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Building on the time-varying-coefficient (TVC) model, we propose a generalization of the
concept of cointegration, allowing for the possibility that a set of variables measured with
error entails a nonlinear relationship with unknown functional form. Both the dependent
and explanatory variables of this relationship may be nonstationary (not necessarily of
unit-root type), but there exists a nonlinear combination of all these explanatory variables
that completely explains all the variation in the dependent variable. The TVC model
allows us to test for the presence of this generalized cointegration in the absence of
knowledge of the true nonlinear functional form and the full set of explanatory variables.
We present the basic stages of the technique and discuss in detail how the issues of
nonstationarity and cointegration affect each stage of the TVC estimation procedure.

Keywords: Generalized Cointegration, Time-Varying-Coefficient Model

1. INTRODUCTION

As a concept, cointegration is fundamental to empirical work in macroeconomics,
as it is at the heart of understanding dynamic structures.1 The link between cointe-
gration and causality, which is emphasized by the Granger representation theorem,
makes this very clear. The conventional definition of cointegration, however, will
identify an economic structure if that structure happens to be linear, but will fail to
work adequately if the true structure is nonlinear. Clearly, most macroeconomic
theory gives rise to nonlinear structures and so, in general, conventional coin-
tegration is not applicable. In this paper, we relate the recent literature dealing
with the time-varying-coefficient (TVC) model to the concept of cointegration.2

We are grateful to a referee for comments on an earlier draft of this paper. The views expressed in this paper are
the authors’ own and do not necessarily represent those of their respective institutions. Address correspondence to:
George S. Tavlas, Monetary Policy Council, Bank of Greece, 21 El. Venizelos Ave., 102 50 Athens, Greece; e-mail:
gtavlas@bankofgreece.gr.



Specifically, we develop a more general definition of cointegration than has been
previously provided in the literature.3 The extension to the literature in what
follows makes the link between cointegration and causality even more apparent
because it places emphasis on the need for identifying true economic structures.

Although developments in cointegration have been a focus of time-series econo-
metrics for about 20 years, these developments have occurred largely within a
linear framework. Although there have been various extensions to a nonlinear
framework, these extensions have generally been limited to specific nonlinear
functional forms.4 The reason for this situation is as follows: In light of its stan-
dard definition, given in Engle and Granger (1987), cointegration becomes much
easier to implement when the functional form of the relationship is assumed to
be linear. Therefore, although it was found to be relatively straightforward to ask
whether a linear functional form linked two or more variables together to produce
a cointegrating combination, it was not obvious how to answer the more interesting
question: Is there an unknown functional form, with possibly omitted variables,
that would link two or more variables together in a structural relationship? Of
course, the spirit of this question is precisely what was being asked in the cited
paper by Engle and Granger, as well as in other work on cointegration [e.g.,
Cuthbertson et al. (1990); Enders (2009)]. However, there had been no way to
make this general question tractable. Consequently, a much more limited linear
framework is typically adopted. In this paper, we depart from the standard defi-
nition of integration of a variable, which is an inherently linear concept, to work
more generally within a nonlinear framework.

The remainder of the paper is divided into three sections. In Section 2, we in-
troduce the concept of generalized cointegration. In Section 3, we present unusual
interpretations of the coefficients of a nonlinear relationship and its underlying
assumptions. In Section 4 we conclude.

2. GENERALIZED COINTEGRATION AND THE DEFINITION OF
INTEGRATION

The idea underlying cointegration is that if there is a stable structural relation-
ship linking a dependent variable with a group of explanatory variables, then,
regardless of the time-series properties of these variables, there should be a com-
bination (function) of the explanatory variables that gives a plausible explanation
of the dependent variable. This combination is usually expressed within a linear
regression framework in terms of integrated variables. A unit-root nonstation-
ary series is integrated of order d, denoted I(d), if it becomes stationary after
being first-differenced d times. In a special linear case, if yt is a vector of n
variables, all integrated of the same order d, then �dyt = C(L)εt , where there
are no linearly deterministic components; {εt}, t = −∞,+∞, is a sequence of
zero-mean, uncorrelated n-vectors with the same finite constant covariance matrix;
C(L) is an n × n invertible matrix of the polynomials in the lag operator L; and
(1 − L)dyt = �dyt is the dth difference of yt . Cointegration is said to occur if



two constant n-vectors, say α and β, exist such that the error term of the model
β ′�dyt = β ′C(L)εt of �dyt is stationary and the error term of the model α′yt

of yt is integrated of order d – b (I(d - b)), d ≥ b > 0. The difference d – b may
not be zero unless d = 1. It is known that both α and β are not unique; for a
survey of cointegration, see Dolado et al. (2001). The TVC models discussed in
this paper have the models with unique coefficients and error terms as their bases.
Our concept of uniqueness is given in note 2.

