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1 Introduction and preliminaries
In , Fan [], introduced the concept of a best approximation in Hausdorff locally con-
vex topological vector spaces as follows.

Theorem . Let X be a nonempty compact convex set in a Hausdorff locally convex topo-
logical vector space E and T : X → E a continuous mapping, then there exists a fixed
point x in X, or there exist a point x ∈ X and a continuous semi-norm p on E satisfying
miny∈X p(y – Tx) = p(x – T(x)) > .

A fixed point problem is to find a point x in A such that Tx = x. There are certain sit-
uations where solving an equation d(x, Tx) =  for x in A is not possible, then a compro-
mise is made on the point x in A where inf{d(y, Tx) : y ∈ A} is attained, that is, d(x, Tx) =
inf{d(y, Tx) : y ∈ A} holds. Such a point is called an approximate fixed point of T or an
approximate solution of an equation Tx = x. It is significant to study the conditions that
ensure the existence and uniqueness of an approximate fixed point of the mapping T .

Let A and B be two nonempty subsets of X and T : A → B. Suppose that d(A, B) :=
inf{d(x, y) : x ∈ A and y ∈ B} is the distance between two sets A and B where A ∩ B = φ.
A point x∗ is called a best proximity point of T if d(x∗, Tx∗) = d(A, B). Indeed, if T is a
multifunction from A to B then

d(x, Tx) ≥ d(A, B),
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for all x ∈ A, always. Note that if A = B, then the best proximity point will reduce to a fixed
point of the mapping T . Hence the results dealing with the best proximity point problem
extend fixed point theory in a natural way.

For more results in this direction, we refer to [–] and references therein.
On the other hand, Zadeh [] introduced the concept of fuzzy sets. Meanwhile Kramosil

and Michalek [] defined fuzzy metric spaces. Later, George and Veeramani [, ] fur-
ther modified the notion of fuzzy metric spaces with the help of a continuous t-norm and
generalized the concept of a probabilistic metric space to the fuzzy situation. In this direc-
tion, Vetro and Salimi [] obtained best proximity theorems in non-Archimedean fuzzy
metric spaces.

The aim of this paper is to obtain a coincidence best proximity point solution of
M(gx, Tx, t) = M(A, B, t) over a nonempty subset A of a partially ordered non-Archimedean
fuzzy metric space X, where T is a nonself mapping and g is a self mapping on A. Our re-
sults unify, extend, and strengthen various results in [].

Let us recall some definitions.

Definition . ([]) A binary operation ∗ : [, ] −→ [, ] is called a continuous t-norm
if

() ∗ is associative, commutative and continuous;
() a ∗  = a for all a ∈ [, ];
() a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

Typical examples of continuous t-norm are ∧, ·, and ∗L, where, for all a, b ∈ [, ], a∧b =
min{a, b}, a · b = ab, and ∗L is the Lukasiewicz t-norm defined by a ∗L b = max{a + b – , }.

It is easy to check that ∗L ≤ · ≤ ∧. In fact ∗ ≤ ∧ for all continuous t-norms ∗.

Definition . ([]) Let X be a nonempty set, and ∗ be a continuous t-norm. A fuzzy
set M on X × X × [, +∞) is said to be a fuzzy metric if, for any x, y, z ∈ X, the following
conditions hold:

(i) M(x, y, t) > ,
(ii) x = y if and only if M(x, y, t) =  for all t > ,

(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s > ,
(v) M(x, y, ·) : [,∞) → [, ] is left continuous.

The triplet (X, M,∗) is called a fuzzy metric space.

Since M is a fuzzy set on X × X × [,∞), the value M(x, y, t) is regarded as the degree
of closeness of x and y with respect to t.

It is well known that for each x, y ∈ X, M(x, y, ·) is a nondecreasing function on (, +∞)
[].

If we replace (iv) with
(vi) M(x, z, max{t, s}) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s > ,

then the triplet (X, M,∗) is said to be a non-Archimedean fuzzy metric space.
As (vi) implies (iv), every non-Archimedean fuzzy metric space is a fuzzy metric space.

Also, if we take s = t, then (vi) reduces to M(x, z, t) ≥ M(x, y, t) ∗ M(y, z, t) for all t > . And
M in this case is said to be a strong fuzzy metric on X.
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Each fuzzy metric M on X generates a Hausdorff topology τM whose base is the family
of open M-balls {BM(x, ε, t) : x ∈ X, ε ∈ (, ), t > }, where

BM(x, ε, t) =
{

y ∈ X : M(x, y, t) >  – ε
}

.

Note that a sequence {xn} converges to x ∈ X (with respect to τM) if and only if
limn→∞ M(xn, x, t) =  for all t > .

Let (X, d) be a metric space. Define Md : X × X × [,∞) → [, ] by

Md(x, y, t) =
t

t + d(x, y)
.

Then (X, Md, ·) is a fuzzy metric space and is called the standard fuzzy metric space in-
duced by a metric d []. The topologies τMd and τd (the topology induced by the met-
ric d) on X are the same. Note that if d is a metric on a set X, then the fuzzy metric space
(X, Md,∗) is strong for every continuous t-norm ‘∗’ such that for all ∗ ≤ ·, where Md is the
standard fuzzy metric (see []).

