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Abstract 

 

This study develops a novel degradation assessment index (DAI) from acoustic 

emission signal obtained from slow rotating bearings and integrates same into alternative 

Bayesian methods for the prediction of remaining useful life (RUL). The DAI is obtained by 

the integration of polynomial kernel principal component analysis (PKPCA), Gaussian 

mixture model (GMM) and exponentially weighted moving average (EWMA). The DAI is 

then used as inputs in several Bayesian regression models such as the multi-layer perceptron 

(MLP), radial basis function (RBF), Bayesian linear regression (BLR), Gaussian mixture 

regression (GMR) and the Gaussian process regression (GPR) for RUL prediction. The 

combination of the DAI with the GPR model, otherwise, known as the DAI-GPR gave the 

best prediction with the least error. The findings show that the GPR model is suitable and 

effective in the prediction of RUL of slow rotating bearings and robust to varying operating 

conditions. Further, the findings are also robust when the training and tests sets are obtained 

from dependent and independent samples. Therefore, the GPR model is found useful for 

monitoring the condition of machines in order to implement effective preventive rather than 

reactive maintenance, thereby maximizing safety and asset availability. 

 

 

Keywords: degradation assessment index, diagnostics, prognostics, remaining using life, 

Bayesian models 

 

 

Introduction 

 

The act of predicting or forecasting a fault before it occurs (prior event analysis) is 

called prognosis. The prediction of defects refers to the determination of imminence of the 

fault and an estimation of how soon a defect will likely occur. Once the current health 

condition is defined, the next task is to predict the change in component health as a function 

of remaining useful life (RUL) based on anticipated future missions (Camcia et al., 2012). 

Jardine et al. (2006) defined the RUL as a conditional random variable of the time left before 

observing a failure given the current machine age and condition and past operation profile. 

According to Marble and Morton (2005), bearing prognosis is the key to maximizing 

safety and asset availability while minimizing logistical costs, by allowing maintenance to be 

proactive rather than reactive. However, Jardine et al. (2006) noted that although prognosis is 

much more efficient than diagnosis to achieve zero-downtime performance, diagnosis is 

required when fault prediction of prognosis fails and a fault occurs. Therefore, both diagnosis 

and prognosis is very important aspects that need to be pursued concurrently. Prognosis 

ensures that maintenance is carried out at the most appropriate time after damage detection 

without impairing the safety requirements since this is vital for effective operation and 
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management (Camcia et al., 2012). The traditional approach of detecting bearing damage and 

failure (for example manual inspection of defect size after every machine operation) is labour 

intensive and forces machinery to shut down, thus causing tremendous time, productivity and 

capital loss (Bolander et al., 2009; Camcia et al., 2012). Therefore, it would be highly 

beneficial to be able to predict expected remaining bearing life with a large degree of 

certainty. Recent advances in sensor technology and computational intelligence have made 

real-time bearing prognosis feasible. Whereas there is large number of studies on bearing 

diagnosis, the extension to prognosis is limited. Hence, this study integrates both diagnosis 

and prognosis (RUL prediction) aspects of condition monitoring of slow rotating bearing 

using whole life bearing data from a lab experiment.  

There is no doubt that prognosis is surrounded by uncertainties arising from a variety 

of sources such as the current age of the asset or mechanical system, the health information or 

observed condition monitoring, measurement noise, process noise, modelling uncertainty and 

the environment in which the system is operated (Saxena, 2010; Si, et al., 2011), which 

makes the process inherently stochastic. Therefore, the behaviour observed from a particular 

run may not exhibit the true nature of prediction trajectories. It is therefore expected that a 

prognosis algorithm should provide information about the confidence around the prediction 

(Saxena et al., 2009). Bayesian techniques which are mainly statistical are gaining 

widespread application in damage detection and remaining useful life of bearings due to their 

ability to handle uncertainties as opposed to traditional statistical methods (Nabney, 2002). 

This feature is useful for risk analysis and maintenance decision making (Si, et al., 2011). 

Bayesian methods have ability to not only obtain point estimates for the variables of interest 

but also their probability distributions and permit the researcher to characterise the 

uncertainty about the parameter values using confidence intervals (Hippert, and Taylor 2010). 

Prediction of RUL is often difficulty as the results depend on the models used in 

obtaining them. Therefore, it is important to evaluate the predictions from alternative models 

and choose the best based on an objective criterion. A model is deemed superior if it 

effectively minimizes the one-step-ahead (or multi-step-ahead) prediction errors by 

producing a lower prediction error than its competitors. Against this background, this study 

evaluates the performance of alternative Bayesian methods for slow rotating bearing fault 

prognosis based on acoustic emission data obtained from a run-to-failure experiment.  

A newly developed degradation assessment index (DAI) was used as an input in 

several Bayesian regression models such as the multi-layer perceptron (MLP), radial basis 

function (RBF), Bayesian linear regression (BLR), Gaussian mixture regression (GMR) and 

the Gaussian process regression (GPR) for RUL prediction.  The DAI incorporated all the 

advantages of the various extracted features (kurtosis, peaktopeak, RMS, skewness, crest 

factor) capitalizing on the strengths of each, and thereby becoming more sensitive and robust 

in prognosis, while at the same time reducing the number of dimensions for condition 

monitoring (Malhi and Gao, 2004). The mean absolute percentage error (MAPE) and root 

mean square error (RMSE) were used in evaluating the performance of the models and hence 

selecting the best performing model for the prediction of slow rotating bearing remaining 

useful life. 

A number of studies have employed at least one of these models for prognostics. 

Examples include Nabney, 2002; Gebraeel et al., 2004; Rasmussen and Williams, 2006; 

Skabar, 2007; Chen and Ren, 2009; Saxena et al., 2009; Hippert, and Taylor, 2010; Wang 

and Wang, 2012; Hong and Zhou, 2012a, 2012b; Liu et al., 2012; Calinon, 2009; Chatzis et 

al. 2012 amongst others. This study is by no means the first to evaluate the performance of 

alternative models for RUL prediction of mechanical and allied systems. For instance, Hong 

and Zhou (2012b) evaluated the performance of GPR and wavelet neural network (WNN) for 

prediction of bearing RUL and found GPR to show more excellent features than WNN with 
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GPR predicting faster and having more stable prediction as well as lower prediction error in 

general than WNN. Goebel et al. (2008) compared the performance of GPR, RVM and NN-

based approach for prognostics of aerospace rotating equipment. GPR seemed to have 

performed better than NN and RVM especially for the algorithm with specific damage 

estimates given the small GPR error though with late predictions than RVM. Saha et al. 

