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Abstract A new competitive coevolutionary team-based par-
ticle swarm optimiser (CCPSO(t)) algorithm is developed to
train multi-agent teams from zero knowledge. The CCPSO(t)
algorithm is applied to train a team of agents to play simple
soccer. The algorithm uses the charged particle swarm opti-
miser in a competitive and cooperative coevolutionary train-
ing environment to train neural network controllers for the
players. The CCPSO(t) algorithm makes use of the FIFA
league ranking relative fitness function to gather detailed
performance metrics from each game played. The training
performance and convergence behaviour of the particle swarm
is analysed. A hypothesis is presented that explains the lack
of convergence in the particle swarms. After applying a clus-
tering algorithm on the particle positions, a detailed visual
and quantitative analysis of the player strategies is presented.
The final results show that the CCPSO(t) algorithm is capa-
ble of evolving complex gameplay strategies for a complex
non-deterministic game.

Keywords Cooperative coevolution · Competitive coevolu-
tion · Neural networks · Charged particle swarm optimiser ·
Zero knowledge ·Multi agent system · Simple soccer

1 Introduction

The Robocup (Kitano 1993) initiative was created to pro-
mote research in the areas of robotics and artificial intelli-
gence by offering a publicly appealing but formidable chal-
lenge. The techniques applied in training a team to win the
game of soccer can be mapped to the techniques capable
of solving real-world problems, such as further automating
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space exploration robots (Laubach et al 1998). This paper
presents the competitive coevolutionary team-based particle
swarm optimiser (CCPSO(t)) algorithm capable of training
players for a simplified soccer game from zero knowledge
about playing strategies.

The particle swarm optimiser (PSO) algorithm (Kennedy
and Eberhart 1995) is a recently developed population-based
optimisation method, with its roots in the simulation of the
social behaviour of birds within a flock. First developed by
Kennedy and Eberhart (Kennedy and Eberhart 1995) in 1995,
the PSO algorithm has been more successful in solving com-
plex problems than traditional evolutionary computation (EC)
algorithms (Kennedy and Eberhart 2001). Particle swarm
optimisers have proved successful in training board state
evaluators for games such as Tic-Tac-Toe, Checkers and Bao
(Messerschmidt and Engelbrecht 2002; Franken and Engel-
brecht 2003a,b, 2004; Conradie and Engelbrecht 2006). The
aforementioned training techniques require the construction
of traditional game trees, and using a competitive coevolu-
tionary PSO to train a neural network game state evaluator.
Constructing traditional game trees can become impractical
for games that are more complex, such as Go (Davis et al
2000). The same applies to games such as simulated soc-
cer where it may not even be possible to always construct
a game tree. In contrast to the above mentioned techniques,
the technique presented in this paper does not make use of
a game tree. Instead, the actions taken by each player is di-
rectly controlled by a neural network.

The CCPSO(t) algorithm presented in this paper is ap-
plied to train soccer-playing robot teams in a simplified soc-
cer game. In addition to training a team of players, the train-
ing is performed from zero knowledge, that is, no domain
information is provided to the training algorithm; only the
game outcome is known during training. As no domain in-
formation is required the algorithm can easily be adapted for
games other than simple soccer.
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Initial analysis of the training performance showed that
the particles of the CCPSO(t) algorithm were not converging
on a single solution, or playing strategy (Scheepers 2013).
A hypothesis is presented that explains the lack of conver-
gence. After applying the X-means clustering algorithm (Pel-
leg and Moore 2000) on the particles, the produced cen-
troids were used as the playing strategies. These playing
strategies were then evaluated. Visual analysis confirmed
that each centroid represents a different playing strategy. Re-
sults given in this paper show that the CCPSO(t) algorithm
is capable of successfully training players to play a complex
non-deterministic game.

The main contributions of this paper are: the CCPSO(t)
algorithm for training multi-agent teams from zero knowl-
edge, confirmation of a hypothesis that explains why the al-
gorithm does not converge on a single solution, and a quan-
titative analysis of the learned strategies to show that it is
possible to strategies from zero knowledge for a competi-
tive team-based game.

The remainder of this paper is organised as follows: Sec-
tion 2 presents the CCPSO(t) algorithm. Simple soccer and
the neural network architecture is described in section 3.
A detailed performance analysis is presented in section 4.
The performance analysis includes an analysis of the con-
vergence behaviour and verification of a hypothesis to ex-
plain the lack of convergence to a single playing strategy.
Findings and conclusions are presented in section 5.

