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Abstract. Sibling curves were demonstrated in papers [2, 3] as a novel way to
visualize the zeros of complex valued functions. In this paper, we continue the work
done in those papers by focusing solely on polynomials. We proceed to prove that
the number of sibling curves of a polynomial is the degree of the polynomial.
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1. Introduction. In [1] we followed the historical journey of finding roots of
complex functions, both algebraically and graphically. Three ways to visualize the
complex roots of polynomial equations were discussed which are all informative but
somewhat artificial. Then a fourth under-explored approach by Howard Fehr was
considered which led to the idea of sibling curves [2]. This approach turns out to
be a rich and useful way of visualizing zeroes of polynomials.

A polynomial f that maps complex numbers onto complex numbers, has n
complex roots. This is a result that follows from the Fundamental Theorem of
Algebra. For example, if f(z) = z2 +1, we get two solutions i and −i. The roots in
this case are imaginary and the question of how to visually represent these zeroes
is answered by means of the concept of sibling curves.
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If we restrict the domain of f to those complex numbers that map onto real
values, then the function has real values on this domain and can be represented in
three dimensions with the domain in the horizontal plane and the range along the
vertical axis. For example, a polynomial f can be written in the form

w = f(z) = f(x+ iy) = g(x, y) + ih(x, y)

for some polynomials g and h. If f maps the complex number x + iy onto a real
number w then h(x, y) = 0. We restrict the domain of the function f to all points
in the xy-plane such that h(x, y) = 0. The condition that h(x, y) = 0 defines a
curve(s) in the Argand plane. The function f with these curves as domain form
the sibling curves. We demonstrate this with a few examples.

Example 1.1. Consider the function f(z) = z2. We are interested in finding all z
such that f(z) ∈ R. To do so, let z = x + iy where x, y ∈ R. Then f(z) = z2 =
(x2 − y2) + 2ixy and f(z) is real valued when 2xy = 0, that is x = 0 or y = 0.
This produces two sibling curves, namely the parabola f(z) = −y2 on x = 0 and
parabola f(z) = x2 on y = 0. These two sibling curves can be parametrized by
(it,−t2) and (t, t2), where t is a real number. Note that the root 0 lies on both
sibling curves. See Figure 1.

Figure 1 : Sibling curves of f(z) = z2.

Example 1.2. Consider another quadratic function f(z) = z − z2. Suppose z =
x + iy where x, y ∈ R. Then f(z) = z − z2 = (x − x2 + y2) + i(y − 2xy) is real
valued when y(1 − 2x) = 0. Hence x = 1

2 or y = 0. It again produced two sibling
curves. One is the parabola in the plane x = 1

2 and the other is a parabola in the
plane y = 0. These two sibling curves can be parametrized by ( 1

2 + it, 1
4 + t2) and

(t, t− t2) with t ∈ R. Note that the roots 0 and 1 lie on the second sibling curve.
See Figure 2.
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Figure 2 : Sibling curves of f(z) = z − z2.

Example 1.3. Now consider a simple cubic function f(z) = z3. Suppose z = x+iy
where x, y ∈ R. Then f(z) = z3 = (x3 − 3xy2) + i(3x2y − y3) is real valued when
y(3x2 − y2) = 0. Solving gives y = 0 or y =

√
3x or y = −

√
3x. This time, we

found three sibling curves each living in the planes y = 0, y =
√

3x and y = −
√

3x
respectively. These sibling curves can be parametrized by (t, t3), (t + i

√
3t,−8t3)

and (t− i
√

3t,−8t3) with t ∈ R. Note that the root 0 lies on all the sibling curves.
See Figure 3.

Figure 3 : Sibling curves of f(z) = z3.

From the examples we see that sibling curves are 3D-curves in C×R consisting
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of the points (z, f(z)) in C× R for which f(z) is real. This enables us to define a
sibling curve parametrically.