(2009) evaluated the performance of particle filter-based, autoregressive integrated moving 

average (ARIMA) and extended kalman filter (EKF) models and found that the particle filter 

framework has significant advantages over ARIMA and EKF for predicting the remaining 

useful life of batteries.  An et al. (2012) compared the performance of the particle filter (PF), 

the overall Bayesian method (OBM), and the recursive Bayesian method (RBM) and found 

that the performance of  PF and OBM differ depending on the stage of the damage state and 

hence should be used as complementary models. Chatziz et al. (2012) compared the 

performance of the standard GMR, Dirichlet process GMR and GPR and found the first two 

to be more suited for robot prognosis than GPR. An et al. (2013) compared NN and GPR 

under different levels of noise and found that GPR under a no noise case (perfect data), GPR 

show exact result and outperform NN under small noise while under large noise NN 

outperform GPR.  

This study contributes to literature on prognostics by evaluating the performance of 

the MLP, RBF, BLR, GMR and GPR models using the same data set. There is no known 

study that has evaluated the performance of these set of models using the same data set. 

Further, this study also makes contribution to prognostics literature by evaluating the 

performance of these models under a leave-out-one cross validation approach that is based on 

two types of samples or data set namely dependent and independent samples. This dependent 

and independent samples scenario is important because it has been theoretically argued that 

cross validations based on training and test sets which are from the same sample (dependent) 

may break down and lead to overfitting in nonparametric methods since the errors may be 

positively correlated (Opsomer et al., 2001; Arlot, 2010). 

 

Methodology 

 

This section describes the different models used in developing the proposed approach 

to prognosis of slow rotating bearings. The entire condition monitoring process is 

implemented in a unified framework (figure 1). Generally the process involves four main 

steps: (1) Obtaining the degradation assessment index; (2) Using the obtained DAI as input 

into MLP, RBF, BLR, GMR and GPR respectively; (3) The various models are then used for 

the remaining useful life prediction of slow rotating bearings. (4) The five obtained models 

are evaluated to find out which of them gave the best prediction. 
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Figure 1: Framework for DAI integrated approach to bearing prognostics 

Key: DAI-degradation assessment index; MLP-multi-layer perceptron; RBF-radial basis function; BLR-

Bayesian linear regression; GMR-Gaussian mixture regression; GPR-Gaussain process regression; RUL-

remaining useful life 

 

A degradation assessment index 

 

Providing a quantifying degradation indication for the assessment of machine 

performance is the vital for prognosis. The degradation assessment index is obtained by the 

combination of the polynomial kernel principal component analysis (PKPCA), the Gaussian 

mixture model (GMM), and weighted moving average (EWMA). The PKPCA is a widely 

used technique for dimensionality reduction and feature extraction in machine learning 

(Schölkopf et al., 1998; 1999; Lee 2004).  Subsequent to feature extraction by PKPCA from 

the high-dimensional statistics, the nonlinear (multimodal) features in low-dimensional data 

space can still be preserved. The polynomial kernel principal component henceforth, PKPC, 

which were extracted are then used as inputs in the GMM which is an outstanding technique 

of complex data description, with benefits of high-performance computation and robustness. 

The GMM describes complex data distribution that often occurs in acoustic emission data by 

outputting the negative log likelihoods (NLL) utilizing numerous Gaussian components. The 

reliability and sensitivity of the NLL to the bearings slight degradation was improved by 

employing the exponentially weighted moving average (EWMA) statistic as an improved 

quantification index for prognostics of slow rotating bearing. The proposed EWMA is a kind 

of infinite impulse response filter applying exponentially decreasing weighting factors. Each 

older datum points weighting never reaches zero, decreasing exponentially. The resulting 

quantification index is named degradation assessment index (DAI). Therefore, in this study 

the DAI developed is used as a bearing degradation index in prognostics of slow rotating 

bearings.  

 

Multi-layer perceptron regression 

 

The DAI is used as input into multi-layer perceptron network (MLP) for the prognostics of 

slow rotating bearing in order to determine its remaining useful life (RUL). MLP is one of the 

generally utilized architecture for empirical usage of neural networks. It more often than not 

comprise of basically two layers of adaptive weights. There is a complete linkage connecting 

the inputs to the hidden units, as well as another connecting the hidden units to the output 

units (Nabney, 2002).  

The MLP is a mathematical function which has been parameterized by a set of 

numerical weights 1w , 2w ,..., nw , which we shall represented jointly by a vector of weight 

DAI 

MLP 

RBF 

BLR 

GMR 

GPR 

RUL Prediction Model Evaluation 

http://en.wikipedia.org/wiki/Infinite_impulse_response
http://en.wikipedia.org/wiki/Exponentiation
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w . The Bayesian technique entails inference of the posterior distribution of weights,  Dwp , 

given data D . It considers a functional probability distribution over the weighting space. The 

outputting prediction resulting from the input vector x is then gotten by implementing a weighted 

sum of the predictions over all possible weight vectors, where the weighting coefficient for a 

particular weight vector is dependent on the posterior weight distribution. The predicted value is given 

as (Skabar, 2007): 

 

   dwDwpwxfy nn ,ˆ    (1) 

 

where  wxf n , is the MLP output, and nŷ is the predicted value. 

 

The probability density function,  Dwp , can be approximated using the fact that 

     wpwDpDwp  , where  wDp  and  wp  are known respectively as the likelihood and prior. 

 

The prior weight distribution,  wp , is the weight distribution before the observation 

of any data reflecting the prior knowledge  of the MLP complexity. To obtain a smooth 

function for the reduction of the risk of over fitting,  wp is assumed to be Gaussian with zero 

mean and inverse square variance which gives:  
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Where m is the number of weights in the MLP. Because   controls the value of other 

parameters (ie the weights) it is referred to as a hyperparameter. 