In the preceding discussion, we used a unit-root nonstationary process to de-
scribe the conventional linear cointegration model. We now turn to the nonlinear
case. To deal with a potentially nonlinear data-generating model, which is as-
sumed to have an unknown functional form, we need a more general definition of
nonstationarity and cointegration than is typically assumed. Consider a variable
that is integrated of order d. When d = 0, such a variable is (weakly or strongly)
stationary, and when d = 1, it is unit-root nonstationary. Yet it is straightforward to
demonstrate that there are also nonstationary variables that are not unit-root non-
stationary. In this connection, consider an example provided by Cramér (1946),
who showed that, for any general nonstationary process {xt }, there is a uniquely
determined decomposition xt = x∗

t + εt , where x∗
t and εs are uncorrelated ∀t, x∗

t

is deterministic, and εt is purely nondeterministic. The last may be represented as

εt =
∞∑

j=0

cjtat−j , (1)

where the cjt are time-dependent such that
∑∞

j=0 c2
j t < ∞ for all t, and {at } is

a sequence of uncorrelated variables. As this definition makes clear, the time-
dependent coefficients (cjt ) are associated with nonstationary processes. Further-
more, as shown by Swamy et al. (2003), model (1) of xt can be transformed
into an autoregressive model with time-dependent coefficients. Thus, a simple
nonstationary process may be expressed as5

xt = γ0t + γ1t xt−1, (2)

where γ0t and γ1t are time-dependent and xt is dependent on xt−1.6 Thus, equation
(2) is linear in variables and nonlinear in coefficients and its first difference may
be expressed as

�xt = xt − xt−1 = γ0t + γ1t xt−1 − γ0t−1 − γ1t−1xt−2

= �γ0t + γ1t x1t−1 − γ1t−1xt−2 + γ1t xt−2 − γ1t xt−2

= �γ0t + γ1t�x1t−1 + �γ1t xt−2, (3)

which typically is neither stationary nor unit-root nonstationary because the last
term in (3) contains the level of xt−2. Hence, xt in (2) is non-unit-root nonstationary
and is not integrated.

The upshot of this discussion is that the dependent variables of nonlinear
autoregressive relationships are not integrated [see Swamy et al. (2003) and



Berenguer-Rico and Gonzalo (2012)]; the same is true of the dependent variable of
a nonlinear relationship of the form yt = ft (x1t , . . . , xLt ,t ), although one or more
of its regressors x1t , . . . , xLt ,t may be integrated unless all of its regressors follow
nonlinear relationships of the form xgt = ψgt (x1t , . . . , xg−1,t , xg+1,t , . . . , xLt ,t )

for g = 1, . . ., Lt [see Swamy et al. (2010)]. Also, �xt in (3) does not possess a
finite unconditional mean if xt and/or the coefficients of (2) follow random-walk
processes. Furthermore, it can be seen from (3) that, every time equation (2) is
differenced, additional terms enter into the resulting expression, giving a nonpar-
simonious representation unless equation (2) is linear or its intercept (excluding
its error term component) and slope are constant, which will not generally be the
case.

Economic theory makes it clear that most economic relationships are nonlinear.
In addition, many economic variables are not, in theory, integrated variables (e.g.,
any series that exhibits long-term growth is not integrated, although its logarithm
is integrated; any series that exhibits a break in its growth rate is not integrated,
etc.). Thus, although the notion of cointegration is an extremely general one, the
specific implementation of it in the standard way is very limited.

In sum, although there are a number of alternative definitions of cointegration,
there is no simple formal definition that captures the essence of cointegration in a
fully general way.