A sequence {xn} in a fuzzy metric space X is said to be a Cauchy sequence if for each t > 
and ε ∈ (, ), there exists n ∈ N such that M(xn, xm, t) >  – ε for all n, m ≥ n. A fuzzy
metric space X is complete [] if every Cauchy sequence converges in X. A subset A of X
is closed if for each convergent sequence {xn} in A with xn −→ x, we have x ∈ A. A subset
A of X is compact if each sequence in A has a convergent subsequence.

Lemma . ([]) M is a continuous function on X × (,∞).

Definition . ([]) Let A and B be two nonempty subsets of a fuzzy metric space
(X, M,∗). We define A(t) and B(t) as follows:

A(t) =
{

x ∈ A : M(x, y, t) = M(A, B, t) for some y ∈ B
}

,

B(t) =
{

y ∈ B : M(x, y, t) = M(A, B, t) for some x ∈ A
}

.

The distance of a point x ∈ X from a nonempty set A for t >  is defined as

M(x, A, t) = sup
a∈A

M(x, a, t),

and the distance between two nonempty sets A and B for t >  is defined as

M(A, B, t) = sup
{

M(a, b, t) : a ∈ A, b ∈ B
}

.

Definition . ([]) Let � be the set of all mappings ψ : [, ] → [, ] satisfying the fol-
lowing properties:

(i) ψ is continuous and nondecreasing on (, ) and ψ(t) > t also ψ() =  and ψ() = .
(ii) limn→∞ ψn(t) =  if and only if t = .

Let � be the set of all mappings η : [, ] → [, ] which satisfy the following properties:
(i) η is continuous and strictly decreasing on (, ) and η(t) < t for all t ∈ (, ),

(ii) η() =  and η() = .
If we take η(t) = t – t, then η ∈ � and hence � 
= φ.
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2 Best proximity point in partially ordered non-Archimedean fuzzy metric
space

Definition . Let A be a nonempty subset of a non-Archimedean fuzzy metric space
(X, M,∗). A self mapping f on A is said to be (a) fuzzy isometry if M(fx, fy, t) = M(x, y, t)
for all x, y ∈ A and t >  (b) fuzzy expansive if, for any x, y ∈ A and t > , we have
M(fx, fy, t) ≤ M(x, y, t), (c) fuzzy nonexpansive if, for any x, y ∈ A and t > , we have
M(fx, fy, t) ≥ M(x, y, t).

Example . Let X = [, ] ×R and d : X × X →R be a usual metric on X. Let A = {(, x) :
x ∈R}. Note that (X, Md, ·) is non-Archimedean fuzzy metric space, where Md is standard
fuzzy metric induced by d. Define the mapping f : A → A by f (, x) = (, –x). Note that
Md(w, u, t) = t

t+|x–y| = M(fw, fu, t), where w = (, x), u = (, y) ∈ A.

Note that every fuzzy isometry is fuzzy expansive but the converse does not hold in
general.

Example . Let X = [, ] × R and d : X × X → R be a usual metric on X. Let A =
{(, x) : x ∈ R}. Note that (X, Md, ·) is a non-Archimedean fuzzy metric space, where Md is
the standard fuzzy metric induced by d. Define the mapping f : A → A by

f (, x) = (, x).

If x = (, ) and y = (, ) then M(x, y, t) = t
t+ and M(fx, fy, t) = t

t+ . This shows that f is
fuzzy expansive but not a fuzzy isometry.

Example . Let X = [, ]×R, d : X ×X →R a usual metric on X and A = {(, x) : x ∈R}.
Define a mapping f : A → A by

f (, x) =
(

,
x


)
.

If x = (, ) and y = (, ) then M(x, y, t) = t
t+ and M(fx, fy, t) = t

t+ 


≥ t
t+ = M(x, y, t). Thus

f is fuzzy nonexpansive but not a fuzzy isometry.

Note that the fuzzy expansive and nonexpansive mapping are fuzzy isometries. How-
ever, the converse is not true in general.

Definition . Let A, B be nonempty subsets of a non-Archimedean fuzzy metric space
(X, M,∗). A set B is said to be fuzzy approximatively compact with respect to A if for every
sequence {yn} in B and for some x ∈ A, M(x, yn, t) −→ M(x, B, t) implies that x ∈ A(t).

Definition . ([]) A sequence {tn} of positive real numbers is said to be s-increasing if
there exists n ∈N such that tn+ ≥ tn +  for all n ≥ n.

Definition . (compare []) A fuzzy metric space (X, M,∗) is said to satisfy property T
if, for any s-increasing sequence, there exists n ∈N such that

∏∞
n≥n

M(x, y, tn) ≥  – ε for
all n ≥ n.
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A -tuple (X, M,∗,�) is called a partially ordered fuzzy metric space if (X,�) is a par-
tially ordered set and (X, M,∗) is a non-Archimedean fuzzy metric space. Unless other-
wise stated, it is assumed that A, B are nonempty closed subsets of partially ordered fuzzy
metric space (X, M,∗,�).