2 The CCPSO(t) Algorithm

Scheepers introduced the first CCPSO model for training of
multi-agent teams from zero knowledge (Scheepers 2013;
Scheepers and Engelbrecht 2014). The CCPSO(t) proposed
in this paper augments the CCPSO algorithm by introduc-
ing a bound restriction on the personal best particle posi-
tions. The bounding operator was implemented as a guard
on the personal best position update. The personal best po-
sition was only updated if all the components of the new
personal best position fell within the (−5.0, 5.0) predefined
boundary. By bounding the personal best particle position,
particles will always be pulled back into the bounded region
by the cognitive component of the velocity update equation.

Bounding the region of the personal best position in turn
helps to prevent values from moving too far away from the
active region of the neural network activation functions as
used in the problem being optimised. Specifically, the bound-
ing operator was shown to avoid saturation of the neural net-
work weights during the search process (van Wyk and En-
gelbrecht 2010; Scheepers 2013).

Each game agent, or neuro-controlled player, is repre-
sented in the CCPSO(t) algorithm as a separate swarm of
particles. Each particle position represents a weight vector

for the neural network of the corresponding player. The train-
ing objective for the CCPSO(t) algorithm is to find the best
performing particle positions for each of the swarms. These
best performing particle positions represent the best perform-
ing players for each of the corresponding player positions.

Previous work showed that a competitive coevolutionary
training environment can be seen as a dynamical environ-
ment (Scheepers 2013). To improve performance in the pres-
ence of a constantly changing search space, the CCPSO(t)
algorithm makes use of the charged PSO as introduced by
Blackwell and Bentley (2002a,b); Blackwell (2003).

The CCPSO(t) uses the FIFA relative fitness function to
measure relative fitness for each particle. The FIFA relative
fitness function calculates the relative fitness for a player as
follows:

F (t) =
N

∑
n=1

(Mn×
200−Tn

100
) (1)

where N is the number of games played in the competitive
coevolution tournament, Mn is the n’th game outcome, de-
fined as:

Mn =


3 for a victory
1 for a draw
0 otherwise

(2)

and Tn is the n’th opposition team’s rank. Each tournament
team consists of randomly chosen team members. The op-
position team rank, Tn, is calculated by averaging the rank
of the members of the opposition team as follows:

Tn =
∑

P
p=1 r(p)

P
(3)

where function r(p) represents the rank of player p in a team
consisting of P players. A player’s rank is determined based
on the relative fitness of the particle in the previous iteration.
The player with the highest relative fitness in the previous it-
eration is ranked first, followed by the player with the second
highest relative fitness, and so forth.

Algorithm listing 1 presents the pseudocode implemen-
tation for the CCPSO(t) algorithm as used in this work. To
avoid early stagnation and aid exploration, a hall of fame
(HOF) was also used (Rosin and Belew 1995, 1997). The
HOF maintains a collection of the best performing individu-
als from each generation since the evolutionary process has
started. This collection of previous best performing individ-
uals helps to combat the loss of exploration by preserving
past good characteristics.

3 Simple Soccer Reference Problem

This section provides an overview of the simple soccer train-
ing model. The simple soccer training model was specifi-
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Create and initialise a swarm of neural networks for each game position.
repeat:

for each swarm O(t) do
for all swarms Os(t) 6= O(t) do

Add each personal best position to the competition pool for swarm Os(t).
Add each particle to the competition pool for swarm Os(t).

end for
for each particles Pi (or NN) in the swarm O(t) do

repeat:
Select team members and opponents from the competition pools.
Play a game using the selected players.
Record if game was won, lost or drawn.

until predefined number of games has been played.
Determine a score for each particle.
if the particle position is within the search space boundary

Compute new personal best position based on score.
end if

end for
Compute new neighbourhood best position.
Update particle velocities.
Update particle positions.

end for
until all swarms converge or iteration limit is reached.
The Global best particle in each swarm is the trained neural network game agent for the corresponding team position.

Algorithm 1: Pseudocode for a basic CCPSO(t) algorithm implementation.

cally designed for this study. The neural network architec-
ture, as used by the neuro-controlled players, is also dis-
cussed.

Simple soccer is played on a 5×6 grid based field as de-
picted in figure 1. The game is played by two teams, A and
B, each consisting of two players A1, A2 and B1, B2 respec-
tively.

Each player is controlled by a feed forward neural net-
work (Haykin 1998). Information is fed to the neural net-
work using four neurons per class of object on the field.
Classes of objects are the ball, nearest team-mate, nearest
opponent, and wall. The four neurons represent the distance
to the object in a specific direction, i.e. north, south, east or
west. The input functions for the four neurons are defined as
follows:

f (north) =
{

∆y
d2 if y > 0
0 if y≤ 0

(4)

f (south) =
{

∆y
d2 if y < 0
0 if y≥ 0

(5)

f (west) =
{

∆x
d2 if x < 0
0 if x≥ 0

(6)

f (east) =
{

∆x
d2 if x > 0
0 if x≤ 0

(7)

where ∆x is the distance along the east-west direction and
∆y is the distance along the north-south direction; d is de-
fined as d =

√
∆x2 +∆y2.