One recent important generalization of cointegration is the asymptotic nonpara-
metric estimation of a model such as Yt = f (Xt) + Wt , set out in Karlsen et al.
(2007), who assume that f (Xt) is some nonlinear function of a nonstationary
process Xt and that the error process {Wt } is stationary.7 Those authors use a
nonparametric kernel estimator, in that f (Xt) is treated as an unknown function.
However, this approach considers only part of the problem that we attempt to tackle
here, as their work assumes that X is a single variable, or at least that if X is a vector,
then the complete set of X variables is included. In the approach we adopt in the
following, our definition of generalized cointegration and our implementation of
the concept allow the researcher to observe only a subset of the complete X vector,
whereas, at the same time, it permits this subvector to be observed with error. This
approach requires a rather different definition of cointegration, as we now explain.

To generalize the notion of cointegration, we propose the following definition,
which allows for nonlinearity and omitted regressors. The key to our definition is
that we assert that the existence of cointegration implies a structural economic re-
lationship. By this, we mean that a (possibly) nonlinear relationship exists between
a dependent variable and a set of variables that includes all relevant preexisting
conditions, besides all the determinants of the dependent variable. As shown in the
following, this relationship (i) involves certain regressors for which there are no
data and, hence, is reduced to another relationship in which the intercept contains
three components, including the function (with the correct functional form) of
certain “sufficient sets” of omitted regressors treated as the error term, and (ii)
the coefficient on each included regressor contains three components including
two (specification) bias terms and one bias-free term. This bias-free component of



the coefficient on an included explanatory variable is the partial derivative of the
dependent variable with respect to the explanatory variable, holding constant the
values of all relevant preexisting conditions and the determinants of the dependent
variable other than the explanatory variable. As also shown in the following, these
coefficients, including the intercept, are expressed as linear functions of certain
coefficient drivers and error terms that can be stationary. Thus, in this framework,
there are several error terms. We may think of this either as a full dynamic model,
in which case the error terms should be white noise, or as a long-run relationship
involving only the nonstationary variables, in which case the error terms would
normally be stationary ARMA processes and would capture the relevant dynamics.

DEFINITION

With this background, the variables yt and xt are cointegrated in a general sense if
y and x are nonstationary and the “true” bias-free component of the time-varying
coefficient of xt (that is, its coefficient without specification biases) in the relation
ofyt to xt is nonzero.8

To explain, consider the following (real world) structural general relationship
between y, x, and a set of other variables w, all of which are assumed to be
nonstationary:

yt = ft (xt , wt ), (4)

where wt includes all relevant preexisting conditions, besides all the determinants
of yt other than xt . Therefore, under our definition of generalized cointegration, y
and x, both of which are measured without errors, are cointegrated if

∂yt

∂xt

�= 0, (5)

where the values of all the elements of wt are held constant. Under this definition
of generalized cointegration9, cointegration is clearly defined as a property of
the real world—not of any particular statistical model. This definition allows y
and x to have different forms of nonstationarity, as w (which, of course, may be
a vector) will allow us to reduce any spurious correlation to zero by letting us
control for all relevant preexisting conditions while maintaining balance in the
overall equation.10

The preceding formulation is very much in keeping with the original idea
of cointegration. That is, cointegration should arise only if there is a (possibly
nonlinear) stable structural relationship holding a set of variables together. If there
is such a relationship, it implies that the true effect of x on y will be nonzero. Thus,
if the following equation holds,

∂ft (xt , wt )

∂xt

= 0, (6)

it implies that there is no structural relationship between the variables (yt ,xt ,wt ),
so that any observed correlation between the two variables (yt ,xt ) is spurious.



Alternatively, if we run a standard regression between x and y, we may falsely
obtain a significant coefficient. To make this definition of cointegration operational,
we need an estimation technique that will provide bias-free estimates of parameters
for which the true functional form is unknown and where, in addition, there may
be omitted regressors.