 

Since the prior depends on  , the modification of equation (1) with the inclusion of 

the posterior distribution over parameters of the hyperparameters gives the predicted value as: 

 

     dwdDwpwxfy nn ,,ˆ    (3) 

 

where 

        pwpwDpDwp ,   (4) 

 

Radial basis function regression 

 

Similarly, the DAI is used as input into radial basis function (RBF) regression for the 

prognostics of slow rotating bearing in order to determine its remaining useful life (RUL). 

The RBF is used for non-linear modelling. The RBF has many advantages. One of which is 

that it has a two phase training process which is significantly quicker than MLP. In the first 

phase, the parameters of the basis functions are set to model the unconditional data density. 

In the second stage of training, the weights in the output layer are determined. Secondly, it is 

possible to assign an interpretation to the hidden units and also to determine the intrinsic 

degrees of freedom of the network (Nabney, 2002). The RBF network mapping could be 

written in the following form as shown in equation 5. 

   



M

j

kjkjk wxwxy
1
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(5) 
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where j  are the basis functions, kjw  are the output layer weights. 

The bias weights can be absorbed into the summation by including an extra basis 

function 0  whose activation is constant value 1. This leads to equation 6. 

   



M

j

jkjk xwxy
0

   
(6) 

 

Two Bayesian approaches have been found to be effective in practice to neural networks 

namely: Gaussian approximation to the posterior weight distribution in the weight space 

(known as Laplace approximation) often coupled with use of the evidence procedure for 

optimal hyperparameter estimation; secondly the Monte Carlo techniques, particularly the 

hybrid Monte Carlo (Nabney, 2002).   

 

Bayesian linear regression 

 

The parametric approach focuses on the use of probability distributions having 

specific functional forms governed by a small number of adaptive parameters, such as the 

mean and variance whose values are to be determined from the data set. The probability 

distributions include beta (binomial) and Dirichlet (multinomial) distributions for discrete 

random variables and the Gaussian distribution and Gaussian mixture distribution for 

continuous variables. In this study the data is continuous hence the Gaussian distribution and 

Gaussian mixture distributions are considered (Bishop, 2006). The Gaussian, also known as 

the normal distribution, is a widely used model for the distribution of continuous variables 

(Bishop, 2006). For the case of a single real-valued variable, x  , the Gaussian distribution is 

given as: 

 









 2

22/12

2 )(
2

1
exp
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1
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(7) 

where  , known as the mean, and 2 , is known as the variance. 

The reciprocal variance is referred to as precision is defined by: 

 
2/1     (8) 

 

In this study acoustic emission signal is extracted at different operational conditions 

(speeds, and dynamic loading conditions). A regression function, which measures the bearing 

vibration as a function of the different operating conditions is fitted. The regression function 

is approximated based on the parameter prior and the data driven likelihood. The prior 

indicates the characteristic nature of the functions of interpolation. As such the prior allows 

for more vigorous interpolation functions, particularly if only noisy and limited data are 

obtainable. 

 

An observation j

iy is given as the summation of the specific loading condition 

function as computed for the equivalent operational condition vector )( j

ixf and the noise 

term ie . 
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The function of interpolation could be taken to an approximate linear dependency on 

x if the operating conditional vector is adequately expressive it may be necessary to make the 

assumption. The linearly dependent function is given by the parameter vector
jw : 

 

  jTjj wxxf )(   (10) 

 

 For the LSE solutions for the reference loading condition, a multivariate Gaussian 

distribution is approximated. This distribution is consequently utilized as the prior 

distribution p(w). Let the prior mean be taken as vector o , and let the covariance matrix be 

taken as o . Hence, the prior is given as: 

 

),()( oowNwp     (11) 

 

Based on Bayes’ theorem, the prior and the data determined likelihood are utilized in 

obtaining a posterior distribution for the values of parameters: 
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prior likelihood
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where the posterior is normalized by the marginal likelihood )( Xyp . Prior probability is 

the probability available before the observation. However, posterior probability is the 

probability obtained after the observation. The likelihood function shows the possibility of 

the data set observed for the settings of the vector of parameters. The posterior distribution 

could equally be demonstrated to be a Gaussian distribution (Bishop, 2006): 
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e
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e
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where the posterior mean e and covariance e  for loading condition j is given by: 
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The likelihood of the observation of a DAI value *y  at an operational condition 
jx* while traversing bearing time interval j may be obtained from the recomputed likelihood 

function and is a type of a Gaussian (Bishop, 2006): 
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The variance  2*

j of the predictive distribution is indicative of the uncertainty in the 

prediction at an operational condition 
jx* defined as: 

 

    j

n

Tj

e

j xx **

22

*      
(17) 

 

 

Gaussian mixture regression  

 

In spite of the vital analytical properties of the standard single Gaussian distribution it 

has some considerable limits in real data modelling. If a dataset forms more than one 

dominant clump, the basic Gaussian distribution is incapable of capturing the structure whilst 

the linear superposition of two or more Gaussians can give an improved description of the 

dataset. Such linear characterisation formed by taking linear combination of more basic 

distributions such as Gaussians, can be formulated as probabilistic models known as mixture 

distribution (Bishop, 2006). 

In this study a Gaussian mixture regression (GMR) is used to predict slow rotating 

bearing remaining useful life from the DAI. Assume X  represent the vector of the 

explanatory variables (e.g. operation conditions such as speed, time, load etc). The 

explanatory variables are those variables which may have impact on the signal 

characteristics, but which is generally independent of the bearing condition. Y is the vector of 

the response or dependent variables (e.g. the DAI developed from extracted bearing features 

obtained from acoustic emission signal). x  is the input training data )( Xx  and y  is the 

output data )( Yy . For the given x  and y , the joint probability density is given as (Wang 

et al., 2013). 
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The probability density function (pdf) of the multivariate GMM is denoted 

by ),;,( jyx  . Equation (18) shows that the relationship between the explanatory variables 

and the response variable can be can be described by several GMM models. The parameters 

of equation (18) include the number of the mixture components, K , the priors j , the mean 

value j  , and the variance of each Gaussian component j , which are represented as 

),...,,( 21 K   with ),,( jjjj    and the constraint .1
1




K

j

j  

As noted by each Gaussian component can be partitioned and the joint density can be 

rewritten as 
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Then marginal probability density of X  is  
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The conditional pdf of )( XY  can deduced by combining equation (19) and (20)  
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with the mixing weight 
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From equation (22), the regression function for the prediction given a new input is  
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and the conditional variance function is 
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Where 
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1
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xxm  


   (25) 

 

and 

jXYjXjYXjYYj  12  (26) 

 

)(xm in equation (23) is the GMR model of index  K , simply abbreviated as GMR(K) or 

);( Kxm . Although the regression function )(xm  from the joint mixture Gaussian density is of 

the form of a kernel estimator commonly used in nonparametric models, the weight function 

)(xw j  is not determined by local structure of the data but by the components of a global 

GMM. Thus the GMR is a global parametric model with nonparametric flexibility (Wang et 

al., 2013). 