Definition . ([]) A mapping T : A −→ B is called (a) nondecreasing or order preserv-
ing if, for any x, y in A with x � y, we have Tx � Ty; (b) an ordered reversing if, for any x, y
in A with x � y, we have Tx � Ty; (c) monotone if it is order preserving or order reversing.

Definition . ([]) Let A, B be nonempty subsets of partially ordered fuzzy metric space
(X, M,∗,�) and ψ : [, ] −→ [, ] be a continuous mapping. A mapping T : A −→ B is said
to be a fuzzy ordered ψ-contraction if, for any x, y ∈ A with x � y, we have M(Tx, Ty, t) ≥
ψ[M(x, y, t)] for all t > .

Definition . A mapping T : A −→ B is called a fuzzy ordered proximal ψ-contraction
of type-I if, for any u, v, x, and y in A, the following condition holds:

x � y
M(u, Tx, t) = M(A, B, t)
M(v, Ty, t) = M(A, B, t)

⎫
⎪⎬

⎪⎭
⇒ M(u, v, t) ≥ ψ

[
M(x, y, t)

]
, where ψ ∈ � .

Definition . A mapping T : A −→ B is said to be a fuzzy ordered proximal ψ-
contraction of type-II if, for any u, v, x, and y in A, and for some α ∈ (, ), the following
condition holds:

x � y
M(u, Tx, t) = M(A, B, t)
M(v, Ty, t) = M(A, B, t)

⎫
⎪⎬

⎪⎭
⇒ M(u, v, t) ≥ ψ

[
M

(
x, y,

t
α

)]
, where ψ ∈ � .

Definition . A mapping T : A −→ B is called a fuzzy ordered η-proximal contraction
if, for any u, v, x, and y in A, the following condition holds:

x � y
M(u, Tx, t) = M(A, B, t)
M(v, Ty, t) = M(A, B, t)

⎫
⎪⎬

⎪⎭
⇒ M(x, y, t) ≤ η

[
M(u, v, t)

]
, where η ∈ �.

Definition . A mapping T : A −→ B is said to be a proximal fuzzy order preserving if,
for any u, v, x, and y in A, the following implication holds:

x � y
M(u, Tx, t) = M(A, B, t)
M(v, Ty, t) = M(A, B, t)

⎫
⎪⎬

⎪⎭
⇒ u � v.

If A = B, then a proximal fuzzy order preserving mapping will become fuzzy order pre-
serving.



Abbas et al. Fixed Point Theory and Applications  (2016) 2016:44 Page 6 of 18

Definition . A mapping T : A −→ B is said to be a proximal fuzzy order reversing if
for any u, v, x, and y in A, the following implication holds:

x � y
M(u, Tx, t) = M(A, B, t)
M(v, Ty, t) = M(A, B, t)

⎫
⎪⎬

⎪⎭
⇒ u � v.

If A = B, then proximal fuzzy order reversing mapping will become fuzzy order revers-
ing.

Definition . A point x in A is said to be an optimal coincidence point of the pair of
mappings (g, T), where T : A −→ B is a nonself mapping and g : A −→ A is a self mapping
if

M(gx, Tx, t) = M(A, B, t)

holds.

From now on, we use the notation 
(t) for a set {(x, y) ∈ A(t) × A(t) : either x �
y or y � x}.

We start with the following result.

Theorem . Let T : A → B be continuous, proximally monotone, and proximal fuzzy
ordered ψ-contraction of type-I , g : A → A surjective, fuzzy expansive and inverse mono-
tone mapping. Suppose that each pair of elements in X has a lower and upper bound and for
any t > , A(t) and B(t) are nonempty such that T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)). If
there exist some elements x and x in A(t) such that

M(gx, Tx, t) = M(A, B, t) with (x, x) ∈ 
(t),

then there exists a unique element x∗ ∈ A(t) such that M(gx∗, Tx∗, t) = M(A, B, t), that is,
x∗ is an optimal coincidence point of the pair (g, T). Further, for any fixed element x ∈
A(t), the sequence {xn} defined by M(gxn+, Txn, t) = M(A, B, t) converges to x∗.

Proof Let x and x be given points in A(t) such that

M(gx, Tx, t) = M(A, B, t) with (x, x) ∈ 
(t). ()

Since Tx ∈ T(A(t)) ⊆ B(t), and A(t) ⊆ g(A(t)), we can choose an element x ∈ A(t)
such that

M(gx, Tx, t) = M(A, B, t). ()

As T is proximally monotone, we have (gx, gx) ∈ 
(t) which further implies that (x, x) ∈

(t). Continuing this way, we obtain a sequence {xn} in A(t), such that it satisfies

M(gxn, Txn–, t) = M(A, B, t) with (xn–, xn) ∈ 
(t) ()
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for each positive integer n. Having chosen xn, one can find a point xn+ in A(t) such that

M(gxn+, Txn, t) = M(A, B, t). ()

Since T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)), T is proximally monotone mapping, so from
() and () it follows that (gxn, gxn+) ∈ 
(t) and (xn, xn+) ∈ 
(t). Note that

M(xn, xn+, t) ≥ M(gxn, gxn+, t) ≥ ψ
[
M(xn–, xn, t)

]
. ()

Denote M(xn, xn+, t) = τn(t) for all t > , n ∈N∪ {}. The above inequality becomes

τn(t) ≥ ψ
(
τn–(t)

)
> τn–(t) ()

and

τn(t) > τn–(t).