3. UNUSUAL INTERPRETATIONS OF THE COEFFICIENTS OF A
NONLINEAR RELATIONSHIP AND ITS UNDERLYING ASSUMPTIONS

3.1. Interpretations of Model Coefficients and Appropriate Assumptions

In this section, we will begin by giving a largely intuitive account of our esti-
mation strategy, which makes the idea of generalized cointegration operational.11

TVC estimation proceeds from an important theorem that was first established
by Swamy and Mehta (1975) and that was subsequently confirmed by Granger
(2008). This theorem states that any nonlinear functional form can be exactly
represented by a model that is linear in variables but that has time-varying coef-
ficients. The implication of this result is that, even if we do not know the correct
functional form of a relationship, we can always represent this relationship as a
time-varying coefficient relationship and thus estimate it. Hence, any nonlinear
real-world relationship may be stated as

yt = γ0t + γ1t x1t + . . . + γK−1,t xK−1,t (t = 1, . . . , T ). (7)

Consequently, this theorem leads to the result that, if we have the complete set
of relevant variables with no measurement error, then by estimating a TVC model,
we will get consistent estimates of the true partial derivatives of the dependent
variable with respect to each of the independent variables, given the unknown,
nonlinear functional form. If we then allow for the fact that we do not know the
full set of independent variables and that some, or all, of them may be measured
with error, then the TVC become biased (for the usual reasons).12 What we would
like is to have is some way to decompose the full, biased, time-varying coefficients
into two parts, the bias component and the remaining part, which would again be
a consistent estimate of the true component. Of course, this is asking a great deal
of an estimation technique. However, that is precisely what TVC estimation aims
to provide [see Swamy et al. (2010)]. This technique builds from the Swamy and
Mehta theorem, mentioned previously, to produce such a decomposition.13

Swamy et al. (2010) show exactly what happens to the time-varying coefficients
as other forms of misspecification are added to the model. If we omit some relevant
variables from the model, then the true partial derivative components of the time-
varying coefficients get contaminated by a term that involves the relationship
between the omitted and included variables. Also, if we allow for measurement
error, then the time-varying coefficient gets further contaminated by a term that
allows for the relationship between the exogenous variables and the error terms.
Thus, as one might expect, the estimated time-varying coefficient is no longer a



consistent estimate of the true partial derivatives of the nonlinear function, but is
now biased because of the effects of omitted variables and measurement error.
There are exact mathematical proofs for our statements up to this point.

To make TVC estimation fully operational, we need to make some parametric
assumptions. We make two key assumptions. First, we assume that the time-
varying coefficients themselves are determined by a set of stochastic linear equa-
tions, which makes them functions of a set of variables, which we call driver (or
coefficient-driver) variables. This is a relatively uncontroversial assumption. Sec-
ond, we assume that some of these drivers are correlated with the misspecification
in the model and some of them are correlated with the time variation coming from
the nonlinear (true) functional form. Having made this assumption, we can then
simply remove the bias from each time-varying coefficient by removing the effect
of the set of coefficient drivers that are correlated with the misspecification. This
procedure, then, yields a consistent set of estimates of the true partial derivatives
of the unknown nonlinear function, which may then be tested by constructing t
tests in the usual way.

3.2. Identification and Coefficient Drivers

We have argued that generalized cointegration takes place if the bias-free com-
ponent of the coefficient linking two variables is nonzero. To test whether this
situation applies. we are interested in the bias-free components of γ ‘s—not in the
omitted-variable and measurement-error biases. To obtain accurate estimates of
theα∗

j t ’s using the observations in (7), we need to first decompose each γjt of (7)
into its bias and unbiased components. Our method of identifying these compo-
nents and performing the decomposition is based on the following assumptions.14

Assumption 1 (Auxiliary Information). Each coefficient is linearly related to
certain drivers plus a random error,

γjt = πj0 +
p−1∑

d=1

πjdzdt + εjt (j = 0, 1, . . . , K − 1), (8)

where the πs are fixed parameters and the zdt are what we call the coefficient
drivers; different coefficients of (7) can be functions of different sets of coefficient
drivers.

The regressors and the coefficients of (7) are conditionally independent of each
other given the coefficient drivers.15 These coefficient drivers are merely a set of
variables that, to a reasonable extent, jointly explain the movement in γjt . If the
variation in the coefficients is due to some form of misspecification (say, omitted
variables), then any variable that is correlated with the misspecification may act
as a driver; for example, the drivers might include lagged explanatory variables. If
the variation is due to nonlinearity, then, again, lags in some of the variables in the
model will likely be related to the changing coefficient. An important part of our



contention here is that it is relatively straightforward in practice to find variables
that are correlated with the misspecification.