A
1

A
2

B
1

B
2

Fig. 1 Simple soccer player positions
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The neural network output consists of an eight dimen-
sional floating-point vector with values scaled between 0
and 1. The vector is constructed by combining the move-
ment and kick vectors. The movement vector indicates the
movement direction, and the kick vector indicates the direc-
tion to kick the ball. The four values per vector are desir-
ability factors to move or kick in each of the primary di-
rections: forward, backward, left, and right. A desirability
factor larger than 0.5 indicates a desire to move or kick in
the corresponding direction.

The work presented in this paper used a feed forward
neural network with five hidden neurons (Scheepers 2013).
The hyperbolic tangent activation function was used for both
the hidden and output layer neurons.

For a detailed discussion on simple soccer and the neural
network architecture used in this work refer to Scheepers
(2013) and Scheepers and Engelbrecht (2014).

4 Performance Analysis

This section discusses the performance of the CCPSO(t) al-
gorithm. The experimental procedure is described in section
4.1, followed by an analyses of the convergence behaviour
in section 4.2. The convergence behaviour analysis showed
that the swarms did not converge. Section 4.3 presents and
investigates the multiple strategies hypothesis as a reason for
the lack of convergence. Finally, sections 4.4, 4.5, and 4.6
present a gameplay analyses of the various trained players.

4.1 Experimental Procedure

The parameters of the CCPSO(t) algorithm were optimised
for training using the simple soccer training model discussed
in the previous section. Parameter optimisation was done
using a parallel coordinate visualisation technique (Franken
2009). The parallel coordinate visualisation technique works
by plotting the performance of different parameter combina-
tions along with the measured performance of each parame-
ter combination. The well performing values of the various
parameters can be seen by highlighting the area formed by
the top performing parameter combinations. For a full pa-
rameter sensitivity analysis, the interested reader is referred
to Scheepers (2013) and Scheepers and Engelbrecht (2014).
Table 1 provides a summary of the optimised parameter val-
ues used in this work.

The optimised parameters were used to run 30 indepen-
dent simulations. Each simulation was executed with an it-
eration limit of 500 iterations. The measurements reported
below were taken over the 30 independent simulations.

The following five subsections analyse and discuss in
detail the training performance of the CCPSO(t) algorithm.

The analysis starts by investigating the convergence beha-
viour of the CCPSO(t) algorithm. The convergence beha-
viour showed that the swarms did not converge during train-
ing. The multiple strategies hypothesis is then presented to
explain why the swarms did not converge. X-means clus-
tering was applied to verify the aforementioned hypothesis.
The reader should note that any other clustering algorithm
could have been used. X-means clustering was chosen for
its simplicity and the fact that it dynamically determines the
optimal number of clusters. Finally, the found cluster cen-
troids were evaluated visually and quantitatively as trained
candidate players.

Due to space concerns, the visual analysis presented be-
low was performed on the cluster centroids of a single sim-
ulation. Visual analysis of the cluster centroids for the other
simulations yielded similar results.

4.2 Convergence Behaviour

In order to analyse the convergence behaviour of the par-
ticles, the swarm diversity was measured for each of the
swarms during the search process. Swarm diversity is cal-
culated as the degree of dispersion of particles and is for-
mally defined in Krink et al (2002). A high swarm diversity
is desired early on in the search process. A high swarm di-
versity promotes better exploration of the search space. As
the search progresses, a lower swarm diversity becomes de-
sirable. A low swarm diversity indicates more particles are
converging on the already found solution.

Figure 2 depicts the swarm diversity obtained by mea-
suring the swarm diversity for one of the swarms when us-
ing the CCPSO(t) algorithm to train simple soccer players.
The average swarm diversity as well as standard deviation
over 30 simulations is shown. The swarm diversity of the

Table 1 CCPSO(t) parameters

Parameter Value

Swarm type Atomic (50%)
Neighbourhood structure Von Neumann
Inertia weight 0.729844
Social constricting coefficient 1.49618
Cognitive constricting coefficient 1.49618
Initial particle velocity 0
Initial particle positions R(−1,1)
Swarm size 20 particles
Perception limit 500.0
Perception core 2.0
Charge magnitude 15.0
Maximum particle velocity 15.0
Hall of fame size 4
Hall of fame update iterations 30
Competition pool size 15
Personal best re-evaluation iterations 3
Personal best bounding restriction (−5.0,5.0)
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Fig. 2 Swarm diversity using the CCPSO(t) algorithm over 30 simulations

other swarms reflect a similar pattern as that depicted in fig-
ure 2. The initial drop in swarm diversity is clearly visible
up to iteration 250. However, after iteration 250 the diver-
sity no longer decreases a notable amount, indicating that
the swarm is not converging on a single solution. Scheepers
showed that the high swarm diversity was not due to the use
of the charged PSO (Scheepers 2013).

