RESEARCH COMMUNICATION

ATTEMPTED TRANSMISSION OF CANINE EHRlichIOSIS TO THE VERVET MONKEY (CERCOPITHECUS PYGERYTHRUS)

J. VAN HEERDEN(*) and D. J. GOOSEN(‡)

ABSTRACT


Blood from a domestic dog infected with Ehrlichia canis was injected into 3 adult vervet monkeys Cercopithecus pygerythrus. The monkeys did not develop any clinical or haematological signs of disease, nor did they seem to be able to harbour the parasite. Furthermore, neither morulae of E. canis nor haematological evidence of ehrlichiosis were seen after these monkeys had been splenectomized. The splenectomized monkeys did, however, develop a severe parasitaemia of their red cells with Entopolypoides macaci. They also showed a transient haematuria, mild inappetence and listlessness.

INTRODUCTION

Canine ehrlichiosis (canine tropical pancytopenia) is essentially a disease of the dog, although other canids such as the wolf (Canis lupus) (Harvey, Simpson), Gaskin & Sameck, 1979), coyote (Canis latrans) (Ewing, Buckner & Stringer, 1964) and wild dog (Lycaon pictus) (Van Heerden, 1979) are also susceptible. Donatien & Lestoquard (1936) reported successful infection of the primate Macacus irinus. Their work has not been repeated.

The primate Macacus irinus infected by Donatien & Lestoquard (1936), which is probably Macaca sylvana Linnaeus, 1758 (=irinus Linnaeus, 1766), belongs to the same subfamily, namely Cercopithecinae, as the vervet monkey, Cercopithecus pygerythrus. Macaca sylvana does not occur in Southern Africa (Dandelot, 1974).

The severe disease following infection in Macaca sylvana as described by Donatien & Lestoquard (1936) underlines the necessity for an investigation into the susceptibility of other primates (and thus possibly of man) to this parasite.

MATERIALS AND METHODS

Three mature vervet monkeys and a control, Dog A, were used in this experiment. The monkeys were housed indoors in separate steel cages and were part of a group of monkeys held in captivity for experimental purposes.

Before the vervet monkeys and control Dog A were infected, haematological studies were undertaken and peripheral blood smears of all the experimental animals were examined on 2 occasions. Haematological parameters were found to be within the normal range. Blood smears, though negative for E. canis, were positive for Entopolypoides macaci.

The isolate of E. canis used in this investigation was obtained from a 20-week-old mongrel dog showing severe clinical signs of general depression, emaciation, anaemia and enlarged peripheral lymph nodes. Haematological investigation of this donor dog yielded the following results: Hb 106 g/l; RCC: 4.55 x 10^12/l; Ht: 0.35; WCC: 5 x 10^9/l. Peripheral blood smears demonstrated the presence of morulae of E. canis in the cytoplasm of monocytes.

Five ml aliquots of blood from this donor dog were injected intravenously into each of the 3 vervet monkeys and into the control Dog A.

The vervet monkeys were inspected daily for signs of disease after infection. Blood smears were made and haematological determinations were undertaken 7 times at regular intervals during the following 28 days.

Twenty-eight days after the infection, blood was collected from the monkeys and 4 ml aliquots were injected intravenously into each of 2 splenectomized Beagle dogs (Dogs B and C).

The temperatures of the control Dog A and of Dogs B and C were taken daily. Blood smears from these animals were examined and haematological investigations were determined at regular intervals for 30 days after infection.

After the subinoculation of blood from the vervet monkeys into Dogs B and C, all 3 monkeys were splenectomized. Blood smears were examined again and haematological studies were undertaken 3 times a week for the ensuing 28 days.

RESULTS AND DISCUSSION

Control Dog A developed clinical signs of disease (a temperature reaction) within 8 days of infection. Morulae of E. canis were demonstrated in peripheral
blood smears 14 days after artificial infection. At 21
days after infection the dog showed mass loss and
exhibited signs of listlessness and enlarged peripheral
lymph nodes.

We were unable to infect the vervet monkeys with
E. canis. Even after splenectomy they showed no
clinical signs of ehrlichiosis. Blood smears were
negative for morulae of E. canis at all times and
haematological parameters stayed within normal
limits.

Dogs B and C showed no sign of disease and peri-
pheral blood smears failed to demonstrate morulae of
E. canis. This confirmed that the monkeys had been
unable to harbour the parasite.

After splenectomy, however, the monkeys developed
a high level of parasitaemia with Entoplaepodes
macaci, and all of them developed a transient haema-
turia, slight inappetence and listlessness. No morulae
of E. canis were visible in peripheral blood smears and
haematological parameters were not typical of
ehrlichiosis as in the case of the dog.

ACKNOWLEDGEMENTS

The authors wish to thank miss Anneline van
Heerden for her assistance.

REFERENCES

J. & Setzer, H.W (ed.) The mammals of Africa. An identi-
ification manual. Washington DC: Smithsonian Institute
Press.

DONATIEN, A. & LESTOQUARD, F., 1936. Existence de la
prémunition dans la rickettsiose naturelle ou experimentale
du chien. Bulletin de la Societé de Pathologie Exotique., 29,
378-383.

The coyote, a potential host for Babesia canis. Journal
of Parasitology., 50, 704.

HARVEY, J. W., SIMPSON, C. F., GASKIN, J. M. &
SAMECK, J. H., 1979. Ehrlichiosis in wolves, dogs and
wolf-dog crosses. Journal of the American Veterinary Medical
Association., 175, 901-905.

VAN HEERDEN, J., 1979. Disease transmission studies
between domestic and wild Canidae: The transmission of
canine ehrlichiosis to the wild dog Lycaon pictus (Temminck)
and black-backed jackal Canis mesomelas Schreber. Journal
of the South African Veterinary Association., 50, 245-248.