Effect of metformin therapy and dietary supplements on semen parameters in hyperinsulinaemic males

E. Bosman1*, A. D. Esterhuizen1, F. A. Rodrigues1, P. J. Becker2 & W. A. Hoffmann3

1 Medfem Clinic, Bryanston, South Africa;
2 Biostatistics Unit, Medical Research Council and Division of Clinical Epidemiology, University of Pretoria, Pretoria, South Africa;
3 Department of Biomedical Sciences, Tshwane University of Technology, Pretoria, South Africa

* Correspondence
Edolene Bosman, Medfem Clinic, P.O. Box 2233, Cramerview 2060, South Africa.
Tel.: +27 11 540 3440;
Fax: +27 11 463 1875;
E-mail: ivflab@medfem.co.za

Summary

Previous reports indicated that hyperinsulinaemic men may exhibit a higher percentage of poorly compacted DNA in their spermatozoa and less success in an IVF programme (Andrologia, 45, 2003, 18; Andrologia, 2014, doi: 10.1111/and.12227). The aim of this study was to investigate the effect of metformin (Glucophage®) and antioxidant treatment (StaminoGro®) on the semen parameters of hyperinsulinaemic men. Nineteen hyperinsulinaemic male patients were treated for 3 months with metformin alone (Group A), and fifteen patients used metformin in combination with the nutritional supplement (Group B). Combined data of the two groups (pre- and post-treatment) differ significantly regarding sperm morphology ($P = 0.0003$) and CMA$_3$ ($P < 0.0001$) values. The improvement in sperm morphology after treatment was similar for the two respective groups ($P < 0.05$). The morphological normal sperm forms increased from the mean percentage of 3.9 to 5.5% and from 4.2 to 5.5% for Group A and B respectively. Where a combination of metformin and the supplement were used (Group B), the combination treatment proved to be superior in obtaining enhanced chromatin packaging quality although not statistically significant ($P = 0.5929$) when compared with the metformin (Group A) group. The chromatin packaging quality in Group B improved with 10% while the improvement in Group A was approximately 8.3%. Therefore, infertile hyperinsulinaemic men can benefit from metformin treatment and should be advised on the use of nutritional supplements with antioxidant properties.

Keywords:
CMA$_3$; male hyperinsulinaemia; metformin; morphology; nutritional supplement

Introduction

Hyperinsulinaemia, which often occurs in obese men, has an inhibitory effect on normal spermatogenesis and can be linked to decreased male fertility (Du Plessis et al., 2010; Aboua et al., 2013). Insulin has an influence on the levels of sex-hormone-binding globulin (SHBG)
and can contribute to low testosterone levels (Jensen et al., 2004; Tsai et al., 2004). Men with high insulin levels have a tendency to present with a higher percentage of poorly compacted sperm deoxyribonucleic acid (DNA) and lower pregnancy rates in an IVF programme (Bosman et al., 2013, 2014). Certain treatments such as metformin, a modified diet and exercise, can effectively control high insulin levels. Treatment and intervention of hyperinsulinaemic males can delay the onset and development of type 2 diabetes mellitus (DM) and possibly lead to improved semen parameters.

Sperm chromatin condensation plays a key role in male fertility, early embryonic growth and pregnancy results (Talebi et al., 2012). Chromomycin A3 (CMA3) is a guanine, cytosine-specific fluorochrome that competes with protamines for association with DNA (Lolis et al., 1996). Staining relates to the degree of protamination present in mature spermatozoa, and high CMA3 fluorescence is therefore a strong indicator of low protamination in the DNA of the spermatozoa (Manicardi et al., 1995). There is a meaningful relation between poor sperm chromatin packaging, sperm DNA damage, high levels of reactive oxygen species (ROS) and reproductive outcome (Esterhuizen et al., 2000; Duran et al., 2002; Evenson et al., 2002; Benchaab et al., 2003; Saleh et al., 2003). CMA3 values exceeding 40% (defective chromatin packaging) in semen samples have an adverse effect on IVF outcome (Esterhuizen et al., 2000).

Protamination is achieved when nicks are endogenously created to relieve the torsional stress of the DNA double helix. Once protamination is complete, the nicks completely disappear (Ward & Coffey, 1991). The presence of endogenous nicks in ejaculated spermatozoa indicates incomplete maturation or protamination during spermiogenesis. Disruption of this critical process of chromatin packaging may result in persistence of endogenous nicks that would be, in turn, reflected as DNA damage. A higher percentage of DNA damage was found in infertile male patients compared to fertile men, and DNA damage strongly correlated with ROS levels (Moustafa et al., 2004). Immature spermatozoa additionally display a high percentage of alterations in chromatin packaging and produce excessive ROS (Bianchi et al., 1996; Manicardi et al., 1998) which in turn causes peroxidative damage to the plasma membrane, and impairment of sperm function (Mahfouz et al., 2010). High ROS concentrations result in oxidative stress, mitochondrial dysfunction, impaired sperm methylation, cellular damage, and in numerous cases, cell death (Loft et al., 2003; Tunc & Tremellen, 2009).