Convergence in the CCPSO(t) algorithm is driven by
the shared xgbest component of the velocity update equation.
All the particles in the swarm is pulled towards the global
best position. The search process leads to a behaviour where
the global best position jumps around in large steps right
after the swarm is initialised. As the search process pro-
gresses and a smaller area of the search space is exploited,
the jumps in the global best position becomes smaller. Ob-
viously, should a faraway solution be found that presents a
better solution, the global best position moves in a single
large jump to that new location.

As previously noted, the problem investigated by this
work is not a static, predictable one, but is rather classi-
fied as a dynamic environment problem in which the search
space constantly changes. For a dynamic environment, it is
expected that the global best position changes more often
than for a static problem. However, in the case of the simple
soccer problem investigated in this work, convergence on
specific gameplay strategies is hoped for. It is expected that
changes in the global best position decrease to extremely
small jumps as a player/swarm exploits a gameplay strategy.

In order to investigate the behaviour of the global best
position, a new measurement was implemented to track the
magnitude of the jumps in the position of the global best po-
sition between consecutive iterations. The global best move-
ment measure, Φ(t), is defined as

Φ(t) =
J

∑
j=1
|xgbest, j(t)−xgbest, j(t−1)| (8)

where J is the number of dimensions of xgbest . This new
measure simply adds the magnitude of the change in each
dimension together. Small values indicate a small change in
position, whereas large values indicate a larger change in
position. The measurement gives an indication of the mag-
nitude of a change in position.

Figure 3 depicts the results obtained when measuring
Φ(t) for the CCPSO(t) algorithm. Both the average and stan-
dard deviation is shown. The graph indicates fairly chaotic
behaviour in the swarm, with the global best position chang-
ing continuously by making fairly large jumps. A high stan-
dard deviation among the 30 evaluated simulations is also
noted.

The CCPSO(t) algorithm exhibited a slight decrease in
the size of the jumps noted up to around iteration 200, af-
ter which the jump size stabilised. The average jump size
still exceeded 200 after 500 iterations, with a noticeably high
standard deviation among the 30 simulations evaluated.

The observed behaviour contradicts the expected behav-
iour that the global best position jumps would become smaller
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Fig. 3 Measured Φ using the CCPSO(t) algorithm over 30 simulations

as the search progresses. The observed behaviour clearly in-
dicates that the CCPSO(t) algorithm is not leading to any
form of convergence.

From the xgbest behaviour analysis it is clear that the
global best position still changes position quite dramatically,
and no single solution is converged onto.

4.3 Multiple Strategies Hypothesis

The observed jumping behaviour might be explained by eval-
uating the following hypothesis: If multiple gameplay strate-
gies are found by each swarm, the optimal strategy, repre-
sented by the global best position, will move between these
strategies as no one strategy prove superior to other game-
play strategies. An offensive strategy might prove superior
to a defensive strategy against an extremely aggressive op-
position team. In other cases, however, the defensive strat-
egy might prove superior or an alternative attack strategy
might exploit a weakness against an opposing team leading
to a win. The optimal and best performing strategy will thus
vary between iterations with no single optimal strategy be-
ing superior.

Multiple gameplay strategies are present in the search
space as different optimal areas (or peaks in the hyper di-
mensional search space). If multiple strategies (solutions)
exist, particles will “group” around these optimal areas form-
ing clusters of particles, with each cluster effectively con-
verging on its own optimal position. The behaviour observed

in the previous subsection can then be explained as the global
best position changing position between different clusters.
Because each cluster is spaced noticeably far away from the
others, the jumps between the clusters are clearly visible in
the figures.

In order to evaluate the clustering hypothesis, X-means
clustering was applied to cluster the global best positions
found for each iteration that the algorithm ran. The X-means
clustering algorithm extends the K-means clustering algo-
rithm with efficient estimation of the optimal number of clus-
ters (Pelleg and Moore 2000). X-means allow for data to be
clustered without knowing beforehand how many clusters
exist. X-means also attempts to address the computational
scalability shortcoming of the K-means algorithm when deal-
ing with larger datasets. The X-means clustering algorithm
was applied to the global best positions for each of the swarms
separately. This resulted in four sets of clusters (one set for
each player position).