 

A major task in fitting the GMR is the estimation of the parameters,  , of GMM for the joint 

density .,YXf This can be achieved  by maximizing the log likelihood function )( kL   denoted 

as 
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For the given training data, the parameters   (comprising the means, covariances and 

missing coefficients) of a GMM is learnt by maximizing equation (27) using the Expectation 

Maximization (EM) algorithm in the iterative means. There are some advantages of using EM 

algorithm. The EM algorithm is simple to implement and understand, avoids the calculation 

and storage of derivatives, it is usually faster to converge than general purpose algorithms 
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and can also be extended to deal with data sets where some points have missing values 

(Nabney, 2002). 

The EM algorithm includes two steps: 

1. E step (expectation step): 

Calculate the posterior probability according to  
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X
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2. M step (maximum  step):  
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(31) 

 

It is convenient to recast the maximising problem in the equivalent form of 

minimising the negative log likelihood of the data set (Nabney, 2002): 

 

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K

j

xypLE
1

log    
 (32) 

The two steps are iterated until the model converges to a local minimum (Callinon, 

2009). The entire data set is divided into training and test sets. The training set is used in 

estimating the parameters of the GMM while the test set is kept for prediction of bearing 

damage and RUL. The results obtained may be highly sensitive to the number of mixing 

components used. The more components a mixture model has the more expressive and 

flexible it becomes. A sufficiently expressive model may be optimized so as to accurately 

represent the reference signal. However, models which are too expressive may over fit the 

training data. This may result in poor generalization and subsequently impair the ability of 

the model to discern between normal signal components and fault related outliers (Bishop, 

2006). Different numbers of mixing components (K) are fitted and the best is selected. There 

are several model selection criteria such as the root mean square error (RMSE), the leave-

one-out cross validation technique (CV), the percentage prediction error (PE), the Bayesian 

Information Criterion (BIC), Bayesian model selection, and the Akaike Information Criterion 

(AIC) among others. In this study the leave-one-out cross validation technique (CV), was 

used to select the best number of mixing components. Given the test set, the GMR models 

can be obtained using the parameters of the GMM which has an output of a smoothened 

general description of the GMM encoded data and linked constraints given by matrices of the 

covariance (Callinon, 2009). This general smoothened description of the data is the prediction 

of the failure of the bearing. 
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Gaussian process regression  

 

The use of Gaussian process regression (GPR) for prognosis (prediction of the 

remaining useful life (RUL)) of slow rotating bearings based on the DAI is possible. 

Gaussian processes (GP) are a recent development in non-linear nonparametric modelling. In 

GP, the parametric model is dispensed and instead a prior probability distribution is defined 

over functions directly (Bishop, 2006). A nonlinear functional mapping from an inputting 

space to a target space is achieved by the use of GP modelling. The GP is defined as an 

infinite collection of arbitrary variables of which any of the fixed subsets has joint Gaussian 

distributions. The Gaussian method is favourable to smooth functions and those that properly 

explain the training data. The smooth attribute of the function leads to its plausible 

generalisations (Heyns et al., 2012). 

To motivate the GP viewpoint, let the vector nx represent the DAI in the input space. 

The training set of inputting vectors  N

n

n

N 1 xX corresponds to the targeted 

vector  N

n

n

N y
1

y . For prognostics as in this study, x  is the time period while y is a novel 

degradation assessment index for monitoring the health state of slow rotating bearings. ). A 

Gaussian process )(xf  can be fully described by its mean and covariance (or kernel) function 

(Rasmussen and Williams, 2006). These functions are specified separately, and consist of a 

specification of a functional form as well as a set of parameters called hyper parameters. 

The mean function describes the value of the function expected at any point of the 

inputting space, before the consideration of any trained data.  The mean function can be 

defined as: 

))(()( xx fEm    (33) 

 

In supervised learning, the idea of likeness linking the various data points is vital. It is 

an essential similarity assumption that the points of inputs x  which are in proximity’s target 

values y are expected to be similar. Hence, training points which are close to a test points 

prediction should be insightful. In the Gaussian process viewpoint, the covariance function 

depicts the nearness or similarity (Rasmussen and William, 2006). The covariance function 

betwixt two functional values evaluated at fixed points x and x is given as 

 

 ))()())(()((),( xxxxxx  mfmfEk   (34) 

 

The covariance function enables the inference value of a function given the 

knowledge of the other. Thus, the covariance function ),( xx k  can be interpreted as the 

measure of the distance between the input points x  and x . The Gaussian process can then be 

written as: 

)],(),([~)( xxxx kmGPf  (35) 

 

 

The basic GPR consists of a simple zero mean and squared exponential covariance 

functions.  The zero mean function is given as: 

 

0)( xm  (36) 

 

for every value of x . One of the generally used kernel functions is the squared exponential 

(SE). It assumes that the function values in close proximity in the feature space are probably 
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going to be similar, with close to unity covariance for variables that have feature inputs that 

are close. The squared exponential covariance function with automatic relevance detection is 

given as (Rasmussen and Williams, 2006): 

))()(
2

1
exp(),( 2 xxxxxx   Mk

fSEard   
(37) 

 

 

where M matrix is diagonal with positive ARD parameters, )(ldiagM  and l  is length D 

vector corresponding to the input space dimension. The characteristic length-scale 

parameters, also known as the ARD parameters, determine the rate of variation of the 

function in the direction of the corresponding inputting space. A function tends to vary faster 

for any variation of its component feature for its shorter length scale parameter for a specific 

feature component. A short length scale thus corresponds to high relevance. 
2

f is the signal 

variance linked to the general function  variance. 

