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In the paper, a typical coal trade process is described and modelled, where one logistics enterprise with
blending equipments lies in the core and two types of common contracts are elucidated to define con-
straints. A mixed-integer model is built and featured by addressing contract violation, blending operation,
real time price information and arbitrarily distributed stochastic demands. To deal with the stochastic
demands, probabilistic constraints are formed. Accordingly, stochastic model predictive control (SM-
PC) strategy with both receding horizon and decreasing horizon formulations is developed to handle
the probabilistic constraints and exploit the value of newest price information. By solving a series of
mixed-integer linear programs, optimal coal trade decisions for the logistics enterprise can be obtained,
including procurement decision, selling decision and operational decision of the blending equipments.
Thorough simulation experiments are carried out and compared under three different strategies, which
interpret the effectiveness of the proposed strategy.
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1. Introduction

Coal is one major source for total energy supply in the world. The percentage of coal among
all fuels is 19.5% in 2012, following after oil with the percentage of 36.1% (according to data
from International Energy Agency; IEA (2013) ). And coal takes up the largest part in electricity
generation, the ratio of which is 41.3% in 2011. Coal trade both in the international market and
domestic market is very active. For example, coal production and net imports for China reached
3, 549 Mt (million tonnes) and 278 Mt respectively in 2012.

Coal trade process usually involves three sides, namely coal suppliers, logistics enterprises and
coal consumers, among which the role of logistics enterprises is becoming more and more pre-
dominant. Generally, the logistics enterprise is in charge of searching for demands from different
consumers such as power companies, cement companies and steel companies, and then formulating
a set of coal trade decisions, including procuring coals from suppliers, transporting coals and blend-
ing different types of coals to render them suitable for different plants. Coal blending is desired
by more consumers at the current moment, since there are more and more stringent environmen-
tal regulations which require that contents of some elements/attributes of coals should be within
certain upper or lower limits. Moreover, different burning plants may have different preferences
on coal qualities. For example, the sulfur oxide content of coals to enter the burning plants of
power companies cannot be greater than 0.7% across Guangdong Province of China since 2014.
To meet this regulation, different coals with sulfur oxide content above and below 0.7% can be
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mixed together through the blending equipments, otherwise to only consider coals with sulfur ox-
ide content below 0.7% can be very expensive due to insufficient supply in the market. Nowadays,
many consumers only propose their requirements to the logistics enterprise and all the jobs are due
to the responsibility of the logistics enterprise. Thus, blending capability is one key role that the
logistics enterprise can play. This paper will focus on the modelling and optimization for a typical
coal trade problem, where one logistics enterprise equipped with blending facilities lies in the core
of the trade process. As can be expected, this research will explore more profits for the logistics
enterprise. More significantly, optimizing coal trade decisions can bring many benefits to the whole
trade system, such as increasing the circulation and blending of coals to meet various demands,
reducing costs for consumers, storing coals as a buffer to deal with possible emergencies which may
threaten the supply market.

Little research has been done on this type of coal trade optimization, which incorporates con-
tract violation, blending operation, newest information on price forecast and stochastic nature of
demands. In this paper, we extend previous research for the following four aspects: 1) The research
is carried out from the view of the logistics enterprise, which locates at the core of coal trade pro-
cess. As stated above, shaping optimal decisions will make the whole trade process more efficient.
2) The stochastic properties of demands in the future are taken into account explicitly, where a
series of probabilistic constraints are formulated. 3) The problem of satisfaction or breach of the
trade contract is addressed in the modelling and optimization. 4) Stochastic model predictive con-
trol strategy, with both receding horizon and decreasing horizon formulations, is devised to achieve
optimal performance.

The paper is proceeded as follows. Related literature is reviewed in §2. The details of modelling,
i.e., assumptions, objective formulation and various constraints, are presented in §3. In §4, stochas-
tic model predictive control strategy is developed. An illustrative example is studied thoroughly in
§5 and we conclude the paper in §6.