The X-means algorithm revealed that clusters were in-
deed formed in the swarms. The number of clusters found
per swarm varied between two and five. In effect, this indi-
cate that each swarm, or game agent learned between two to
five different gameplay strategies. The next subsection ex-
plores the different strategies that were learned. It should
be noted that two clusters may represent exactly the same
behaviour, because equivalent neural networks can be ob-
tained by simply swapping hidden layer neurons. The result-
ing neural networks, after swapping hidden neurons, have
exactly the same behaviour.
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To confirm the proposed hypothesis, each cluster is anal-
ysed and the gameplay strategy represented by each cluster
is identified. To achieve this goal, agents were trained with
the CCPSO(t) training algorithm and clusters were com-
puted for each of the four swarms that represented the trained
players. Each cluster centroid was taken as the playing strat-
egy of the player that corresponds to that swarm. Each of
these candidate players was then visually analysed when
playing against every other candidate player.

4.4 Player Strategy Analysis

Figure 1 labels the simple soccer player positions. For each
position, each centroid was analysed independently against
every other centroid. The observed behaviour of each cen-
troid is discussed in this subsection. Analysis of the com-
bined effect of the observed behaviours is provided in the
next subsection. It should be noted that when the player be-
haviours are viewed in isolation, the behaviours described
below can be seen as undesirable or even counter-productive,
though the combined effect and interaction of these behaviours
sheds light on how these behaviours evolved. The notation
used, Xy(z), indicates team X , position y, and centroid num-
ber z.

4.4.1 Player A1

Four centroids were identified for player A1. Each centroid’s
behaviour is described below.

Centroid 1: The first complex gameplay behaviour observed
was ball chasing behaviour. When the ball is kicked over
the block player A1 occupies, player A1 moves in the direc-
tion of the ball to gain ball ownership. Once player A1 has
the ball, the ball is kicked in the direction of the opposition
team’s goal. This chasing behaviour is repeated until a goal
is scored. Figure 4 depicts the ball chasing behaviour. For
illustrative purposes, only the applicable players are shown
in the figure. Chasing behaviour was limited to forward and
backward movement.

Centroid 2: Basic forward and backward ball chasing be-
haviour was observed in some games. However, it was not as
successful as that of centroid 1. Sideways kicking behaviour
was also observed, where player A1 kicked the ball to the
left and continued to move forward.

Centroids 3 to 4: Basic forward goal-running behaviour was
observed. In cases where an opponent player obstructed the
forward path a kick was used to pass the ball over the oppo-
nent player. No forward, backward, or sideways ball-chasing
behaviour was observed. This was the most simplistic play-
ing behaviour observed.

Fig. 4 Player A1(1) demonstrating ball fetching behaviour

4.4.2 Player A2

Two centroids were identified for player A2, each centroid’s
behaviour is described below.

Centroid 1: The player moves, without the ball, to the cen-
tre line of the field and then proceeded in the direction of
the opposition goal. In cases where the ball ownership was
gained a constant rule applied: If the opposition goal is three
blocks away, kick to the left, or if the opposition goal is four
blocks away, kick the the right. When viewed in isolation,
this kicking behaviour does not look sensible. The next sub-
section shows that this behaviour forms part of a more com-
plex strategy. Figure 5 depicts this behaviour.

Centroid 2: Player A2 simply moved to the right of the field,
irrespective of the ball position.

4.4.3 Player B1

Four centroids were identified for player B1, and all the cen-
troids for player B1 exhibited similar behaviour.
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Fig. 5 Sideways kick

Centroids 1 to 4: Player B1 exhibited a forward-moving ball-
kicking behaviour. In cases where opposition players blocked
the way forward, player B1 kicked the ball over them. Once
player B1 recovered the ball, a kick into the goal is per-
formed. Figure 6 depicts a typical game. Visual analysis
showed this strategy was quite successful where the out-
come was often determined by the ball’s random starting
position.

4.4.4 Player B2

Four centroids were identified for player B2, each centroid’s
behaviour is described below.

Centroid 1: Player B2 simply moved to the left of the field,
irrespective of the ball position.

Centroid 2: An interesting looping behaviour was observed
for player B2, where the player moves one block forward
to the left, and then backwards one block to the right. This
looping behaviour led to an interesting catch of the ball, as
depicted in figure 7. Although the looping behaviour over-
shadowed most of this players’ other movements, the actual
position of where on the field the player looped is at least
partially linked to the position of player B1. The final side-
ways movement depicted in figure 7 is due to player B1 (not
shown in the figure) moving closer to the opposition goal.