The use of antioxidants such as vitamin C and E has been proved to be beneficial in the treatment of oxidative stress and DNA fragmentation (Koca et al., 2003). In this study, male patients with raised insulin levels were treated with metformin. The dosage of metformin depended on the fasting insulin results and varied from 500 mg to 1500 mg per night. Due to the added financial expense, patients were given the option to use StaminoGro® a nutritional supplement containing antioxidant components in combination with metformin. StaminoGro® was taken 3 months prior to the commencement of assisted reproductive procedures. The treatment was initialised by taking one tablet at night for 1 week, followed by taking two tablets after supper for three nights, then three tablets for the consecutive three night and thereafter four tablets were taken up until conception. The mineral and vitamin contents of the supplement are summarised in Table 1. The aim of this study was to investigate the effect of metformin and an antioxidant supplement on the semen parameters of hyperinsulinaemic men.
Table 1. Mineral and vitamin contents of StaminoGro® supplement (Georen, 2013)

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Antioxidants</th>
<th>B-complex vitamins</th>
<th>Calcium and vitamin D</th>
<th>Other vitamins and minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>Beta-carotene (10%)</td>
<td>Folic acid</td>
<td></td>
<td>Biotin</td>
</tr>
<tr>
<td>L-arginine</td>
<td>Lipoic acid</td>
<td>Vitamin B1 – thiamine</td>
<td>Elemental Calcium</td>
<td>Choline bitartrate</td>
</tr>
<tr>
<td>L-glutamine</td>
<td>Vitamin C</td>
<td>Vitamin B2 – riboflavin</td>
<td>Vitamin D3</td>
<td>Copper</td>
</tr>
<tr>
<td>L-lysine</td>
<td>Vitamin E</td>
<td>Vitamin B3 – nicotinamide</td>
<td></td>
<td>Magnesium</td>
</tr>
<tr>
<td>L-omithine</td>
<td>Selenium</td>
<td>Vitamin B5 – pantothenic acid</td>
<td></td>
<td>Manganese</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitamin B6 – pyridoxine</td>
<td></td>
<td>Zinc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitamin B12 – derived from methylcobalamin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials and methods

Patient selection

Patients scheduled for semen analysis at Medfem Clinic received instruction to sexually abstain for 3 days prior to sperm testing. Fasting insulin levels were determined with a blood test on the morning of semen analysis. Patients were instructed to fast from 22H00 the night before testing. Patients were requested to provide information regarding their weight, height and waist size. Hyperinsulinaemic males with fasting insulin levels above 9.2 μIU ml⁻¹ were followed up and treated with Glucophage® (metformin) and given the option to use the supplement StaminoGro® (Georen Pharmaceuticals PTY LTD, Fontainebleau, South Africa) as part of the treatment. Metformin has been established as the first-line treatment option in the management of type 2 DM (Mkele, 2013). The minimum effective dose for metformin is 500 mg day⁻¹ with an optimum dose of 2000 mg day⁻¹. Metformin is taken with meals to help reduce stomach or bowel side effects that may occur during the first few weeks of treatment. Patients were prescribed to start with a dose of 500 mg once a day with the evening meal. If needed, the dose was increased until the blood sugar was controlled. The dosages for StaminoGro® are discussed above. Patients who adhered to the prescribed drugs and dosages were retested 3 months after treatment. The routine semen analysis was repeated and data noted. Males who presented with varicocele or hyperthyroidism were not included in the study.

Routine semen analysis

Samples were assessed according to the WHO manual for light microscopic semen analysis, and values were recorded for sperm count, motility and viability (WHO, 2010). Normal sperm morphology assessment was based on the Tygerberg's strict criteria (Menkveld et al., 1990).

CMA₃

Smears were made of the semen samples and left to air-dry before they were fixed in three parts methanol and one part acetic acid (Carnoy's solution) for 20 min at 4 °C. CMA₃ staining
was performed according to the method described by Esterhuizen et al. (2000). A Nikon fluorescent microscope with a 460-nm filter was used to score at least 200 spermatozoa using the 100× magnification, under oil. Spermatozoa with poor chromatin packaging, stain bright yellow, were expressed as the percentage of sperm with immaturesly packaged DNA. Nonreacted spermatozoa appear faintly yellowish green under the fluorescence microscope and were counted as mature forms (Fig. 1).