2. Literature Review

This research is in connection with three types of problems in existing literatures, i.e., coal logis-
tics optimization, commodity trade problem and supply chain optimization. The connections and
differences are set forth below.

2.1 Coal Logistics Optimization

Coal blending and distribution problem has drawn a lot of attentions, which can be found in
(Sherali and Puri 1993; Shih and Frey 1995; Cao, Lin, and Yan 2006; Liu 2008; Yabin 2010;
Yücekaya 2013, and references therein). Coal blending cost is minimised in Shih and Frey (1995)
by incorporating the uncertainty of coal elements/attributes. A total cost of the logistics system is
taken into account in Cao, Lin, and Yan (2006), including railway transportation cost, procurement
cost, ordering cost and holding cost. The blending issue is treated as well in Cao, Lin, and Yan
(2006), however, it does not take into account the stochastic variation of both price and demands.
In Liu (2008), the blending and inter-modal transportation problem is sufficiently addressed, yet
neither demand variation nor price update is accounted for. The price change for procurement
and transportation and demand change have been accommodated in the optimization problem
of Yabin (2010), while it assumes that both price change and demand change are fixed, which is
not realistic by neglecting the stochastic nature of these changes. A multi-objective optimization,
considering multiple suppliers, multiple routes, multiple products and the coal quality constraints,
is formulated in Yücekaya (2013), yet without treatment of the price and demand variation.

Our research differentiates significantly from the literatures above in two points. Firstly, we not
only consider the quality requirements by blending different types of coals, but more specifically,
we optimize the operational decisions of blending equipments for the logistics enterprise. To the
best knowledge of us, this problem has not been handled before. Secondly, we make use of the
information on the stochastic distributions of demands explicitly, where probabilistic constraints
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are posed and treated. Real time information on price forecast is also incorporated in our model,
which is facilitated by the stochastic model predictive control strategy.

2.2 Commodity Trade Problem

There are abundant literatures on commodity trade problem, such as Berling and Mart́ınez-de Al-
béniz (2011); Xie, Park, and Zheng (2013), and their references. In Berling and Mart́ınez-de Albéniz
(2011), an inventory control model for spot market procurement is devised by taking both purchase
price and demand to be stochastic. It investigates a one-factor price model, and assumes that the
arrival process of demand is Poisson, which is stochastic and limited. The replenishment capacity
is regarded as infinite. A crude oil procurement strategy for Chinese oil refineries is developed
in Xie, Park, and Zheng (2013), with deterministic demands and independent uncertain purchase
prices. A Bayesian learning method is utilized to actively assimilate real time price information.
In the coal trade process with the logistics enterprise, contracts generally exist to ensure demand
predictions more accurate and the procurement planning more realistic, thus neither replenishment
nor demand can be infinite. Moreover, there are physical constraints on the storage capacity and
blending capacity, and the trade process concerns blending of multiple products (coals), which
both complicate the problem. Model predictive control is employed in our study to make use of
the newest information regarding price and demand, which has a certain degree of inherent robust-
ness against external disturbances, model uncertainty and model mismatch (Maciejowski 2002; van
Staden, Zhang, and Xia 2011).