Thus {τn(t)} is an increasing sequence for all t > . Consequently, there exists τ (t) ≤ 
such that limn→+∞ τn(t) = τ (t). Note that τ (t) = . If not, there exists some t >  such that
τ (t) < . Also, τn(t) ≤ τ (t). By taking limit as n → ∞ on both sides of (), we have

τ (t) ≥ ψ
(
τ (t)

)
> τ (t),

a contradiction. Hence τ (t) = . Now we show that {xn} is a Cauchy sequence. Suppose on
the contrary that {xn} is not a Cauchy sequence, then there exist ε ∈ (, ) and t >  such
that for all k ∈N, there are mk , nk ∈N, with mk > nk ≥ k such that

M(xmk , xnk , t) ≤  – ε. ()

Assume that mk is the least integer exceeding nk and satisfying the above inequality, then
we have

M(xmk –, xnk , t) >  – ε. ()

So, for all k,

 – ε ≥ M(xmk , xnk , t)

≥ M(xmk , xmk –, t) ∗ M(xmk –, xnk , t)

> τmk (t) ∗ ( – ε). ()

On taking the limit as k → ∞ on both sides of the above inequality, we obtain
limk→+∞ M(xmk , xnk , t) =  – ε. Note that

M(xmk +, xnk +, t) ≥ M(xmk +, xmk , t) ∗ M(xmk , xnk , t) ∗ M(xnk , xnk +, t)
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and

M(xmk , xnk , t) ≥ M(xmk , xmk +, t) ∗ M(xmk +, xnk +, t) ∗ M(xnk +, xnk , t),

imply that

lim
k→+∞

M(xmk +, xnk +, t) =  – ε.

From (), we have

M(gxmk +, Txmk , t) = M(A, B, t) and M(gxnk +, Txnk , t) = M(A, B, t).

Thus

M(xmk +, xnk +, t) ≥ M(gxmk +, gxnk +, t) ≥ ψ
[
M(xmk , xnk , t)

]
.

On taking the limit as k → ∞ in the above inequality, we get  – ε ≥ ψ( – ε) >  – ε,
a contradiction. Hence {xn} is a Cauchy sequence in the closed subset A(t) of com-
plete partially ordered fuzzy metric space (X, M,∗,�). There exists x∗ ∈ A(t) such that
limn→∞ M(xn, x∗, t) = , for all t > . This further implies that

M
(
gx∗, Tx∗, t

)
= lim

n−→∞ M(gxn+, Txn, t) = M(A, B, t).

Hence x∗ ∈ A(t) is the optimal coincidence point of a pair {g, T}. To prove the uniqueness
of x∗; We show that, for any fixed element x ∈ A(t), the sequence {xn} ∈ A(t) defined
by M(gxn+, Txn, t) = M(A, B, t) converges to x∗. Suppose that there is another element
x ∈ A(t) such that  < M(x, x, t) <  for all t >  satisfying

M(gx, Tx, t) = M(A, B, t). ()

Suppose that (x, x) ∈ 
(t), that is, x � x or x � x. Then by the given assumption, we
have

M(x, x, t) ≥ M(gx, gx, t) ≥ ψ
(
M(x, x, t)

)
> M(x, x, t)

a contradiction. So x∗ is unique. If (x, x) /∈ 
(t), then by assumption, suppose that u be
a lower bound of x and x, also assume that u is an upper bound of x and x. That is,

u � x � u or u � x � u.

Recursively, construct the sequences {un} and {un}, such that

M(gun+, Tun, t) = M(A, B, t) and M(gun+, Tun, t) = M(A, B, t).

The proximal monotonicity of the mapping T and the monotonicity of the inverse of g
imply that

un � xn � un or un � xn � un.
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Since (x, u) ∈ 
(t), also (x, u) ∈ 
(t), similarly we have (xn, un) ∈ 
(t) and (xn, un) ∈ 
(t),
therefore

lim
n→∞ un = lim

n→∞ un = x∗.

Hence

lim
n→∞ xn = x∗.

This completes the proof. �

Example . Let X = [, ]×R and � be the usual order onR
, that is, (x, y) � (z, w) if and

only if x ≤ z and y ≤ w. Suppose that A = {(–, x) : for all x ∈ R} and B = {(, y) : for all y ∈
R}. (X, M,∗,�) is a complete ordered metric space under M(x, y, t) = t

t+d(x,y) for all t > ,
where d(x, y) = |x – y| + |x – y| for all x = (x, y), y = (x, y). Note that M(A, B, t) = t

t+ ,
A(t) = A, and B(t) = B. Define T : A → B by

T(–, x) =
(

,
x


)
.