 

The free parameters (i.e. hyperparameters) in the covariance function can be 

compressed into a matrix denoted by    . The values of these hyperparameters are all 

unknown and inference is made from the data being the trained. It can be shown by 

utilization of the Bayes’ rule that the maximum a posteriori hyperparameter values  can be 

obtained by maximising the marginal likelihood ),( Xyp which is the same as minimising 

the negative log marginal likelihood (Rasmussen and Williams, 2006): 

 

 2log
2

)(log
2

1
)((

2

1
),(log 1 n

P  
XX,KyXX,KyXy  

(38) 

 

where )( XX,K is the NN  covariance matrix between all pairs of training inputs and is 

computed with equation (5) or (6). It is important to note however, that the application in this 

study used an 1N matrix of time points.  

 

Given a set of training points, one can derive the posterior distribution over functions 

by imposing a restriction on prior joint distribution. Once a posterior distribution is derived, it 

can be used to estimate predictive values for the test data points (Saxena et al., 2009). 

Denoting X  as the training inputs and *X as the test inputs, prediction of *y at the new 

locations *X may be inferred by conditioning the joint distribution on the observed target 

values. For the basic GPR with zero mean, the following equations describe the predictive 

distribution (Rasmussen and Williams, 2006): 

 

Prior: 

 































),(),(

),(),(
,0~

***

*

XXXX

XXXX

y

y

* KK

KK
N   

(39) 

 

Posterior: 

))cov(,(~),,( **** yyXyXy NP   (40) 

 

where 
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yXX,X)K,XK)Xy,X,yy *

1

** )(([  E   (41) 

  

 

)()()()()cov( 1

** *** XX,KXX,KX,XKX,XKy   (42) 

 

The maximum a posteriori (MAP) estimates *y can then be used as slow rotating 

bearing remaining useful lifemetrics.  

 

Model evaluation 

 

The models would be evaluated using MAPE and RMSE. The MAPE and RMSE 

between the predicted and the original DAI were calculated using equations 43 and 44 

respectively. 










n

i i

ii

DAI

DAIDAI

n
MAPE

1

100
1

  

(43) 

 

 

n

DAIDAI 













2

n

1i

=RMSE   

(44) 

 

where iDAI is the actual value of the degradation assessment index for the ith observation 

which is in this case the time point, iDAI


 is the predicted value of degradation assessment 

index, n  is the number of observations. 

 

The leave-one-out cross validation technique (CV) was used in selecting the test set 

for validating the predictions from each model. Two approaches were considered. The first is 

based on dependent sample. In this approach the bearing data set was divided into equal 

samples of training and test sets. The training set is the “seen” because it was used in training 

the parameters of the model while test set is the “unseen” as it was never fed into the model 

during training. However, it is been argued that when the training and test samples are 

dependent, the two errors may be positively correlated; resulting in a breakdown of the cross 

validation selection approach and can equally lead to model overfitting (Opsomer et al., 

2001; Arlot, 2010). Therefore, the second approach is based on independent samples 

whereby, two different sets of bearings are trained together and hence used as the training set 

while a third bearing data is used as the test set. 

 

 

Experimental setup 

 

The experimental setup is used in this research to collect acoustic emission signals 

from slow rotating bearing. The test setup is designed to be able test any type of slow rotating 

bearing. The experimental test setup shown in figure 2 below and used in this research to 

collect the acoustic emission signals for two purposes: to study the vibration and acoustic 
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emission signatures generated by bearing faults. The speed controller controls the rotational 

speed of the bearing. The system is driven by an AC servo motor with the speed set at 70 

rpm, 80 rpm and 100 rpm for bearings 1, 2, and 3 respectively. The shaft rotation speed is 

controlled by a speed controller. Acoustic emission sensor is mounted on the housing of the 

test bearing for measurement of acoustic emission signals. In all the bearings damage 

occurred on the outer race. Life test is performed on three slow rotating bearings until failure. 

Ground metal debris was introduced gradually into bearing 1 to hasten damage. Bearings 2 

and 3 were simply not lubricated from start to ending to hasten bearing degradation. The slow 

rotating bearing is loaded at various dynamic loads using the Zonic shaker. Bearing 1 was 

loaded at maximum and minimum dynamic loads of 1.6kN and 1.0kN respectively. Bearing 2 

was loaded at maximum and minimum dynamic loads of 1.8kN and 1.4kN respectively. 

Bearing 3 was loaded at maximum and minimum dynamic loads of 2.0kN and 1.7kN 

respectively. 

 

Figure 2: Setup 

An acoustic emission sensor was used in the collection of data in analog form. The 

AE transducers are mounted on the outside surface of the outer race and on the bearing 

housing. The sampling rate of the AE measurement was set at 200 kHz, and the sample time 

as 1 second. The data was collected for a duration of 1 second after every 20 minutes until 

failure for bearings 1, 2 and 3 respectively. The obtained data was then converted into digital 

format for further processing and feature extraction with the help of dedicated software. 

Signal detection procedure for bearing condition monitoring is important part for predictive 

maintenance of machinery. Selection of desired features and their relevant features plays a 

vital role for both diagnostic and prognostic purposes. The accurate forecast of impending 

bearing faults can lead to proper planning and replacement in order to avoid disastrous 

failures of the whole machinery.  

Servo 
controller 

Oscilloscope 

Test bearing 

Servomotor 

Acoustic 
emission 
sensor 

Load 
Actuator 
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The major components of the slow rotating bearing test setup are the sonic shaker, 

load cell, test bearing, servo motor, speed controller, data loggers and acoustic emission 

sensors.  