2.3 Supply Chain Optimization

Various control strategies have been successfully applied in supply chain optimization problem,
e.g., Perea-López, Ydstie, and Grossmann (2003); Seferlis and Giannelos (2004); Alessandri, Gag-
gero, and Tonelli (2011); Sarimveis et al. (2008). In Perea-López, Ydstie, and Grossmann (2003);
Seferlis and Giannelos (2004); Alessandri, Gaggero, and Tonelli (2011), the model predictive con-
trol formulations are discussed in detail corresponding to their respective problems, with the aim
of minimising cost (maximising profit) for the multi-product, multi-echelon supply chain network-
s. And demand variations have been investigated. Sarimveis et al. (2008) presents a comparative
review of classical control, dynamic programming and optimal control, model predictive control,
robust control and approximate dynamic programming applied in supply chain systems. The coal
trade structure belongs to multi-product, multi-echelon systems, hence there are many similari-
ties as in those supply chain systems, such as the inventory dynamics, capacity constraints and
procuring/transportation/holding cost functions. In Perea-López, Ydstie, and Grossmann (2003);
Seferlis and Giannelos (2004); Alessandri, Gaggero, and Tonelli (2011); Sarimveis et al. (2008),
costs of different echelons are summed up and then optimized, thus certain control strategies can
be employed to coordinate the behaviors of different echelons. Whereas in the coal trade problem,
the profits of different echelons (suppliers, logistics enterprise, consumers) may be contradictory,
hence two types of common contracts are utilized to specify obligations of different echelons, i.e.,
define constraints in the model. It should be noted that there exist a plethora of results in the
investigation of supply chain contracts, such as Cachon (2003); Corbett, Zhou, and Tang (2004).
However, our research contributes to the rigorous modelling of the coal trade process with the use
of common contracts and copes with the case of contract violation throughout the optimization.
An approximate method is also proposed to optimize the choices of contractors within our frame-
work in the appendix. Furthermore, our formulation can handle arbitrary distributed stochastic
demands, provided that their density distributions are known.

3. Modelling

3.1 Assumptions

Figure 1 presents the schematic diagram of the coal trade process investigated in the paper. The
logistics enterprise receives demand information from different power companies (cases are similar
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to other consumers like cement/steel companies) and then decides its procurement policies from
different suppliers and the operating agenda for its blending equipments, with the aim of minimising
the total cost occurred across the trade process. We integrate the whole process, i.e., procurement,
transport, blending, storage, selling and contract issue, to tackle the problem in a centralised way.
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Figure 1. Schematic diagram of the coal trade process

To send final products to power companies, the services provided by the logistics enterprise
include procuring coals from suppliers, organizing coal transportation from suppliers to its working
port and from its working port to power companies, blending different types of coals to satisfy the
requirements for different power companies. One of the core abilities of the logistics enterprise comes
from the blending service, which the logistics enterprise distinguishes itself from other common
trade companies.
Assumption 1. The logistics enterprise here will only trade with power companies who have no

blending facilities but request blending services for their demands due to environmental regulations
or operational considerations.
Assumption 2. The logistics enterprise will have constant unit revenue1 during one sampling

period from all the services if offers to power companies.
Thus in the coal trade process, the enterprise will try to reduce all related costs to increase its

competitiveness, i.e., the procurement cost, the transport cost, the holding cost, the backlogging
penalty cost, the operational cost of blending equipments and the contract violation cost. This
constructs a basis for the formulation of the objective function.

We consider two common types of contracts between suppliers and the logistics enterprise, i.e.,
indefinite quantity contract (IQC) and basic ordering agreement (BOA) (Ingrao 1976). For both
IQC and BOA, a maximum limit for each type of coal that suppliers can afford during each period
is specified. In order to arrange transportation, a minimum amount of coals for each trade is also
specified. If lower than the amount, the trade will generally not happen. For the IQC, another
lower limit of the trading amount is imposed and the price is discounted by a certain percentage of
the market price. There is an ordering fee for each period, which should be provided to suppliers
when signing the IQC. The ordering fee should be returned to the logistics enterprise when the
actual trading amount for the current period is inside the IQC limit, otherwise the ordering fee
will be charged by suppliers as a punishment to the enterprise due to breach of the IQC. While in
the BOA, a written understanding for the interests of both contractors will be indicated. However,
the BOA is not so strict as the IQC, and there is no ordering fee for BOA. And breach of BOA
will have no effects on both sides.

1The revenue plus the transportation cost from the logistics enterprise to power company k is the amount that power company k

should pay. Since this transportation cost is small and always regarded as fixed, we do not take into account the transportation
costs from the logistics enterprise to power companies in the paper.
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Assumption 3. Considering the IQC’s between suppliers and the logistics enterprise, the enterprise
will violate the contracts and suppliers will not.

Assumption 3 is reasonable by taking into account the fact that suppliers, who sell products,
would not like to lose a long term customer (the logistics enterprise). Thus in the paper, we would
only explore the possibility that the enterprise breaches the IQC.