Definition 1.4. If f is a function f : C→ C and g : R→ C× R a function such
that g(t) = (z(t), f(z(t))) with f(z(t)) ∈ R, then the set of points {g(t) : t ∈ R} is
called a sibling curve of f .

Armed with the notion of sibling curves, we are ready to tackle the simplest
polynomials of degree n.

Example 1.5. We will show that the function f : C → C where f(z) = zn for
some positive integer n has n sibling curves. To find the sibling curves of f(z) = zn,
we want to find all the values of z such that f(z) ∈ R and then form sibling curves
using these points. To determine these z, we use De Moivre’s Theorem. Assume
z = reiθ for some real numbers r and θ. If f(z) = zn = rneniθ ∈ R, then nθ = πj
for some integer j. Hence θ = πj

n .
The projection of these points on the Argand plane gives us n straight lines

given by g(t) = te
πij
n where t ∈ R and j = 0, 1, . . . , n − 1. The curves defined on

these n lines are the n sibling curves. They are parametrized by gj : R → C × R
where

gj(t) = (te
πij
n , tn(−1)j), j = 0, 1, 2, . . . , n− 1; t ∈ R.

Notice that these n sibling curves contain all points z such that f(z) ∈ R.

Note if n = 2 in the example above, we must substitute j = 0 or j = 1 into
the formula. This gives the parametrization of two sibling curves g0(t) = (t, t2)
and g1(t) = (it,−t2) as in Example 1.1. If n = 3 in the example above we get

g0(t) = (t, t3) and g1(t) = ( 1
2 t + i

√
3

2 t,−t
3) and g2(t) = (− 1

2 t + i
√

3
2 t, t

3) which
look different, but are the same sibling curves as in Example 1.3, although the
parametrization is different.

2. An example of a sub-parametrization around a point. Example 1.5
fuels our suspicion that the sibling curves of a polynomial of degree n has n sibling
curves. Now to show that the number of sibling curves depends only on the degree
of the polynomial, we need to form parametrizations of sibling curves. It suffices
to be able to do parametrizations of any portion of a sibling curve. To achieve this
goal we use a power series. The next example demonstrates the idea to form a
sub-parametrization for a specific polynomial at a specific point.

Example 2.1. Consider f(z) = z−z2. We saw earlier that this quadratic has two
sibling curves. We focus on the point z = 0 and find a sub-parametrization of the
sibling curve containing the point z = 0.

To find a parametrization for the portion of the sibling curve around z = 0, we
consider a parametrization of the form g(t) = (z, f(z)) with f(z) ∈ R. We use real
number f(z) = t as the parameter, so g(t) = (h(t), t) with f(h(t)) = t ∈ R. We try
h(t) as a power series about 0, that is

h(t) = 0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + . . .
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for t for which it converges. Then

(h(t))2 = a2
1t

2 + (2a1a2)t3 + (2a1a3 + a2
2)t4

+ (2a1a4 + 2a2a3)t5 + (2a1a5 + 2a2a4 + a2
3)t6 + . . . .

Since we want f(h(t)) = h(t)− (h(t))2 = t, we must have

a1 = 1

a2 − a2
1 = 0

a3 − (2a1a2) = 0

a4 − (2a1a3 + a2
2) = 0

a5 − (2a1a4 + 2a2a3) = 0

a6 − (2a1a5 + 2a2a4 + a3
3) = 0

. . .

Solving, we obtain a1 = 1, a2 = 1, a3 = 2, a4 = 5, a5 = 14, a6 = 42, etc. Therefore
a portion of one sibling can be parametrized by

g(t) = (t+ t2 + 2t3 + 5t4 + 14t5 + 42t6 + . . . , t)

if the radius of convergence is greater than 0.
Coincidentally these coefficients are the well-known Catalan numbers [4] named

after Eugéne Catalan (1814 − 1894). They appear often in counting problems,
for example counting the number of triangulations of a convex polygon. Catalan
numbers are formally defined as C1 = 1 and then recursively by

Cn+1 = C1Cn + C2Cn−1 + . . .+ Cn−1C2 + CnC1, n ∈ N.
Applying Stirling approximations to this series, it can be shown that it has a

radius of convergence 1
4 . Hence this is indeed a sub-parametrization for the sibling

curve containing 0.