Figure 1. Spermatozoa with poor chromatin package showing bright yellow under fluorescence (100× magnification). A = Good-quality DNA packaging in the sperm head. B = Poor-quality DNA packaging in the sperm head.

Statistical analysis

Treatment groups were compared with respect to change in semen parameters from pre- to post-treatment. An analysis of variance for ranks was employed for the ranks of the pre-treatment values. Testing was performed at the 0.05 level of significance with the use of Stata Statistical Software: Release 10, College Station, TX, StataCorp.

Results

A total of 34 patients met the inclusion criteria for hyperinsulinaemia after initial testing and semen analysis. Nineteen patients were treated with the supplement alone (Group A), and fifteen patients used metformin in combination with the supplement (Group B). The ages of the males ranged between 33 and 45 years. The fasting insulin levels for the groups ranged from 10.2 to 38.3 μIU ml⁻¹ with an average of 16.9 ± 5.3 μIU ml⁻¹. Group A had an average fasting insulin of 16.4 ± 5.8 μIU ml⁻¹ and Group B of 15.7 ± 6.6 μIU ml⁻¹.

The pre- and post-treatment semen parameters for the two different treatment groups are presented in Table 2.
Table 2. Pre- and post-treatment sperm parameters of Group A and Group B

<table>
<thead>
<tr>
<th>Sperm parameters</th>
<th>Group A (n = 19)</th>
<th>Group B (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-treatment</td>
<td>Post-treatment</td>
</tr>
<tr>
<td></td>
<td>(mean ± SD)</td>
<td>(mean ± SD)</td>
</tr>
<tr>
<td>Sperm concentration ($\times 10^6$ ml$^{-1}$)</td>
<td>32.6 ± 21.2</td>
<td>42.7 ± 32.9</td>
</tr>
<tr>
<td>% Motility</td>
<td>53.9 ± 16.3</td>
<td>49.3 ± 11.9</td>
</tr>
<tr>
<td>% Vitality</td>
<td>62.3 ± 13.7</td>
<td>59.3 ± 10.6</td>
</tr>
<tr>
<td>% Normal morphology</td>
<td>3.9 ± 2.2</td>
<td>5.5 ± 2.9a</td>
</tr>
<tr>
<td>CMA$_3$ (% immature forms)</td>
<td>57.7 ± 13.8c</td>
<td>50.5 ± 10.9c</td>
</tr>
</tbody>
</table>

1. Statistically significant difference between pre- and post-treatment values.
2. $^aP = 0.002; ^bP = 0.006; ^cP = 0.040; ^dP = 0.016.$

A comparison of the findings for Group A and Group B indicates that the improvement in sperm morphology was similar for the two groups. The mean percentage normal morphology of the metformin group (Group A) increased from 3.9 to 5.5% normal forms, while the group that used a combination of metformin and the supplement (Group B) improved from 4.2 to 5.5%. The change in CMA$_3$ levels was higher in Group B than in Group A. The chromatin packaging quality in Group B improved with ~12% from 64.2 to 52.3%, and from 57.3 to 50.5% in Group A. However, when these values were statistically adjusted for baseline variables, the changes were 10% and 8.3%, respectively, and not statistically significant ($P = 0.5929$).

Combining the data of Groups A and B demonstrated that there was no statistically significant difference between the mean pre-treatment versus post-treatment sperm counts, percentage motile sperm or sperm vitality (Table 3). However, statistically significant increases were found for sperm morphology (% normal forms) and CMA$_3$ values after treatment ($P = 0.0003; P < 0.0001$) (Table 3).

Table 3. Pre- and post-treatment sperm parameters of the hyperinsulinaemic group (n = 34)

<table>
<thead>
<tr>
<th>Semen parameter</th>
<th>Pre-treatment (mean ± SD)</th>
<th>Post-treatment (mean ± SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperm concentration ($\times 10^6$ ml$^{-1}$)</td>
<td>34.1 ± 26.2</td>
<td>38.8 ± 27.4</td>
<td>0.3099</td>
</tr>
<tr>
<td>% Motility</td>
<td>53.6 ± 14.3</td>
<td>50.9 ± 11.7</td>
<td>0.2287</td>
</tr>
<tr>
<td>% Vitality</td>
<td>61.8 ± 11.8</td>
<td>61.0 ± 11.1</td>
<td>0.6161</td>
</tr>
<tr>
<td>% Normal morphology</td>
<td>4.1 ± 1.9a</td>
<td>5.5 ± 2.8a</td>
<td>0.0003</td>
</tr>
<tr>
<td>% Immature forms (CMA$_3$)</td>
<td>60.4 ± 13.2a</td>
<td>51.3 ± 9.2a</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Discussion

There is a growing body of evidence that elucidates the important role of sperm DNA damage in male infertility and the clinical relevance thereof in the outcome in ART.
The challenge is to understand the various clinical applications of the multifactorial impact of sperm chromatin integrity, as well as the approaches to improve sperm chromatin integrity (Hekmatdoost et al., 2009). Various methods to evaluate sperm chromatin integrity have been developed, such as acidic aniline blue, toluidine blue, CMA₃, sperm chromatin dispersion and comet assay (Kim et al., 2013; Simon et al., 2014). In comparison with all the alternative chromatin integrity tests available, the CMA₃ assay is an inexpensive and straightforward test and does not require expensive equipment such as flow cytometry (Talebi et al., 2012).