The total number of components in each coefficient of (7) is three, as shown in
note 12. If the number of nonconstant coefficient drivers we could find is greater
than or equal to 3K, then in equation (8), for each coefficient of (7) there will be
at least three appropriate nonconstant coefficient drivers, one constant, and one
error term. In this case, there will be at least one nonconstant coefficient driver
to estimate each component of every coefficient of (7). To estimate a component
accurately, we need to choose at least one nonconstant coefficient driver in such
a way that a linear function of the chosen driver or drivers has the same kernel
density estimator as the component. Such coefficient drivers exist and Assumption
1 is not unrealistic. Thus, although it is not easy to find such coefficient drivers, it
is easy to prove their existence.

Under our method, the coefficient drivers included in equation (8) have two
uses. Insertion of equation (8) into equation (7) parameterizes the latter equation.
This is the first use of the coefficient drivers. Here, the issue of identification of
the parameterized model (7) is important.16 The other important use of the drivers
is to allow us to separate the bias and bias-free components of the coefficients.

We divide the complete set of coefficient drivers in each equation (8) into three
sets, the first of which is associated with the time variation in the true coefficient, the
second with the omitted-variable bias, and the third with any measurement error.
This division allows us to identify separately the bias-free, omitted-variables, and
measurement-error bias components of the coefficients of (7).

This division is the key to making our procedure operational; it is the division in
which we can associate the various forms of specification biases with the second
and third sets, which means that the first set simply explains the time variation
in the coefficients, which is caused by the nonlinearity in the true function with
unknown functional form. If the true (or data-generating) model is linear, then
all that is required for the first set is to contain the constant of (8). If the true
model is nonlinear, then the bias-free components should be time-varying and the
set of drivers belonging to the first set will explain the time variation in these
components.

3.3. Consistent Estimation

Under certain conditions, the iteratively rescaled generalized least-squares esti-
mators of the coefficients in (8) are consistent. With these estimates, Lehmann and
Casella’s (1998, Theorem 5.3, p. 467) method of solving the likelihood equations
gives asymptotically efficient estimators.17 The distributional theory underlying
this estimation technique and the method for conducting inference are given in
Swamy et al. (2010). It may seem surprising that the inference is standard rather
than dependent on the Dickey–Fuller distribution (or some other nonstandard
distribution); the intuitive reason that this comes about is that the distribution of
the TVCs is derived from the errors in the coefficient driver equations (8). As long



as these errors are stationary, the distribution of the coefficients of (7) will be of
the Cavanagh–Rothenberg (1995, 279–280) type [see Swamy et al. (2010)]. This
might be thought to be a challenging requirement, as of course the time-varying
coefficients may well be nonstationary, and so, to achieve a stationary error process
in the fixed coefficient linear driver, equation (8) might at first seem to require
conventional cointegration to exist here. However, this is not the case, as the driver
equations may be dynamic and therefore may contain lags of all the variables
included in (7). It is possible to show [using Cramér’s (1946) decomposition] that
sufficient lags in these variables will always ensure a stationary error in (8), and
hence inference is standard.

To illustrate, consider the standard case of testing a linear relationship between
x and y for cointegration. Dolado et al. (2001, 639–642) give a clear description
of these tests. Assume we have xt ∼ I (1), yt ∼ I (1). Then the conventional
approach would be to run the regression yt = β0 + β1xt + εt using ordinary least
squares and to test whether the resulting residuals are I(1) against the alternative
that they are I(0). If, with some adjustments discussed in Dolado et al. (2001), the
alternative is accepted, then it is concluded that x and y are cointegrated. We first
estimated the regression yt = β0 + β1xt + εt under the null of no cointegration,
εt ∼ I (1), and then drew the conclusion of cointegration under the alternative of
cointegration, εt ∼ I (0), and it is this change in the properties of the errors under
the null and the alternative that gives rise to the nonstandard distributions. In the
generalized cointegration/TVC framework, the problem would be formalized in
the following way. We would run the time-varying regression

yt = β0t + β1t xt ,

where the coefficient driver equation would be

βit = αi0 + αi1xt−1 + αi2yt−1 + vit i = 0, 1.

Now, substituting the driver equations into the model yields

yt = α00 + α01xt−1 + α02yt−1 + (α10 + α11xt−1 + α12yt−1)xt + v0t + v1t xt .