Centroid 3: The player only moves in a forward and left
direction. Once the edge of the board is reached, the player
continues to move forward. Ball-kicking behaviour is not
observed, except in a very special case: if the player has ball
ownership in the top left corner of the board, a right forward
kick is performed that results in a goal being scored. This
behaviour is shown in figure 8.

Fig. 6 Player B1(1) scores a goal

Centroid 4: This player exhibited the most complex behaviour
of all the behaviours analysed: sideway movement, looped
movement, chasing behaviour, and opponent avoidance be-
haviour were observed. Figure 9 depicts a simulation where
player B2 moved away from the goal only to return just in
time to prevent the opposition team from scoring a goal.
A number of games showed ball-chasing and recovery be-
haviour. Looping behaviour where the player moved one
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Fig. 7 Player B2(2) catches the ball

block left, followed by one block right, and so forth, was
noted in other games.

Analysis of the playing strategies represented by the cen-
troids in isolation demonstrated that each centroid does in-
deed represent different behaviours.

Fig. 8 Player B2(3) kick sideways

4.5 Game Strategy Analysis

Analysis of each behaviour showed that the centroids do in-
deed represent different behaviours, and the proposed hy-
pothesis that each centroid represents a different optimum is
true. This subsection explores the more complex behaviours
that emerged from different permutations of these behaviours
in a team context. Interaction between players clearly demon-
strates scenarios where some of the previously shown to be
bad behaviours can result in good gameplay strategies, scor-
ing more goals and preventing the opponents from scoring
goals more often. For each of the games discussed below
it is shown which player (centroid) behaviour permutations
form part the game. The centroid numbers correspond to the
behaviours analysed in the previous subsection.

The four identified gameplay strategies are discussed be-
low in detail.

4.5.1 Ball Ownership Exchange

The first complex gameplay strategy that was observed is il-
lustrated in figure 10. The players that made up two teams
were A1(1), A2(1), B1(3) and B2(2). The gameplay features
various kicks matching individual behaviours previously anal-
ysed. Player B2 also moved in to intercept the ball success-
fully. As previously noted, the position of player B2 is loosely
linked to the position of B1 and this is also the reason why
player B2 moved in to intercept the ball. The final kick per-
formed by player A2 effectively takes the ball out of play
leading to a draw.

Even though the game ended in a draw due to none of the
players being able to find the ball in the end, the gameplay
strategy visible here is fairly complex.
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Fig. 9 Player B2(4) moves over the field and returns to protect the goal

4.5.2 Anticipatory Counter-move

As with the previous game analysed, the second game also
revealed how the previously individually analysed behaviours
led to more complex gameplay strategies if combined and
not studied in isolation. Figure 11 depicts the second game
to be analysed with players A1(4), A2(1), B1(4) and B2(3).
Subsection 4.5.1 showed how player B2 had the potential to

Fig. 10 Multiple ball ownership exchanges

score a goal by moving on the left edge of the playing field
with the ball, all the way to the team A side. It was also
shown that player A2 kicked the ball to the left once it had
the ball and was still four blocks away from the team B goal.

The second game demonstrates how player B2 learned to
exploit the predictable sideways kick behaviour of player A2.



Training Multi-Agent Teams from Zero Knowledge with the Competitive Coevolutionary team-based Particle Swarm Optimiser 11

Fig. 11 Example of the anticipatory counter-move gameplay strategy

While the sideways kick in other games forces a draw result,
in this game the sideways kick leads to a loss for team A.

4.5.3 Runaround Movement

The third game, as depicted in figure 12, demonstrates drib-
bling behaviour. Players A1(4), A2(2), B1(1) and B2(4) par-
ticipated in the game.

Fig. 12 Example of the runaround movement gameplay strategy

Dribbling was used by player B2 to effectively bypass
player A1 without risking loss of ball ownership. The move
is finished off by moving back onto the middle line in a side-
ways forward movement, allowing for a direct goal kick.

The effectiveness and success of this strategy is clearly
visible.

4.5.4 Complex Comeback

The final game that demonstrated a unique complex playing
strategy demonstrates how an offensive strategy is turned
around to defend against a goal being scored. Players A1(4),
A2(2), B1(2) and B2(4) played in the game depicted in figure
13, showing player B2 moving aggressively sideways and
forward until team A assumes ownership of the ball.