Let g : A → A be defined by g(–, x) = (–, x). Note that g is fuzzy expansive and its inverse
is monotone. Obviously, T(A(t)) = B(t), and A(t) = g(A(t)). Note that u = (–, y

 ), v =
(–, y

 ), x = (–, y), and y = (–, y) ∈ A satisfy

M(gu, Tx, t) = M(A, B, t), ()

M(gv, Ty, t) = M(A, B, t). ()

Also, note that

M(gu, gv, t) = M
((

–,
y



)
,
(

–,
y



)
, t

)
≥ ψ(M

(
(–, y), (–, y), t

)
= ψ

(
M(x, y, t)

)
,

where ψ(t) =
√

t. Thus all conditions of Theorem . are satisfied. However, (–, ) is the
optimal coincidence point of g and T , satisfying the conclusion of the theorem.

The above example shows that our result is a potential generalization of Theorem . in
[].

Corollary . Let T : A → B is continuous, proximally monotone, and proximal fuzzy
ordered ψ-contraction of type-I , g : A → A surjective, a fuzzy isometry, and an inverse
monotone mapping. Suppose that each pair of elements in X has a lower and upper bound,
for any t > , A(t) and B(t) are nonempty such that T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)).
If there exist some elements x and x in A(t) such that

M(gx, Tx, t) = M(A, B, t) with (x, x) ∈ 
(t),

then there exists a unique element x∗ ∈ A(t) such that M(gx∗, Tx∗, t) = M(A, B, t). Further,
for any fixed element x ∈ A(t), the sequence {xn} defined by M(gxn+, Txn, t) = M(A, B, t)
converges to x∗.
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Proof Every fuzzy isometry is fuzzy expansive, and this corollary satisfies all the conditions
of Theorem .. �

Example . Let X = [–, ] ×R and � a usual order on R
. Let A = {(–, x) : for all x ∈

R}, B = {(, y) : for all y ∈ R}, and (X, M,∗,�) a complete fuzzy ordered metric space as
given in Example .. Note that M(A, B, t) = t

t+ , A(t) = A and B(t) = B. Define T : A → B
by

T(–, x) =
(

,
x


)
.

Let g : A → A be defined by g(–, x) = (–, –x). Note that g is a fuzzy isometry and its
inverse is monotone. Obviously, T(A(t)) = B(t), and A(t) = g(A(t)). Note that u =
(–, – y

 ), v = (–, – y
 ), x = (–, y), and y = (–, y) ∈ A(t) satisfy

M(gu, Tx, t) = M(A, B, t),

M(gv, Ty, t) = M(A, B, t).

Also, note that

M(gu, gv, t) = M
((

–,
y



)
,
(

–,
y



)
, t

)
≥ ψ

(
M

(
(–, y), (–, y), t

))
= ψ

(
M(A, B, t)

)
,

where ψ(t) =
√

t. All conditions of Corollary . are satisfied. Moreover, (–, ) is an op-
timal coincidence point of g and T .

Corollary . Let T : A → B be a continuous, proximally monotone, and proximal fuzzy
ordered ψ-contraction of type-I . Suppose that each pair of elements in X has a lower and
upper bound for any t > , A(t) and B(t) are nonempty such that T(A(t)) ⊆ B(t). If there
exist some elements x and x in A(t) such that

M(x, Tx, t) = M(A, B, t) with (x, x) ∈ 
(t),

then there exists a unique element x∗ ∈ A(t) such that M(x∗, Tx∗, t) = M(A, B, t). Further,
for any fixed element x ∈ A(t), the sequence {xn} defined by M(xn+, Txn, t) = M(A, B, t)
converges to x∗.

Proof This corollary satisfies all the conditions of Theorem . by taking gx = IA (an iden-
tity mapping on A). �

3 Best proximity point in partially ordered non-Archimedean fuzzy metric
spaces for proximal ψ -contractions of type-II

Theorem . Let T : A → B is continuous, proximally monotone, and proximal ordered
fuzzy ψ-contraction of type-II , g : A → A surjective, fuzzy expansive, and inverse monotone
mapping. Suppose that each pair of elements in X has a lower and upper bound, and an
s-increasing sequence {tn} satisfying property T , for any t > , A(t) and B(t) are nonempty
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such that T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)). If there exist some elements x and x in
A(t) such that

M(gx, Tx, t) = M(A, B, t) with (x, x) ∈ 
(t),

then there exists a unique element x ∈ A(t) such that M(gx, Tx, t) = M(A, B, t). Further,
for any fixed element x ∈ A(t), the sequence {xn} ∈ A(t), defined by M(gxn+, Txn, t) =
M(A, B, t), converges to x.