The AE data acquisition system consisted of piezoelectric-type AE transducers, 

amplifiers, an A/D card/data logger, and the computer. Broadband piezoelectric AE 

transducers connected to a 40dB gain pre amplifier for measurement was employed.  The 

output signal from the preamplifier was connected to a National Instrument (NI) data 

acquisition card which was put into the ISA slot of a computer. The National Instruments Lab 

View software was be used for collection of acoustic emission data. The function for 

capturing time domain and pre selected sampling time and interval was used. The rest of the 

processing and analysis was performed through Matlab programs for signal processing and 

analysis. 

 

Results and discussions 
 

Prediction based on dependent samples 

 

The predictions in this section are based on dependent observations whereby the 

training and the test sets are obtained using a leave-one-out cross validation technique (CV) 

that involves the division of the bearing data set into equal samples of training and test sets. 

The health state of a bearing is divided into three during its whole life namely, healthy 

or normal state, slightly degradation state and failure state. There is no need for remaining 

useful life when a bearing is in its healthy state. When the computed features are above their 

incipient damage threshold values then it is considered that slight degradation has set in. The 

prediction model is then used in the prediction of the future value of the degradation 

assessment index.  

In this investigation healthy bearings are run until they are failed. A degradation 

assessment index is developed to assess the degradation of the slow rotating bearing. The 

DAI is then used in the several regression models, namely, the multi-layer perceptron (MLP), 

radial basis function (RBF), Bayesian linear regression (BLR), Gaussian mixture regression 

(GMR) and the Gaussian process regression (GPR) models for prediction of bearing damage, 

RUL and failure at a future instant of time. 

Secondly, the mean absolute percentage error (MAPE) and root mean square error 

(RMSE) were used in model evaluation to select the best performing model. Thirdly, the best 

performing model from the resulting novel methodologies is recommended and used for the 

prediction of slow rotating bearing remaining useful life. 

 

RUL using multi-layer perceptron (MLP) regression 

 

Multi-layer perceptron is one of the most frequently used feedforward artificial neural 

networks which make use of a supervised learning algorithm. Essentially, it has three layers 

which include the input layer, pattern (hidden) layer and output layer (Şengüler et al., 2010). 

Dimensionality of the feature vectors were reduced to 2 PKPCs from 5 bearing 

extracted features using polynomial kernel principal components analysis (PKPCA) which 

subsequently fed into the GMM to obtain the degradation assessment index (DAI). The MLP 

neural network was trained with the DAI which had been obtained from the bearing data at 

dynamic loadings conditions. The MAPE and RMSE between the predicted and the actual 

DAI are shown in figures 3, 4 and 5 for bearings 1, 2 and 3 respectively. The MLP neural 
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network approach was used to monitor the trend of the incipient bearing damage and RUL of 

bearings 1, 2 and 3 are shown at the top right hand corner of figures 6, 7 and 8 respectively. 

 

 
Figure 3: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for Bearing 1 based on the dependent 

samples 

 
Figure 4: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for Bearing 2 based on the dependent 

samples 

 

RUL using radial basis function (RBF) regression 

 

The RBF uses local hyper-sphere surfaces (non-linear mapping) to separate the 

classes in the input space as a response to cluster, rather than the global hyper-planes (lines) 

used in MLP networks (Al-Raheem and Abdul-Karem, 2010).  

The degradation assessment index (DAI) was used as input into the RBF. The RBF was then 

trained with the DAI which had been obtained from the bearing data at dynamic loadings 

conditions. The MAPE and RMSE were again computed between the predicted and the actual 

DAI and shown in Figures 3, 4 and 5 for Bearings 1, 2 and 3 respectively. The RBF 

predictions of the incipient bearing damage and RUL of Bearings 1, 2 and 3 were 

subsequently plotted as shown at the top right hand corner of Figures 6, 7 and 8 respectively. 
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Figure 5: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for Bearing 3 based on the dependent 

samples 

 

RUL using Bayesian linear regression (BLR) 

 

Similarly, the degradation assessment index (DAI) was used as input into the BLR. 

The BLR was then trained with the DAI which had been obtained from the bearing data at 

dynamic loadings conditions. The MAPE and RMSE were again computed between the 

predicted and the actual DAI and shown in Figures 3, 4 and 5 for Bearings 1, 2 and 3 

respectively. The BLR predictions of the incipient bearing damage and RUL of Bearings 1, 2 

and 3 were subsequently plotted as shown in the middle left hand of Figures 6, 7 and 8 

respectively. 

 

RUL using Gaussian mixture regression (GMR) 

 

Furthermore, the degradation assessment index (DAI) was used as input into the 

GMR. The GMR was then trained with the DAI which had been obtained from the bearing 

data at dynamic loadings conditions. The MAPE and RMSE were again computed between 

the predicted and the actual DAI and shown in figures 3, 4 and 5 for bearings 1, 2 and 3 

respectively. The GMR predictions of the incipient bearing damage and RUL of bearings 1, 2 

and 3 were subsequently plotted as shown in the middle right hand of figures 6, 7 and 8 

respectively. 
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Figure 6: Prediction for the whole bearing life for bearing 1 using different methodologies based on dependent 

samples 
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Figure 7: Prediction for the whole bearing life for bearing 2 using different methodologies based on dependent 

samples 
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Figure 8: Prediction for the whole bearing life for bearing 3 using different methodologies based on dependent 

samples 
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RUL using Gaussian process regression (GPR) 

 

The degradation assessment index (DAI) was used as input into the GPR. The GPR 

was then trained with the DAI which had been obtained from the bearing data at dynamic 

loadings conditions. The MAPE and RMSE were again computed between the predicted and 

the actual DAI was calculated and shown in Figures 3, 4 and 5 for Bearings 1, 2 and 3 

respectively. The GPR predictions of the incipient bearing damage and RUL of Bearings 1, 2 

and 3 were subsequently plotted as shown in the bottom left hand of Figures 6, 7 and 8 

respectively. 

 

 

Model evaluation of the dependent samples 

 

After the training process, the prediction was done with data points equal to the 

training data points. The predicted and actual remaining useful life (RUL) plots of all the 

models were plotted in the bottom right hand of figures 6, 7 and 8 respectively.  

The MAPE and RMSE between the output and real values are observed as plotted in 

figures 3, 4and 5 for bearings 1, 2 and 3 for all the five models namely: MLP, RBF, BLR, 

GMR and GPR. All the models attempted to predict damage and RUL to a great degree.  