Figure 4 : Partial sibling curves of f(z) = z − z2 around 0.
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3. The general case. The proof that a polynomial of degree n has n sibling
curves needs the existence of sub-parametrizations at any point on a sibling curve.
Lemma 3.1 and Lemma 3.2 show that these parametrizations have non-zero radii
of convergence. This is needed in Lemma 3.3 to produce the sub-parametrizations
when a point has a certain multiplicity.

Lemma 3.1. For all positive integers k, n we have(
kn

n

)
≤ kkn.

Proof. The result is clearly true for k = 1. Fix some integer k ≥ 2. We proceed
by induction on n. Note if n = 1 then

(
k
1

)
= k ≤ kk.

Note kn+j
kn−n+j ≤ k if k ≥ 2 and j any positive integer. This follows from the fact

2kn ≤ k2n and j ≤ kj which gives kn+ j ≤ k2n− kn+ kj = k(kn− n+ j). Using
this, we get(

k(n+ 1)

n+ 1

)
=

(
kn

n

)
(kn+ 1) · (kn+ 2) · . . . · (kn+ k)

(kn− n+ 1) · (kn− n+ 2) · . . . · (kn− n+ k)

≤ kkn · k · k · . . . · k
= kk(n+1).

This completes our induction. 2

Lemma 3.2. Assume a1, a2, . . . , an ∈ C are the first n terms of a sequence. For
complex α1, α2, . . . , αn, define the rest of the sequence recursively by

am+1 = α1

∑
jp≥1

aj1am+1−j1 + α2

∑
jp≥1

aj1aj2am+1−j1−j2 + . . .

+ αn
∑
jp≥1

aj1aj2 . . . ajn−1
am+1−j1−i2...−jn−1

where m ≥ n. Then m
√
|am| is a bounded sequence.

Proof. We start by eliminating the coefficients αi, by defining a new sequence bi
that do not need these coefficients. We then proceed to define another sequence di
whose recurrence equation is even simpler. With the help of Catalan numbers we
then show m

√
dm is bounded. This then proves m

√
bm and m

√
|am| are both bounded

sequences.
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We start off by finding a positive real number t such that |αjt| ≤ tj+1 for
j = 1, 2, . . . , n. Hence by the triangle inequality if m ≥ n,

|tam+1| ≤
∑
jp≥1

|α1taj1am+1−j1 |+
∑
jp≥1

|α2taj1aj2am+1−j1−j2 |+ . . .

+
∑
jp≥1

|αmtaj1aj2 . . . ajn−1
am+1−j1−j2...−jn−1

|

≤
∑
jp≥1

|(taj1)(tam+1−j1)|+
∑
jp≥1

|(taj1)(taj2)(tam+1−j1−j2)|+ . . .

+
∑
jp≥1

|(taj1)(taj2) . . . (tajn−1)(tam+1−j1−j2...−jn−1)|.

Define bj = |taj |. If m ≥ n, then

bm+1 ≤
∑
jp≥1

bj1bm+1−j1 +
∑
jp≥1

bj1bj2bm+1−j1−j2 + . . .

+
∑
jp≥1

bj1bj2 . . . bjn−1bm+1−j1−j2...−jn−1 .

Define d1 = max{1, b1} and dj = bj if j = 2, 3, . . . , n. If m ≥ n, define dm+1 as
follows

dm+1 =
∑
jp≥1

dj1dm+1−j1 +
∑
jp≥1

dj1dj2dm+1−j1−j2 + . . .

+
∑
jp≥1

dj1dj2 . . . djn−1
dm+1−j1−j2...−jn−1

.

