values.  The top plot is that of the original β-value of 2. Predictions of failure times by 
the functions are now within a smaller window and therefore more accurate. This explains the 
increase in the correlation coefficients for all the models. However, the hyperbolic function still has 
the highest R2-coefficient and remains the selected model to predict failure times. 

 

Figure 32: Scatter Plots for Increases in Shape Parameter 
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4.4 Validation: Implications for the Real World  
The simulation models exhibited the anticipated behaviour with the change in input parameters. 
With extended expected life the demand for replacements decreased and a subsequent lowering of 
yearly costs ensued, resulting in the dropping of the total LCC. With higher shape parameters the 
replacements occurred closer together as the spread of failures across the 5 year period was 
decreased, also resulting in lower LCC.  For the regression models, the correlation coefficients of the 
functions improved and the standard error bars were reduced in size for the higher β-values, at the 
same expected life.  

This project delivered testable predictors with regards to LCC that can now be used by the 
development team to partly optimise the design and value the PPK. The products’ overall reliability 
must be improved to lower the LCC, as well as a change in the cost structure. Parents and medical 
insurers will benefit from the findings and be empowered to improve their financial planning for a 
child’s continued use of the PPK. 
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Chapter 5 
 

Conclusion  
 

The final outcome of this project provided beneficial insight into the behaviour of the system of the 
PPK in terms of its yearly and total LCC, as well as expected demand. As the PPK project is still in the 
early stages of development, it assisted the development team to gain an overall picture of what to 
expect from the system with its current parameters. The screening cost estimate affords the CSIR 
with a foundation to decide on the way forward in developing the product optimally.  

The lead engineer of the PPK has expressed more interest in the tools or models themselves than 
what the final answers were. This is due to the PPK being a new product with no historical data to 
work from. The models are developed to be flexible enough to change the parameters once real 
reliability testing and operational data becomes available. In future, these parameters can be used 
as input to the simulations in order to deliver the relevant results. The development of an algorithm 
to predict time to failure for the varying activity levels can also be continued, using the hyperbolic 
regression model as a starting point. 

This project made use of agent based modelling in reliability engineering and product development. 
It provided an example of how useful and valid an ABM can be to test design features, and optimise 
the value of the product. 

 

“Industrial Engineers cannot replace life before amputation, but improving prosthetic design and 
manufacturing can better the lives of today’s amputees” 

(Zhang and Wang, 2014) 
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Appendix A: Abbreviations 
 

ABM Agent Based Model 
ABS Agent Based Simulation 
CSIR Council for Scientific and Industrial Research 
LCC Life Cycle Costs 
MC Monte Carlo 

MTTF Mean Time to Failure 
PPK Paediatric Prosthetic Knee 

R & D Research and Development 
SD System Dynamics 

 

  