For bearing 1, the MAPE prediction errors from the models were 0.7049, 0.7206, 0.7637, 

1.0769 and 1.3637 for GPR, MLP, GMR, RBF, and BLR respectively from the least to the 

highest prediction errors. Similarly, the RMSE prediction errors from the models were 

3.4042, 3.5873, 3.7066, 5.2222 and 6.6570 for GPR, MLP, GMR, RBF, and BLR 

respectively from the least to the highest prediction errors. The worst prediction was that of 

the BLR which was a linear line across the non linear model. The GMR and MLP also 

modelled damage and RUL with little error. However, the best predictive model for bearing 1 

was the GPR. 

Similarly, for bearing 2, the MAPE prediction errors from the models were 0.9206, 

0.9233, 1.3171, 1.1554 and 1.6747 for GPR, GMR, MLP, RBF, and BLR respectively from 

the least to the highest prediction errors. Similarly, the RMSE prediction errors from the 

models were 4.616, 4.4732, 5.5746, 6.4306 and 8.2592 for GPR, GMR, MLP, RBF, and BLR 

respectively from the least to the highest prediction errors. The worst prediction was that of 

the BLR which was a linear line across the non linear model. The GMR and MLP also 

modelled damage and RUL with little error. However, the best predictive model for bearing 2 

was the GPR. 

Finally for bearing 3, the MAPE prediction errors from the models were 0.1333, 

0.4872, 0.6077, 0.8306 and 1.5108 for GPR, GMR, MLP, RBF, and BLR respectively from 

the least to the highest prediction errors. Similarly, the RMSE prediction errors from the 

models were 0.5282, 2.438, 2.9565, 3.8994 and 7.3283 for GPR, GMR, MLP, RBF, and BLR 

respectively from the least to the highest prediction errors. The worst prediction was that of 

the BLR which was a linear line across the non linear model. The GMR and MLP also 

modelled damage and RUL with little error. However, the best predictive model for bearing 3 

was the GPR. 

It could be seen that the GPR model consistently had the least error for all the three 

bearings. It was therefore concluded that the GPR model predicts damage and RUL better 

than the other models.  

 

 

 

 



22 
 

Predictions based on independent samples 

 

The predictions in this section are based on independent observations whereby two 

different sets of bearings are trained together and hence used as the training set while a third 

bearing data is used as the test set. 

 

 

RUL using multi-layer perceptron (MLP) regression 

 

The MLP neural network was trained with the DAI which had been obtained from the 

bearing data at dynamic loadings conditions. The MAPE and RMSE between the predicted 

and the actual DAI are shown in figures 9, 10 and 11 for bearings 1, 2 and 3 respectively. The 

MLP neural network approach was used to monitor the trend of the incipient bearing damage 

and RUL of bearings 1, 2 and 3 are shown at the top right hand corner of figures 12, 13 and 

14 respectively. 

 

 
Figure 9: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for bearing 1 based on the 

independent samples 

 
Figure 10: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for bearing 2 based on the 

independent samples 
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Figure 11: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for bearing 3 based on the 

independent samples 

 

 

 

RUL using radial basis function (RBF) regression 

 

The degradation assessment index (DAI) was used as input into the RBF. The RBF 

was then trained with the DAI which had been obtained from the bearing data at dynamic 

loadings conditions. The MAPE and RMSE were again computed between the predicted and 

the original DAI and shown in figures 9, 10 and 11 for bearings 1, 2 and 3 respectively. The 

RBF predictions of the incipient bearing damage and RUL of bearings 1, 2 and 3 were 

subsequently plotted as shown at the top right hand corner of figures 12, 13 and 14 

respectively. 

 

 

RUL using Bayesian linear regression (BLR) 

 

Similarly, the degradation assessment index (DAI) was used as input into the BLR. 

The BLR was then trained with the DAI which had been obtained from the bearing data at 

dynamic loadings conditions. The MAPE and RMSE were again computed between the 

predicted and the original DAI and shown in figures 9, 10 and 11 for bearings 1, 2 and 3 

respectively. The BLR predictions of the incipient bearing damage and RUL of bearings 1, 2 

and 3 were subsequently plotted as shown in the middle left hand of figures 12, 13 and 14 

respectively. 

 

RUL using Gaussian mixture regression (GMR) 

 

Furthermore, the degradation assessment index (DAI) was used as input into the 

GMR. The GMR was then trained with the DAI which had been obtained from the bearing 

data at dynamic loadings conditions. The MAPE and RMSE were again computed between 

the predicted and the actual DAI and shown in figures 9, 10 and 11 for bearings 1, 2 and 3 

respectively. The GMR predictions of the incipient bearing damage and RUL of bearings 1, 2 

and 3 were subsequently plotted as shown in the middle right hand of figures 12, 13 and 14 

respectively. 



24 
 

 

0 10 20 30 40 50 60 70
360

370

380

390

400

410

420

430

Time(Hrs)

D
A

I

 

 

Actual

MLP

Slight DT

Severe DT

95%CI

0 10 20 30 40 50 60 70
360

370

380

390

400

410

420

430

Time(Hrs)

D
A

I

 

 

Actual

RBF

Slight DT

Severe DT

95%CI

 

0 20 40 60
360

370

380

390

400

410

420

430

Time (Hrs)

D
A

I

 

 

Actual

BLR

Slight DT

Severe DT

95%CI

 

0 20 40 60

370

380

390

400

410

420

430

Time (Hrs)

D
A

I

 

 

Actual

GMR

Slight DT

Severe DT

95%CI

 

0 10 20 30 40 50 60 70
360

370

380

390

400

410

420

430

Time (Hrs)

D
A

I

 

 

Actual

GPR

Slight DT

Severe DT

95%CI

 

0 10 20 30 40 50 60 70
360

370

380

390

400

410

420

430

Time(Hrs)

D
A

I

 

 
Actual

MLP

RBF

BLR

GMR

GPR

Slight DT

Severe DT

 
 
Figure 12: Prediction for the whole bearing life using bearing 2 and 3 as training set and bearing 1 as test set 

based on different methodologies and independent samples 
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Figure 13: Prediction for the whole bearing life using bearing 1 and 3 as training set and bearing 2 as test set 

based on different methodologies and independent samples 
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Figure 14: Prediction for the whole bearing life using bearing 1 and 2 as training set and bearing 3 as test set 

based on different methodologies and independent samples 
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RUL using Gaussian process regression (GPR) 

 

The degradation assessment index (DAI) was used as input into the GPR. The GPR 

was then trained with the DAI which had been obtained from the bearing data at dynamic 

loadings conditions. The MAPE and RMSE were again computed between the predicted and 

the actual bearing DAI and shown in figures 9, 10 and 11 for bearings 1, 2 and 3 respectively. 