Sperm chromatin becomes more compacted during the process of spermatogenesis, when histones are replaced firstly by testis-specific nuclear proteins, then by transitional proteins and finally by protamines. As such, abnormalities that occur during the expression of sperm-specific nucleoproteins have an influence on sperm chromatin structure and may cause male infertility (Talebi et al., 2012). Sperm DNA integrity has been associated with decreased embryo quality and an increase in miscarriage rates in assisted reproduction (Morris et al., 2002). According to Paldi (2003), normal chromatin structure is critical for correct methylation of imprinted genes. DNA methylation and histone modifications are the two major mechanisms involved in genetic imprinting in humans (Kobayashi et al., 2007; Manipalviratn et al., 2009). The primary role of the sperm protamines is to ensure normal sperm chromatin structure. Aoki et al. (2005) suggested that protamine and chromatin structural defects may leave sperm susceptible to improper imprinting patterns in critical genes. Some concern has been raised over a possible relation between assisted reproductive technologies (ART) and genomic imprinting disorders (Lawrence & Moley, 2008).

Spermatogenesis is an intricate process in which an abundance of nutritional supplies is crucial during spermatogenesis. Antioxidant supplementation is one of the basic strategies that can be easily employed to enhance DNA integrity (Sharma et al., 2004). Tunc & Tremellen (2009) reported that 3 months of supplementation with antioxidant supplement resulted in a significant decrease in seminal ROS and sperm DNA fragmentation of infertile men, while increasing sperm DNA methylation. Similarly, the use of the mineral and vitamin supplement in combination with metformin in the current study resulted in a greater improvement of DNA integrity than the use of metformin alone.

Hyperglycaemia causes a high level of oxidative stress, with excess production of ROS and a decreased efficiency of antioxidant systems (Agbaje et al., 2007; Mangoli et al., 2013). To our knowledge, this study is the first to address the influence of hyperinsulinaemia on male infertility and the effect of metformin treatment on semen parameters. The seemingly negative effect of DM on sperm parameters has previously been raised by other researchers (La Vignera et al., 2011; Mangoli et al., 2013), but the actual effect of hyperinsulinaemia remained unknown. High insulin levels and the unstable glycemic state may have a similar increase in ROS production as reported in DM cases (Agbaje et al., 2007; Mangoli et al., 2013). Antioxidants such as vitamin C, E and zinc present in supplements, stabilise cell membranes and protect cells against ROS. Various studies have indicated that sperm quality is enhanced by zinc, selenium, folate and vitamin supplementation. Selenium plays an active role in sperm DNA compaction (Hadaszadeh & Beggs, 2006). In addition, zinc deficiencies in men can inhibit angiotensin-converting enzyme activity in Leydig cells, which consequently result in testosterone depression and the impediment of spermatogenesis (Liu et al., 2009). However, a minimum concentration of ROS is needed in many organs, especially the reproductive organs, as ROS is critical in regulating the onset of hyperactivation, spermatozoa capacitation and acrosome reaction. Thus, excessive intake of
Antioxidants may actually result in impaired sperm function by inhibiting the necessary ROS (Bolle et al., 2002).

In a previous study, it was reported previously that hyperinsulinaemic male patients had a significantly lower IVF pregnancy rate of 31.8% when compared to the 57.9% pregnancy rate, of a normo-insulinaemic male group (Bosman et al., 2014). Early diagnosis and treatment of male hyperinsulinaemia prior to ART is advised as improved morphology and CMA₃ values can be beneficial to pregnancy outcome. The significant improvement of the CMA₃ values seen in the supplement treatment group suggests that ROS has a detrimental effect on the semen parameters of hyperinsulinaemic men. The importance of the current study is demonstrated by the significantly positive effect of metformin/supplement treatment on sperm morphology and CMA₃ values. Another valuable contribution of this study is the effective assessment of hyperinsulinaemia on semen quality and the treatment thereof prior to the onset of diabetes and the deterioration of semen parameters. Antioxidant treatment with supplements should be a standard regime for male infertility patients, while hyperinsulinaemic men can benefit from additional metformin treatment.

References