When considering the contracts between the logistics enterprise and its customers, i.e., power
companies, only IQC’s are within the scope of the paper. The reason is that the logistics enterprise
would not like to sign BOA’s with any power companies, since BOA will render the logistics
enterprise difficult to predict the customers’ demands and thus difficult to devise realistic and
profitable coal trade plans. In terms of power companies, the case when they violate IQC’s will
not be treated here since power companies will not easily break the contracts with the logistics
enterprise which provides final products to them, including all the services.
Assumption 4. Power companies are rational in the sense that the demand predictions provided

by them are accountable and credible.
Assumption 5. Transportation capacity is regarded as sufficient enough.
The justification for Assumption 5 is that only one logistics enterprise is studied in the paper so

that the transportation capacity constraint is not considered in the modelling. The enterprise can
always find its transportation solutions from the market, which are reflected by the transportation
cost parameters in our model.
Assumption 6. There are equal sampling periods. During each sampling period, the prices and

demands are seen as invariant. And in one sampling period, there is enough time to make decisions
and implement the decisions, such as transporting coals.

3.2 Objective function

The notations for the modelling and optimization are listed here.

Indices
i index to denote supplier i
j index to denote coal type j
k index to denote power company k
t index to denote the discrete time instant t
∆t index to denote difference between time instant t and the current time t0
l index to denote element/attribute l representing coal quality

Index Sets
Ih subset of suppliers that have IQC’s with the logistics enterprise
Is subset of suppliers that have BOA’s with the logistics enterprise
I set of all suppliers = Ih ∪ Is
J set of all coal types j
K set of all power companies k
La set of elements/atributes that employ additive property when blending different coals
Ln set of elements/attributes that are not additive when blending different coals
L set of all elements/attributes = La ∪ Ln
Decision Variables
uijt the amount of coal type j bought from supplier i to the logistics enterprise during [t, t+1)
yjkt the amount of coal type j planned to send to power company k from the logistics enterprise

during [t, t+ 1)
Bkt the amount of coals blended for power company k during [t, t+ 1)
z̃it binary variable used to denote whether the logistics enterprise follows or breaches the IQC

with supplier i ∈ Ih, which is equal to 1 when following the contract and 0 otherwise
zit binary variable used to denote whether the logistics enterprise trades with supplier i ∈ I,

which is equal to 1 when buying coals and 0 otherwise
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Parameters
ρPijt unit procuring cost corresponding to uijt
ρTit unit transportation cost from supplier i to the logistics enterprise at time instant t
ρHt unit holding cost for the logistics enterprise at time instant t
ρbk unit cost for backlogging related to power company k at each time instant
ρOt unit operational cost of the blending equipments for the logistics enterprise at time t
ρSt unit revenue by providing all the services to power companies at time instant t
Dkt total demand of coals of power company k during sampling period [t, t+ 1)
Dkt/Dkt upper/lower limit of Dkt specified in contracts
Dkt|t0 the distribution which Dkt follows forecast at the current time t0
pk/pk maximum/minimum probability that the logistics enterprise plans to meet the future

demand of power company k
γt|t0/γt|t0 minimum upper bound of the pk/pk confidence level of the distribution Dkt|t0
Vjt inventory level of coal type j at the logistics enterprise at time instant t
Vt/V the total inventory level of all coal types at time instant t/the upper limit of Vt
BM maximum blending capacity for each sampling period
ejl value of element/attribute l for coal type j
Ekl/Ekl maximum/minimum limit of index l allowed in power company k
uijt maximum limit of uijt specified in the contracts
uit minimum amount of coals for each trade specified in the contracts
ũit lower limit of coals that the logistics enterprise should procure by the IQC
OFit ordering fee specified in the IQC with supplier i ∈ Ih for time instant t
ηi discount rate from supplier i ∈ Ih defined in the IQC for each sampling period
r inflation rate for each sampling period
BCt cost of buying coals for the logistics enterprise during sampling period [t, t+ 1)
CV Ct contract (IQC) violation cost during sampling period [t, t+ 1)
TCt transportation cost from all suppliers to the logistics enterprise during [t, t+ 1)
HCt holding cost of coals for the logistics enterprise during sampling period [t, t+ 1)
PCt backlogging cost due to unsatisfied demand during sampling period [t, t+ 1)
OCt operational cost of the blending equipments for the logistics enterprise during [t, t+ 1)
PSt revenue due to all services provided by the logistics enterprise during [t, t+ 1)
T length of the prediction horizon
CT total cost for the logistics enterprise during horizon T