Player A1 follows a straightforward attack strategy where
the ball is kicked towards the team B goal, while the player
also moves towards the goal. The ball is kicked over player
B1 to prevent losing the ball to team B. Player A1 keeps on
moving towards the block with the ball for the final goal
kick. However, player B2 at this point is the same distance
away from the ball, also moving towards the ball. The two
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Fig. 13 Example of the complex comeback gameplay strategy

players arrive on the block with the ball at the same time, in
which case ball ownership is determined randomly. In this
case, B2 managed to attain ownership. The ball is subse-
quently kicked towards the middle of the board, where no
other players manage to retrieve it. The game ended in a
draw.

4.6 Quantitative analysis

The visual analysis presented a limited-scope review of the
player behaviours, although it did show behavioural traits
that evolved which would otherwise not be visible in a quan-
titative analysis. This section provides the reader with a quan-
titative analysis of the trained players.

In order to compensate for the non-deterministic nature
of simple soccer, each player, representing a cluster centroid
in the particle swarm, was evaluated playing 15000 games in
each team combination. The results are presented in tables
2 and 3. Table 2 presents the results for the different team
permutations averaged over all the opposition team permu-
tations. Four measurements are reported in the table: The av-
erage number of goals scored in each game, the average iter-
ations it took for a goal to be scored, the percentage of games
that ended in a draw, and the percentage of games the team
won. It should be noted that the percentage of games end-
ing in a draw are reported in a separate column in the tables
and not calculated as part of the win/loss percentage. For ex-
ample, the team {A1(1),A2(2)} won 75% of the rounds not
ending in a draw. Table 3 presents the same results at player
level.

A number of observations can be made by reviewing the
team performance results:

– Team B teams never lost more than 50% of the games.
– Three team B teams won 100% of the games that did not

end in a draw. A minimum of 30% of the games played
by these teams ended in draws.

– Two team A teams lost 100% of the games. A minimum
of 37% of the games played by these teams ended in
draws.

– Team {A1(2),A2(2)} did not score a single goal in all
the games.

– 20.41% of the total number of games played resulted in
draws.

– With the exception of three team A teams, {A1(1), A2(1)},
{A1(1), A2(2)} and {A1(2), A2(1)}, it took an average of
5 iterations per goal. For the three team A teams it took
an average of 6 iterations per goal.

The results for the two team A teams, {A1(2), A2(1)} and
{A1(2), A2(2)}, that lost all of their games can be traced
back to the player performance figures in table 3 for player
A1(2), revealing that this player did not win a single game in
any team combination. In addition, this player also had the
highest game draw percentage of 38.58%.

The average number of iterations per goal can also be
related to the player performance figures. Player A1(1) and
A1(2) are the only players that had an average of 6 iterations
per goal, corresponding to the three team A teams, {A1(1),
A2(1)}, {A1(1), A2(2)} and {A1(2), A2(1)}, in table 3. The
fourth team A combination, {A1(2), A2(2)}, did not score
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Table 2 Team performance

Team Average goals scored Iterations per goal % draws % wins
A1 A2
1 1 2.482 5.952 22.10 37.50
1 2 3.286 6.479 16.23 75.00
2 1 0.533 6.000 39.86 0.00
2 2 0.000 37.30 0.00
3 1 2.268 5.000 16.25 12.50
3 2 3.403 5.000 7.72 37.50
4 1 2.272 5.000 16.17 12.50
4 2 3.403 5.000 7.67 25.00

B1 B2
1 1 3.540 5.023 12.66 75.00
1 2 1.844 5.032 36.95 50.00
1 3 4.037 5.022 7.53 62.50
1 4 1.761 4.968 39.35 62.50
2 1 3.538 5.023 12.60 75.00
2 2 2.439 5.031 25.46 87.50
2 3 4.056 5.022 7.65 62.50
2 4 2.198 4.967 31.10 100.00
3 1 3.536 5.023 12.55 75.00
3 2 2.434 5.031 25.63 87.50
3 3 4.048 5.023 7.50 50.00
3 4 2.196 4.967 31.35 100.00
4 1 3.539 5.023 12.35 75.00
4 2 2.434 5.032 25.52 87.50
4 3 4.036 5.023 7.64 50.00
4 4 2.219 4.994 30.57 100.00

Table 3 Player performance

Player Average goals scored Iterations per goal % draws % wins
A1
1 2.884 6.215 19.17 56.25
2 0.267 6.000 38.58 0.00
3 2.836 5.000 11.98 25.00
4 2.837 5.000 11.92 18.75