An easy induction argument shows that bj ≤ dj for all positive integers j. Now

choose a positive real number k such that n2 ≤ k and dj ≤ kj−1dj1Cj for j =
1, 2, . . . , n where Cj are the Catalan numbers defined in Example 2.1. Also for

convenience define d0 = 1. Assume for induction that dj ≤ kj−1dj1Cj for all j ≤ m
where m ≥ n. Consider dm+1.

dm+1 =
∑

0≤jp≤m,j1+...+jn=m+1

dj1dj2 . . . djn .

For each term, one of the djp term has to have jp > 0, that is jp = 1, 2, . . . ,m. It
can occur at n places, that is p = 1, 2, . . . , n. Thus

dm+1 ≤ n[d1

∑
0≤jp≤m,j1+...+jn−1=m

dj1dj2 . . . djn−1
+ . . .

. . .+ dm
∑

0≤jp≤1,j1+...+jn−1=1

dj1dj2 . . . djn−1 ].
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Consider each dk term. It is possible that one jp = m+1−k. This can occur (n−1)
times, giving a total of (n−1)dm+1−k. However if none of the jp = m+ 1−k, then
all the jp is less than m+ 1− k and∑

0≤jp<m+1−k,j1+...+jn−1=m+1−k

dj1dj2 . . . djn−1
≤ dm+1−k

which gives

dm+1 ≤ n[d1(ndm) + d2(ndm−1) + . . .+ dm(nd1)].

Each term now contains n2 and n2 ≤ k. Using the induction hypothesis, we obtain

dm+1 ≤ k[(d1C1)(km−1dm1 Cm) + (k1d2
1C2)(km−2dm−1

1 Cm−1) + . . .

. . .+ (km−1dm1 Cm)(d1C1)].

Simplifying and using the Catalan recursion, we get

dm+1 ≤ kmdm+1
1 (C1Cm + C2Cm−1 + . . .+ CmC1)

dm+1 ≤ kmdm+1
1 Cm+1.

This completes the induction and therefore m
√
dm ≤ k1−1/md1

m
√
Cm. Using Cm =

(2m
m )

m+1 ≤
4m

m+1 by Lemma 3.1, we see that m
√
dm is a bounded sequence. Since

0 ≤ bm ≤ dm, it follows that m
√
bm is bounded and consequently m

√
|am| is also a

bounded sequence. 2

Lemma 3.3. If f is a polynomial with a root of multiplicity m at the origin, then
there are m distinct sub-parametrizations of sibling curves around z = 0.

Proof. Since f is a polynomial with a root of multiplicity m at the origin f(z) =
cnz

n + cn−1z
n−1 + . . . cmz

m for some complex coefficients cm, . . . , cn, cm 6= 0 and
m ≤ n.

Suppose h(t) = a1t + a2t
2 + a3t

3 + . . . for some coefficients aj . The aim here
is to find h(t) such that f(h(t)) = tm and then to manipulate it into forming m
sub-parametrizations.

Looking at the tm term of f(h(t)) we want cma
m
1 = 1. Select any of the m values

for a1 to satisfy this equation. To proceed, consider the tk term where k ≥ m+ 1.
We want

0 = cn
∑
jp≥1

aj1aj2 . . . ajn−1ak−j1−j2−...−jn−1 + . . .

+ cm
∑
jp≥1

aj1aj2 . . . ajm−1
ak−j1−j2−...−jm−1

.

Using this equation, we can solve for ak uniquely by induction. Continuing in this
manner, we form a series that satisfies the equation f(h(t)) = tm and by Lemma
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3.2, we know that lim sup |an|1/n exists, thus the power series has a non-zero radius
of convergence.

Using this power series, we can now form m sub-parametrizations of sibling
curves around 0. In the formula below j = 0, 1, 2, . . . ,m− 1 and

gj(t) =

{
(h( m
√
te

πij
m ), t(−1)j) if t ≥ 0

(h( m
√
−te

πij
m +πi), t(−1)j+m+1) if t < 0.

It should be noted that each gj is continous and differentiable on the interval of
convergence. Note if m is even, then the sub-parametrization produces curves
with either non-negative or non-positive z values. And if m is odd, then the sub-
parametrization produces curves with both negative and positive z values. 2

Before we prove the general result, let us demonstrate this theorem with an
example.