The GPR predictions of the incipient bearing damage and RUL of bearings 1, 2 and 3 were 

subsequently plotted as shown in the bottom left hand of figures 12, 13 and 14 respectively. 

 

Model evaluation based on independent samples 

 

After the training process, the prediction was done with data points equal to the 

training data points. The predicted and actual remaining useful life (RUL) plots of all the 

models were plotted in the bottom right hand of figures 12, 13 and 14 respectively.  

The MAPE and RMSE between the output and real values are observed as plotted in 

figures 9, 10 and 12 for bearings 1, 2 and 3 for all the five models namely: MLP, RBF, BLR, 

GMR and GPR. All the models attempted to predict damage and RUL to a great degree.  

For bearing 1, using the independent approach the MAPE prediction errors from the 

models were 1.3291, 1.3382, 1.3402, 1.341 and 1.5343 for RBF, GPR, GMR, MLP and BLR 

respectively for bearing 1 from the least to the highest prediction errors. However, the RMSE 

prediction errors from the models were 6.3486, 7.1132, 7.394, 7.4589 and 7.468 for RBF, 

MLP, BLR, GMR and GPR respectively from the least to the highest prediction errors. The 

worst prediction was that of the GPR model. The best predictive model for bearing 1 was the 

RBF. 

Similarly, for bearing 2, the MAPE prediction errors from the models was 1.1777, 

1.1885, 1.3034, 1.5425 and 1.5425 for GPR, GMR, RBF, MLP, and BLR respectively from 

the least to the highest prediction errors. Similarly, the RMSE prediction errors from the 

models were 5.8871, 5.9384, 6.614, 7.6379 and 8.2876 for GPR, GMR, RBF, MLP, and BLR 

respectively from the least to the highest prediction errors. The worst prediction was that of 

the BLR which was a linear line across the non linear model. The GMR and RBF also 

modelled damage and RUL with little error. However, the best predictive model for bearing 2 

was the GPR. 

Finally for bearing 3, the MAPE prediction errors from the models were 1.2061, 

1.2648, 1.3674, 1.6009 and 2.0712 for GPR, GMR, RBF, MLP and BLR respectively from 

the least to the highest prediction errors. Similarly, the RMSE prediction errors from the 

models were 5.693, 6.0625, 6.4201, 8.0319 and 10.2212 for GPR, GMR, RBF, MLP and 

BLR respectively from the least to the highest prediction errors. The worst prediction was 

that of the BLR which was a linear line across the non linear model. The GMR and RBF also 

modelled damage and RUL with little error. However, the best predictive model for bearing 3 

was the GPR. 

Overall, the GPR model had the least error for all the three bearings. It was therefore 

concluded that the GPR model predicts damage and RUL better than the other models. 

 

 

Comparison of model performance based on dependent and independent samples 

 

The ranks of each prediction model according to whether the training and tests 

samples are dependent or independent are presented in tables 1, 2 and 3 for bearings 1, 2 and 

3 respectively. While some of the models are sensitive to the type of sample, others are not. 

For example the GPR and BLR models ranked mainly 1
st
 and last respectively in both the 
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dependent and independent samples whereas RBF and MLP ranked differently. However, the 

errors obtained from the cross validation based on independent samples (see figures 9 to 11) 

were relatively larger than those from the dependent samples (see figures 3 to 5)  which could 

be an indication that the latter slightly overfitted the models.  

 
Table 1: Ranking of models based on dependent and independent samples for bearing 1 

Models Dependent samples Independent samples 

MAPE RMSE MAPE RMSE 

GPR 1 1 2 5 

GMR 3 3 3 4 

RBF 4 4 1 1 

MLP 3 2 4 2 

BLR 5 5 5 3 

 

 

 

Table 2:  Ranking of models based on dependent and independent samples for bearing 2 

Models Dependent samples Independent samples 

MAPE RMSE MAPE RMSE 

GPR 1 2 1 1 

GMR 2 1 2 2 

RBF 4 4 3 3 

MLP 3 3 4 4 

BLR 5 5 5 5 

 

 

Table 3:  Ranking of models based on dependent and independent samples for bearing 3 

Models Dependent samples Independent samples 

MAPE RMSE MAPE RMSE 

GPR 1 1 1 1 

GMR 2 2 2 2 

RBF 4 4 3 3 

MLP 3 3 5 5 

BLR 5 5 4 4 

 

 

Conclusion 

 

This paper proposes a novel approach to damage detection and prediction of 

remaining useful life of slow rotating bearings. During this investigation, three healthy slow 

rotating bearings were run to the point of failure. A degradation assessment index, DAI, 

which was obtained by the integration of polynomial kernel principal component analysis 

(PKPCA), Gaussian mixture model (GMM) and exponentially weighted moving average 

(EWMA) was used in slow rotating bearing prognostics. The slight and severe degradation 

thresholds are obtained through the use of the kernel density estimation (KDE) technique on 

the healthy and slightly degraded bearing data respectively. The DAI is used in the prediction 

of bearing damage and RUL using the MLP, RBF, BLR, GMR and GPR models respectively. 

Predictions were obtained using test and training sets from both dependent and independent 

samples. The models were able to predict damage and RUL of the slow rotating bearing. 

Overall, the GPR had the least mean absolute percentage and root mean square errors in this 

investigation for the slow rotating bearings and is robust to dependent and independent 

samples under varying operating conditions. Hence, the GPR is chosen as the most efficient 

model for prediction of remaining useful life of slow rotating bearings. This proposed 
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approach is useful and its application can be extended to the condition monitoring of other 

mechanical and allied systems. 
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