A2
1 1.889 5.454 23.59 15.63
2 2.553 5.493 17.23 34.38

B1
1 2.796 5.011 24.12 62.50
2 3.057 5.011 19.20 81.25
3 3.053 5.011 19.26 78.13
4 3.057 5.018 19.07 78.13

B2
1 3.538 5.023 12.59 75.00
2 2.288 5.031 28.39 78.13
3 4.044 5.023 7.58 56.25
4 2.093 4.974 33.09 90.63

any goals so no average was recorded. From the Simple Soc-
cer rules it can be deduced that the minimum number of iter-
ations required to score a goal is 4 in the case where player
A1 or B1 scores the goal and 5 in the case where player A2 or
B2 scores the goal. Only player B2(4) had an average num-
ber of iterations per goal less than 5. Based on the mini-
mum number of iterations needed to score a goal, it can be
deduced that player B2(4) had to have scored the goals in
those cases. Player B2(4) was also previously shown, in sub-

section 4.4.4, to have exhibited the most complex behaviour
in the visual analysis, a trait that is also clearly visible in
the discrete measurements. The team performance results
shown indicate that B2(4) won all the games in all its team
combinations, except when paired with player B1(1) - lead-
ing to an average of 90.63% games won. Player B1(1) is
shown to be the weakest of the team B players, winning only
62.50% of the games.
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Note that there is not a very strong correlation between
the average number of goals scored and the outcome of a
game. A high average number of goals does not automati-
cally lead to a win. Player B2(4), the best performing player,
maintained an average of only 2.093 goals scored per game
while winning 90.63% of the games. The only player with
a lower number of iterations per goal was A2(2), which also
lost all its games.

Also note the influence that player B2(3) had on the
teams in which it played. All these games had the lowest
draw percentages, but not the best performance. These team
compositions resulted in quite poor performance when eval-
uating the percentage of games won. As previously noted in
the visual analysis, this player had learned a very specific
move - to intercept a sideways kick and perform an angled
goal kick. In cases where it did not have the ball, it simply
moved towards the opposition goal on the side of the field.
The measured bad performance of this player emphasises
the importance of both players in a team staying in the game
for the best possible result - once one player is taken out of
the game, the combined performance decreases visibly. This
also demonstrates the importance of defensive play as the
low draw percentage is simply due to the opposition team’s
scoring goals more easily. Remember that a draw is more de-
sirable than a loss result. It is also illustrated that the trained
players are able to exploit even a small weakness in their op-
position. In this case, instead of drawing more games, they
succeed in scoring more goals against their weak opposition.

5 Findings and Conclusions

This paper proposes a new competitive coevolutionary team-
based particle swarm optimisation (CCPSO(t)) algorithm to
train multi-agent teams from zero knowledge. Initial perfor-
mance analysis of the CCPSO(t) algorithm revealed that the
particles in the various swarms did not converge onto sin-
gle solutions. Instead, the swarms maintained a notably high
swarm diversity. A behavioural analysis of the global best
position revealed that the global best position jumped con-
siderable distances between iterations. This was seen as a
sign that the particle swarm might be converging on mul-
tiple optimal areas in the search space. In order to verify
this hypothesis, the X-means clustering algorithm was ap-
plied to the particles. It was revealed that the particles were
indeed clustering around certain areas in the search space.
The cluster centroids were calculated as candidate players
for each position for further investigation.

Each centroid was evaluated as it played in each team
permutation against each opposition team permutation. The
resulting games were visually inspected to identify the be-
havioural traits of each player and team. The resulting strate-
gies were discussed in detail. To counter the possible sub-
jectivity of the visual analysis, a quantitative analysis of the

performance was also conducted and the results of that anal-
ysis were discussed in detail. The results revealed that strong
gameplay strategies, based on at least a manner of team-
work, emerged. In addition, it was shown that each cen-
troid represents a different player behaviour that should be
treated, and thus scored, individually as a candidate player
for the team. The results also revealed that weaknesses in
the players are easily exploited by the opposition team, in-
dicating that a good team required not only a good offensive
behaviour, but also a good defensive behaviour.

Overall it was shown that the CCPSO(t) training algo-
rithm, along with the FIFA league ranking relative fitness
function, was capable of training players from zero knowl-
edge to successfully play a complex, non-deterministic game.
A weakness in the algorithm was also identified; it was shown
that the training algorithm does not converge on a specific
playing strategy. Instead, it was shown that the particles in
each swarm converged on different playing strategies. It is
left as future work to further improve the training algorithm
to deal with the multiple playing strategies found by each
swarm. Also, to use a niching PSO to promote finding of
multiple strategies.

While the goal of this article was mainly to analyse the
learned playing strategies and to show that sensible strate-
gies for team-based games can be learned from zero knowl-
edge, future work will also focus on benchmarking against
other team-based approaches to simple soccer.
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