Proof Let x and x be given elements in A(t). such that

M(gx, Tx, t) = M(A, B, t) with (x, x) ∈ 
(t). ()

Since Tx ∈ T(A(t)) ⊆ B(t), A(t) ⊆ T(A(t)) ⊆ B(t), and A(t) ⊆ g(A(t)), it follows that
there exists an element x ∈ A(t) such that it satisfies

M(gx, Tx, t) = M(A, B, t). ()

As T is proximal monotone, we have (gx, gx) ∈ 
(t), which further implies that (x, x) ∈

(t). Continuing this way, we obtain a sequence {xn} in A(t) such that

M(gxn, Txn–, t) = M(A, B, t) with (xn–, xn) ∈ 
(t) ()

for each positive integer n. Hence after finding xn, we can find an element xn+ in A(t)
such that

M(gxn+, Txn, t) = M(A, B, t). ()

Since T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)), T is proximally monotone mapping, so from
() and (), it follows that (gxn, gxn+) ∈ 
(t) and (xn, xn+) ∈ 
(t). Note that

M(xn+, xn, t) ≥ M(gxn+, gxn, t) ≥ ψ

(
M

(
xn, xn–,

t
α

))
. ()

for all n ≥ . Recursively,

M(xn+, xn, t) ≥ ψ

(
M

(
xn+, xn,

t
α

))
≥ ψ

(
M

(
xn, xn–,

t
α

))
≥ · · ·

≥ ψn
(

M
(

x, x,
t

αn

))
> M

(
x, x,

t
αn

)
, ()

for all t >  and m, n ∈N, where m ≥ n, so we have

M(xn, xm, t) ≥ M(xn, xn+, t) ∗ M(xn+, xn+, t) ∗ M(xn+, xn+, t) ∗ · · · ∗ M(xm–, xm, t)

> M
(

x, x,
t

αn

)
∗ M

(
x, x,

t
αn+

)
∗ · · · ∗ M

(
x, x,

t
αm–

)

>
∞∏

i=n

M
(

x, x,
t
αi

)
,



Abbas et al. Fixed Point Theory and Applications  (2016) 2016:44 Page 12 of 18

where ti = t
αi . As limn→∞(tn+ – tn) = ∞, {tn} is an s-increasing sequence satisfying the

property T . Consequently for each ε > , there exists n ∈ N, so we have
∏∞

n= M(x, x,
tn) ≥  – ε for all n ≥ n. Hence we obtain M(xn, xm, t) ≥  – ε for all n, m ≥ n and {xn}
is a Cauchy sequence in A(t). By the completeness of X, there exists x in A(t) such that
limn→∞ M(xn, x, t) =  for all t > . This further implies that

M(gx, B, t) ≥ M(gx, Txn, t)

≥ M(gx, gxn+, t) ∗ M(gxn+, Txn, t)

= M(gx, gxn+, t) ∗ M(A, B, t)

≥ M(gx, gxn+, t) ∗ M(gx, B, t).

Since g is continuous, the sequence {gxn} converges to gx. Therefore, M(gx, Txn, t) →
M(gx, B, t). Since B(t) is fuzzy approximately compact with respect to A(t), {Txn} has a
subsequence which converges to y in B(t) such that

M(gx, y, t) = M(A, B, t),

for some y ∈ B(t), hence gx ∈ A(t) implies gx = gu for some u ∈ A(t). Hence M(x, u, t) ≥
M(gx, gu, t) = , which implies that M(x, u, t) = . Thus x and u are identical, and hence
x ∈ A(t). Since T(A(t)) ⊆ B(t),

M(z, Tx, t) = M(A, B, t) ()

for some z in A(t). From () and () we obtain

M(gxn+, z, t) ≥ ψ

(
M

(
x, xn,

t
α

))
. ()

Taking the limit as n → ∞, the above inequality becomes

lim
n→∞ M(gxn+, z, t) ≥ lim

n→∞ψ

(
M

(
x, xn,

t
α

))
= ,

which shows that {gxn} converges to z

M(gxn, z, t) = . ()

Since g is continuous, the sequence {gxn} converges to gx such that

M(gxn, gx, t) = . ()

Hence we have gx = z,

M(gx, Tx, t) = M(A, B, t) = M(z, Tx, t). ()

Suppose that there is another element x∗ such that

M
(
gx∗, Tx∗, t

)
= M(A, B, t). ()



Abbas et al. Fixed Point Theory and Applications  (2016) 2016:44 Page 13 of 18

First suppose that (x, x∗) ∈ 
(t). From () and (), it follows that

M
(
x, x∗, t

) ≥ M
(
gx, gx∗, t

) ≥ ψ

(
M

(
x, x∗,

t
α

))
,

which further implies that

M
(
x, x∗, t

)
> M

(
x, x∗,

t
α

)
,

a contradiction. Hence x is unique.
Now, suppose that (x, x∗) /∈ 
(t). Let x be any element in A(t), u and u be lower and

upper bounds of x and x, respectively such that

u � x � u or u � x � u.

Recursively, we can find sequences {un} and {un} such that

M(gun+, Tun, t) = M(A, B, t) and M(gun+, Tun, t) = M(A, B, t).

The proximal monotonicity of the mapping T and the monotonicity of the inverse of g
implies that

un � xn � un or un � xn � un.