The unit cost parameters ρPijt, ρTit, ρHt, ρSt at current time instant ∆t = 0 (t = t0) are
known exactly from the market, while for ∆t = 1, 2, . . . , T − 1 they can only be forecast and
take on stochastic properties. In the paper, the notations represent expected values of these cost
parameters for the future time instants when ∆t = 1, 2, . . . , T − 1.

The cost of buying coals for the logistics enterprise during sampling period [t, t + 1) can be
written as

BCt =
∑
i∈Ih

ηi ·
∑
j∈J

ρPijt · uijt +
∑
i∈Is

∑
j∈J

ρPijt · uijt (1)

The first term calculates the buying cost from suppliers which have IQC’s with the logistics
enterprise, thus it contains a discount rate ηi. And the second term accounts for the buying cost
from suppliers with BOA’s.

CV Ct =
∑
i∈Ih

OFit · (1− z̃it) (2)

Equation (2) gives the contract (IQC) violation cost. If the IQC is followed, then z̃it = 1 and the
corresponding CV Ct will be zero. On the contrary, ordering fee OFit will be charged by supplier i
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if the IQC is breached, when z̃it = 0.

TCt =
∑
i∈I

ρTit ·
∑
j∈J

uijt (3)

The equation above represents the transportation cost during sampling period [t, t+ 1), where
different coal types are not distinguished and the cost is weighed by the total amount (quantity)
of all types.

HCt = ρHt ·
Vt + Vt+1

2
(4)

Equation (4) considers the total holding cost during [t, t + 1), including storage cost, taxes,
administrative cost, the potential investment gain from the money stored on the commodities
(coals), etc. Since the inventory is changing during the sampling period [t, t + 1), the average
inventory is approximated by the mean of Vt and Vt+1.

PCt =
∑
k∈K

ρbk ·
(
Dkt −

∑
j∈J

yjkt

)
(5)

In equation (5), Dkt denotes the demand of power company k during the period [t, t + 1).
Therefore,

(
Dkt −

∑
j∈J yjkt

)
refers to the amount of unsatisfactory demand during [t, t + 1),

and this unsatisfactory demand will become lost sales. ρbk is the unit cost due to backlogging for
each sampling period. It is set by the logistics enterprise and is generally much larger than the
corresponding buying cost, which implies that the unsatisfactory demand is not expected in most
cases. Different values of ρbk indicate different priorities of the power companies to the logistics
enterprise.

OCt = ρOt ·
∑
k∈K

Bkt (6)

Equation (6) gives the operational cost of the blending equipments, where Bkt are online decision
variables to denote how many coals should be blended for power company k during sampling period
[t, t + 1). More and more power companies ask for blending services, since there are restrictions
on the coal elements/attributes. These restrictions arise from either the environmental regulations
or the operational requirements for different burning plants.

PSt = −ρSt ·
∑
k∈K

∑
j∈J

yjkt (7)

Equation (7) computes the predicted revenue by the services with which the logistics enterprise
provides power companies, according to Assumption 2. The services consist of many contents, such
as coal procurement, organizing transportation and the blending service.
PSt is negative in (7), since the objective function is interpreted as the total cost for a prediction

horizon T in (8). And the inflation factor with a rate r is included in the formulation.