Under the null of no cointegration, β1t = 0 for all t, β1t = 0 for all t, α00 =
α01 = 0, and α02 = 1 and the errors from this regression are stationary if there
are no omitted lagged dependent variables. Under the alternative of cointegration,
β1t = β1 = α10, α11 = α12 = α01 = α02 = 0 and again the error process
is stationary if there are no omitted regressors. So under both the null and the
alternative, the errors are stationary and standard inference results.

Generalized cointegration does two things. First, it allows for the possibility
that we may have important omitted variables. Second, it allows for the possibility
that we may have misspecified or not know the true functional form. That is, under
generalized cointegration, we are able to estimate bias-free relationships among
a set of variables even if we do not know the true, underlying functional form
and even if there are missing regressors. Underlying generalized cointegration is



TABLE 1. Coefficient drivers versus instruments

Coefficient drivers Instruments

Correlation with error term No assumption Zero correlation; if this
fails instruments are
invalid

Correlation with the
misspecification

Should be correlated with
the misspecification

Should be uncorrelated
with misspecification,
but correlated with the
variable being
instrumented

Correlation between variables Set of variables correlated
with the true coefficient
should be uncorrelated
with the other sets

No assumption

a new way of thinking about, and testing for, cointegration that emphasizes the
properties of the real-world relationship rather than a particular model. If, in the
real world, a causal cointegrating vector exists that determines a variable, say, the
demand for a particular commodity, then, obviously, if one of the variables (say
X) in that relationship changes, demand will also change. This implies that the
partial derivative of demand with respect to X is nonzero.

3.4. Coefficient Drivers versus Instruments

How do coefficient drivers differ from instruments? In a practical application
the choice of the coefficient drivers and the decision as to how to use them are
somewhat arbitrary, in much the same way as the choice of instruments in an
instrumental variable estimation. Different drivers can give different answers, as
can dividing the drivers into the relevant three sets in different ways. It is worth
contrasting the different assumptions regarding drivers and instruments; Table 1
provides a comparison.

For instrumental variables we need variables that are relevant (correlated with
the variable being instrumented), but independent of the error process (the mis-
specification in the model); for good drivers we need variables that are correlated
with the misspecification, but that can be split into two sets that identify the
bias from the total coefficient. In practice, it is typically much easier to find
variables correlated with the misspecification than variables uncorrelated with the
misspecification, so this argues in favor of the driver approach.

4. CONCLUSIONS

Building on the TVC model, we proposed a generalization of the standard def-
inition of cointegration that allows for the existence of an unknown structural



nonlinear relationship among a set of nonstationary variables. The idea underly-
ing this definition is straightforward: If a structural relationship exists between
two or more variables, then the implication is that there will be a nonzero bias-free
effect of any of the independent variables on the dependent variable. Thus, the
significance of an estimate of this bias-free effect becomes a simple direct test
of generalized cointegration. Furthermore, we can estimate this effect and test its
significance without knowing the true functional form of the relationship or the full
set of regressors that should enter into it. This definition can be made operational
by applying the TVC estimation technique, which provides an estimate of the
bias-free effect.

Nonstationarity does not pose any problem for TVC estimation. TVC estimation
by construction produces a unique error term that is the correct function of certain
“sufficient sets” of omitted variables, whereas standard cointegration aims at a
stationary error term, but does not always produce such a stationary error. How-
ever, as in other modeling situations, the explicit recognition of nonstationarity
does offer advantages—n particular, in the identification of the correct set of coef-
ficient drivers to identify the bias-free component of the time-varying coefficient
correctly.

NOTES

1. See, for example, Arouri et al. (2012), and Lee (2013).
2. A recent and expanding literature has been concerned with building on the TVC model of

Swamy (1971, 1974). In this connection, Granger (2008) argued that TVC models will be the next
major development in econometrics. The so-called correlated random coefficient model is rigorously
derived in a long sequence of papers that include Swamy and Tavlas (2001) and Swamy et al. (2014).
Here the term “rigorously derived model” is used to convey the idea that the coefficients and error term
of the model are unique. The coefficients and error term of a model are said to be unique if they remain
invariant under equivalent changes in the relationship between the included and excluded regressors
of the model.

3. We use the term “generalized cointegration” despite the fact that integration is an inherently
linear concept, as we believe that this conveys the essence of what we are doing here, which is to
extend the notion of cointegration to a nonlinear framework.