Example 3.4. Consider f(z) = z2− z3. To find two sub-parametrizations around
0, we take

h(t) = a1t+ a2t
2 + a3t

3 + . . . .

Then

(h(t))2 = a2
1t

2 + 2a1a2t
3 + (a2

2 + 2a1a3)t4 + . . .

(h(t))3 = a3
1t

3 + (3a2
1a2)t4 + . . . .

Thus if f(h(t)) = t2, then

a2
1 = 1

2a1a2 − a3
1 = 0

a2
2 + 2a1a3 − 3a2

1a2 = 0

. . . .

Selecting a1 = 1, we can solve the other coefficients uniquely, as a2 = 1
2 , a3 = 5

8 , . . ..
Thus h(t) = t + 1

2 t
2 + 5

8 t
3 + . . .. By Lemma 3.2 we know this series has a radius

of convergence bigger than 0. Using h(t) we now form two sub-parametrizations
around 0.

g0(t) =

{
(
√
t+ 1

2 t+ 5
8 t
√
t+ . . . , t) if t ≥ 0

(−
√
−t− 1

2 t+ 5
8 t
√
−t+ . . . ,−t) if t < 0

and

g1(t) =

{
(i
√
t− 1

2 t−
5
8 it
√
t+ . . . ,−t) if t ≥ 0

(−i
√
−t+ 1

2 t−
5
8 it
√
−t+ . . . , t) if t < 0.
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Figure 5 : Partial sibling curves of f(z) = z2 − z3 around 0.

With the help of Lemma 3.3, we are ready to prove the main result of this
paper.

Theorem 3.5. If f(z) is a complex polynomial of degree n, then f has n sibling
curves.

Proof. We will show for each real value of w that there are always n portions
of sibling curves containing the solutions of f(z) = w. If we glue these subcurves
together, we get the desired n sibling curves.

For some fixed w ∈ R, we know f(z) = w has n solutions by the fundamental
theorem of algebra. Some may have multiplicity higher than 1. Take solution z1

with multiplicity m. Then f(z)− w = q(z − z1) where q(z) = cmz
m + . . .+ cnz

n.
Hence, if q(z) = 0 then f(z + z1) = w. So we only need to show that we get m
sibling subcurves containing the solutions q(z) = 0. Note there is at most n − 1
real values w such that g(z) = f(z) − w has a root with multiplicity higher than
one.

Noting q(z) = f(z1)− w = 0, the solution now lies in using Lemma 3.3. There
we proved that it is possible to define m sibling subcurves of q around 0. By [5]
they contain all the solutions in that neighbourhood. Furthermore each of them
has the same non-zero radius of convergence. Thus each value of w produces n
sub-parametrizations.

Now for any real value w, we have n sub-parametrizations. Suppose R is the
smallest radius of convergence for these sub-parametrizations. That is, each sub-
parametrization is valid on the interval (w − R,w + R). Now consider the real
values w − R

2 and w + R
2 . They each have n sub-parametrizations. By gluing two

sub-parametrizations that overlap together, we form n piece-wise functions on the
interval [w− R

2 , w+ R
2 ]. Continuing in this manner we produce the n sibling curves.

2

It should be noted that the proof above is not only true for real polynomials
like z4 + 2z2 + z+ 2 or z6−1, but that it holds for any polynomial, including those
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with complex coefficients, like z8 + iz + 3 or z7 − (i+ 2)z3 + z2 + i.

This result gives us a richer and more visual understanding of the roots of a
polynomial. The fundamental theorem of algebra merely tells us that a polynomial
of degree n has n roots. Now with the aid of this theorem we see that each
polynomial of degree n has n special curves associated with it and they contain the
zeroes of the polynomial. Moreover, we get a better visual understanding of the
four dimensional graph of a complex function of complex variables by looking at
the three dimensional cut of the graph on which the function values are real.
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