Since (x, u) ∈ 
(t), also (x, u) ∈ 
(t). It follows that

lim
n→∞ un = lim

n→∞ un = x∗.

Hence

lim
n→∞ xn = x∗.

This completes the proof. �

Example . Let X = [, ] ×R and � a usual order on R
. Let A = {(, x) : x ≥  and x ∈

R}, B = {(, y) : for all y ∈ R}, and (X, M,∗,�) a complete fuzzy ordered metric space as
given in Example .. Note that A(t) = A, B(t) = {(, y) : y ≥  and y ∈ R}. Define T :
A → B by

T(, x) =
(

,
x


)
.

Let g : A → A be defined by g(, x) = (, x). Note that g is a fuzzy expansive and its inverse
is monotone. Obviously, T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)). Note that u = (, y

 ), v =
(, y

 ), x = (, y), and y = (, y) ∈ A(t) satisfy

M(gu, Tx, t) = M(A, B, t),

M(gv, Ty, t) = M(A, B, t).
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Also, note that

M(gu, gv, t) = M
((

,
y



)
,
(

,
y



)
, t

)
≥ ψ

(
M

(
(, y), (, y),

t
α

))

= ψ

(
M

(
x, y,

t
α

))
,

where ψ(t) =
√

t and for all α ∈ [ 
 , ]. All conditions of Theorem . are satisfied. More-

over, (, ) is optimal coincidence point of g and T .

Corollary . Let T : A → B is continuous, proximally monotone, and proximal ordered
fuzzy ψ-contraction of type-II , g : A → A surjective, fuzzy isometry and inverse monotone
mapping. Suppose that each pair of elements in X has a lower and upper bound, and an
s-increasing sequence {tn} satisfying property T , for any t > , A(t) and B(t) are nonempty
such that T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)). If there exist some elements x and x in
A(t) such that

M(gx, Tx, t) = M(A, B, t) and (x, x) ∈ 
(t),

then there exists a unique element x∗ ∈ A(t) such that M(gx∗, Tx∗, t) = M(A, B, t). Further,
for any fixed element x ∈ A(t), the sequence {xn} ∈ A(t), defined by M(gxn+, Txn, t) =
M(A, B, t), converges to x∗.

Proof Here the T satisfy all the conditions of Theorem . if we consider g as fuzzy isom-
etry mapping. �

Corollary . Let T : A → B is continuous, proximally monotone, and proximal ordered
fuzzy ψ-contraction of type-II . Suppose that each pair of elements in X has a lower and
upper bound, and an s-increasing sequence {tn} satisfying property T , for any t > , A(t)
and B(t) are nonempty such that T(A(t)) ⊆ B(t).

Then there exists a unique element x∗ ∈ A such that M(x∗, Tx∗, t) = M(A, B, t). Further,
for any fixed element x ∈ A(t), the sequence {xn} ∈ A(t), defined by M(xn+, Txn, t) =
M(A, B, t), converges to x∗.

Proof Here the T satisfy all the conditions of Theorem . if g(x) = IA (an identity mapping
on A). �

4 Best proximity point in partially ordered non-Archimedean fuzzy metric
spaces for proximal η-contractions

Theorem . Let T : A → B be continuous, proximally monotone, and proximal fuzzy or-
dered η-contraction such that, for any t > , A(t) and B(t) are nonempty with T(A(t)) ⊆
B(t), g : A → A surjective, fuzzy nonexpansive and inverse monotone mapping with
A(t) ⊆ g(A(t)) for any t > . If there exist some elements x and x in A(t) such that
M(gx, Tx, t) = M(A, B, t) with (x, x) ∈ 
(t), then there exists a unique element x∗ ∈ A(t)
such that M(gx∗, Tx∗, t) = M(A, B, t) provided that each pair of elements in X has a lower
and upper bound. Further, for any fixed element x ∈ A(t), the sequence {xn} defined by
M(gxn+, Txn, t) = M(A, B, t) converges to x∗.
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Proof Let x and x be given points in A(t) such that

M(gx, Tx, t) = M(A, B, t) with (x, x) ∈ 
(t). ()

Since Tx ∈ T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)), we can choose an element x ∈ A(t)
such that

M(gx, Tx, t) = M(A, B, t). ()

As T is proximally monotone, we have (gx, gx) ∈ 
(t), which further implies that (x, x) ∈

(t). Continuing this way, we can obtain a sequence {xn} in A(t), such that it satisfies

M(gxn, Txn–, t) = M(A, B, t) with (xn–, xn) ∈ 
(t). ()

for each positive integer n. Having chosen xn, one can find a point xn+ in A(t) such that

M(gxn+, Txn, t) = M(A, B, t). ()

Since T(A(t)) ⊆ B(t) and A(t) ⊆ g(A(t)), T is proximally monotone mapping, so from
() and () it follows that (gxn, gxn+) ∈ 
(t) and (xn, xn+) ∈ 
(t). Note that

M(xn, xn–, t) ≤ η
[
M(gxn+, gxn, t)

] ≤ η
[
M(xn+, xn, t)