4. See, for example, Park and Phillips (2001); Kanas (2003); Gonzalo and Pitarakis (2006); Karlsen
et al. (2007); Kasparis (2008, 2011); Al-Abri and Goodwin (2009); Wang and Phillips (2009); Choi and
Saikkonen (2010); Schienle (2011); Banerjee and Pitarakis (2012) ; and Berenguer-Rico and Gonzalo
(2012).

5. It is also possible to represent the process as a function of more than one lag. However, this is
the easiest form of the process to handle and is most relevant in demonstrating our point simply. To
avoid any misunderstanding here, we point out that between two models that perform equally well
in explanation and prediction, the one with fewer unknown parameters is parsimonious. We are not
claiming here that equation (2) is a parsimonious model.

6. If the true process is a conventional random walk without drift, then γ0t should be a white noise
process, γ1t should be equal to 1 for all t and the model should be linear. Hence, the usual random
walk case is a special case of equation (2).

7. See, also, the references cited in Karlsen et al. (2007).
8. As discussed in what follows, by “true” we mean the coefficient that links x to y in the real world

structural relationship under consideration. The notion that y and x are themselves nonstationary is not
crucial to our argument. In fact, in a nonlinear world, it is even possible to think of a variable being



stationary at one point in time and nonstationary at another. However, this assumption does keep the
analysis closer to the original spirit of cointegration.

9. To give some specific examples, consideryt = βxt + εt (which we consider to be the true
model), where xt ∼ I (2) and, therefore,yt ∼ I (2). Here the symbol I(d) denotes integrated of
order d; a nonstationary series is integrated of order d if it becomes stationary after being first
differenced d times [see Greene (2008, p. 740)]. Then yt and xt are cointegrated in the conventional
sense and in our generalized sense as dy/dx = β. As another example, consider a true nonlinear
relationshipyt = βx2

t + vt , where xt ∼ I (1) and v ∼ I (0); then y will not generally be integrated and
y and x will not be cointegrated in the Engle–Granger sense. However, in this nonlinear case, y and
x can be cointegrated in our generalized sense under the conditions of Swamy, Tavlas, and Hall (in
press).

10. For a standard way to reduce spurious correlations to zero by controlling for all relevant preex-
isting conditions, see Skyrms (1988, p. 59), and for the definition of a balanced nonlinear relationship
based on the concepts of the order of summability of a stochastic process and cosummability of
stochastic processes, see Berenguer-Rico and Gonzalo (2012, p. 9). See also Swamy and von zur
Muehlen (1988).

11. A formal and detailed description of the approach may be found in Swamy and Tavlas (2001,
2006) and Swamy et al. (2009, 2010, 2014, in press).

12. The intercept γ0t of (7) is the sum of the true intercept, the correct function of certain “sufficient
sets” of omitted regressors, and the measurement error in the dependent variable. For j = 1, . . ., K – 1,
γjt is the sum of the partial derivative of the true value of yt with respect to the true value of xjt and
the corresponding omitted-regressor and measurement-error biases.

13. Mathematically, model (7) may appear to be the same as the observation equation of a state
space model. To show that this similarity is only apparent, we point out that the interpretations of the
coefficients of the observation equation in the standard state space representation are quite different
from those of the coefficients of (7). Omitted-variable biases, measurement-error biases, and the
correct functions of certain “sufficient sets” of excluded regressors are not considered parts of the
coefficients of the observation equations of state-space models. Also, the problem of the dependence
of the coefficient of a regressor on the regressor does not arise in state space models. These are the
major differences between (7) and the observation equations of a standard state-space model. Jawadi
(2012) discusses the use of time-varying models in macroeconomics.

14. We say that the condition of identification of the components of coefficients is satisfied if
the bias-free component of each coefficient is accurately estimated. This condition is different from
Lehmann and Casella’s (1998, 24 and 57) condition of identification. The latter condition is used to
identify the fixed coefficients of equation (8) in this paper.

15. Given the coefficient drivers, the error terms of (8) are assumed to be conditionally independent
of the regressors of (7). The distributional assumptions about the errors in (8) are given in Swamy et al.
(2010).

16. To deal with this issue, we use Lehmann and Casella’s (1998, 24 and 57) concept of identification.
17. A computer program that implements this technique is available at http://www.le.ac.uk/

ec/sh222/soft.htm.
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