]
< M(xn+, xn, t). ()

Denote M(xn, xn+, t) = τn(t) for all t > , n ∈N∪ {}. The above inequality becomes

τn–(t) ≤ η
(
τn(t)

)
< τn(t). ()

Thus {τn(t)} is an increasing sequence for each t > . Consequently, limn→+∞ τn(t) = τ (t).
We claim that τ (t) =  for each t > . If not, there exist some t >  such that τ (t) < . Also,
τn(t) ≤ τ (t). On taking limit as n → ∞ on both sides of (), we have τ (t) ≤ η(τ (t)) <
τ (t), a contradiction. Hence τ (t) =  for each t > . Now we show that {xn} is a Cauchy
sequence. If not, then there exist some ε ∈ (, ) and t >  such that for all k ∈ N, there
are mk , nk ∈N, with mk > nk ≥ k such that

M(xmk , xnk , t) ≤  – ε. ()

If mk is the least integer exceeding nk and satisfying the above inequality, then

M(xmk –, xnk , t) >  – ε. ()

So, for all k,

 – ε ≥ M(xmk , xnk , t)

≥ M(xmk , xmk –, t) ∗ M(xmk –, xnk , t)

> τmk (t) ∗ ( – ε). ()
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On taking the limit as k → ∞ on both sides of above inequality, we obtain
limk→+∞ M(xmk , xnk , t) =  – ε. Note that

M(xmk +, xnk +, t) ≥ M(xmk +, xmk , t) ∗ M(xmk , xnk , t) ∗ M(xnk , xnk +, t)

and

M(xmk , xnk , t) ≥ M(xmk , xmk +, t) ∗ M(xmk +, xnk +, t) ∗ M(xnk +, xnk , t),

imply that

lim
k→+∞

M(xmk +, xnk +, t) =  – ε.

From (), we have

M(gxmk +, Txmk , t) = M(A, B, t) and M(gxnk +, Txnk , t) = M(A, B, t).

Thus

M(xmk , xnk , t) ≤ η
[
M(gxmk +, gxnk +, t)

] ≤ η
[
M(xmk +, xnk +, t)

]
< M(xmk +, xnk +, t).

On taking the limit as k → ∞ in the above inequality, we get  – ε ≤ η( – ε) <  – ε,
a contradiction. Hence {xn} is a Cauchy sequence in the closed subset A(t) of com-
plete partially ordered fuzzy metric space (X, M,∗,�). Thus there exists x∗ ∈ A(t) such
that limn→∞ M(xn, x∗, t) = , for all t > . This further implies that M(gx∗, Tx∗, t) =
limn−→∞ M(gxn+, Txn, t) = M(A, B, t) and hence x∗ ∈ A(t) is the optimal coincidence
point of a pair {g, T}. To prove the uniqueness of x∗, we show that, for any fixed element
x ∈ A(t), the sequence {xn} ∈ A(t) defined by M(gxn+, Txn, t) = M(A, B, t) converges
to x∗. Suppose that there is another element x ∈ A(t) such that  < M(x, x, t) <  for all
t >  satisfying

M(gx, Tx, t) = M(A, B, t). ()

Suppose that (x, x) ∈ 
(t). Then, by the given assumption, we have

M(x, x, t) ≤ η
(
M(gx, gx, t)

) ≤ η
(
M(x, x, t)

)
< M(x, x, t),

a contradiction and hence the result follows. If (x, x) /∈ 
(t), then let u be a lower bound
of x and x, and u an upper bound of x and x. That is,

u � x � u or u � x � u.

Recursively, construct sequences {un} and {un}, such that

M(gun+, Tun, t) = M(A, B, t) and M(gun+, Tun, t) = M(A, B, t).
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The proximal monotonicity of the mapping T and the monotonicity of the inverse of g
imply that

un � xn � un or un � xn � un.

From (xn, un) ∈ 
(t) and (xn, un) ∈ 
(t), it follows that

lim
n→∞ un = lim

n→∞ un = x∗.

Hence limn→∞ xn = x∗. �

Example . Let X = [–, ]×R and � a usual order on R
. Let A = {(–, x) : for all x ∈R},

B = {(, y) : for all y ∈ R}, and (X, M,∗,�) a complete fuzzy ordered metric space as given
in Example .. Note that M(A, B, t) = t

t+ , A(t) = A and B(t) = B. Define T : A → B by

T(–, x) =
(

,
x


)
.

Let g : A → A be defined by g(–, x) = (–, x
 ). Note that g is fuzzy nonexpansive and

its inverse is monotone. Obviously, T(A(t)) ⊆ B(t), and A(t) ⊆ g(A(t)). Note that
u = (–, 

 y), v = (–, 
 y), x = (–, y), and y = (–, y) ∈ A. Also, note that

M
(
(–, y), (–, y), t

) ≤ η

(
M

((
–,

y



)
,
(

–,
y



)
, t

))
.

Here η(t) = t – t. Thus all conditions of Theorem . are satisfied. Moreover, (–, ) is
the optimal coincidence point of g and T .
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