CT =

T−1∑
∆t=0

BCt + CV Ct + TCt +HCt +OCt + PSt
(1 + r)∆t

+ PCt0 , where ∆t = t− t0 (8)

In (8), the backlogging cost is computed only for the current time t0. The reason is that total
demands Dkt are exactly known at t0 but are of stochastic nature for the future time instants
∆t = 1, 2, . . . , T − 1 by means of predictions. The stochastic issue will be addressed later.
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3.3 Constraints

The dynamics of the inventory level for each coal type j at the logistics enterprise is as follows:

Vj(t+1) = Vjt +
∑
i∈I

uijt −
∑
k∈K

yjkt, ∀j ∈ J, for ∆t = 0, 1, . . . , T − 1. (9)

The term
∑

i∈I uijt considers the total amount of coal type j bought at time t, and the term∑
k∈K yjkt is the total amount of coal type j planned to send to all power companies. The logistics

enterprise expects the inventory level to be within a range rather than a fixed level, so that the
inventory can be adjusted to increase its profit (e.g., dealing with the price fluctuations) and reduce
the risks caused by some emergency accidents (e.g., political intensions may influence the supply
market of coals).

0 ≤
∑
j∈J

Vjt ≤ V , ∆t = 0, 1, . . . , T − 1. (10)

For both IQC and BOA, an upper limit of each product that supplier i can provide is specified:

uijt ≤ uijt, ∀i ∈ I, j ∈ J, ∆t = 0, 1, . . . , T − 1. (11)

For ease of transportation, each supplier will set up a minimum amount of coals for each trade,
otherwise the trade will not take place.

uit ≤
∑
j∈J

uijt ≤
∑
j∈J

uijt, or uijt = 0, ∀i ∈ I, ∆t = 0, 1, . . . , T − 1.

The equation above can be further formulated as a mixed-integer linear constraint:

zituit ≤
∑
j∈J

uijt ≤ zit
∑
j∈J

uijt, zit ∈ {0, 1}, ∀i ∈ I, ∆t = 0, 1, . . . , T − 1. (12)

For contract belonging to IQC, there will be another lower limit ũit specified (ũit > uit), which
the logistics enterprise should buy from supplier i. If the amount of coals that the logistics enterprise
buy at time instant t is less than ũit (the price is discounted as well), then the IQC is violated.

ũit ≤
∑
j∈J

uijt, if IQC is followed,∑
j∈J

uijt < ũit, if IQC is violated,
∀i ∈ Ih, ∆t = 0, 1, . . . , T − 1.

Use is made of the ‘Big M ’ technique to transfer the above logic constraint into linear constraint
(13) with binary variables z̃it, where M is a large positive number compared with the scale of ũit.
Hence, breach of IQC implies z̃it = 0 in (13). This is in accordance with (2), where z̃it = 0 gives
that the corresponding ordering fee will be charged as a punishment.

ũit ≤
∑
j∈J

uijt +M(1− z̃it),∑
j∈J

uijt < ũit +Mz̃it,
z̃it ∈ {0, 1}, ∀i ∈ Ih, ∆t = 0, 1, . . . , T − 1. (13)

Total demands Dkt0 are requested exactly from different power companies at current time instant
∆t = 0, however Dkt (t > t0) will be stochastic variables for the future time t and can only be
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predicted. Accordingly,
∑

j∈J yjkt0 denotes the actual amounts sold to power company k at current

time t0, while
∑

j∈J yjkt (t > t0) signifies the amounts planned for power company k for the future

time t by the logistics enterprise. Yet
∑

j∈J yjkt (t > t0) may probably differ from the real trading

amounts in the future due to the stochastic property of Dkt (t > t0). For the current time step, the
maximum amounts of

∑
j∈J yjkt0 can certainly not exceed the deterministic demands, Dkt0 , while

the minimization of PCt0 =
∑

k∈K ρbk ·
(
Dkt0 −

∑
j∈J yjkt0

)
in (8) yields that the former value will

tend to approach the latter value. Thus constraint (14) must hold.∑
j∈J

yjkt ≤ Dkt, ∀k ∈ K, ∆t = 0 (14)

Constraint (15) represents the minimum amount of coals that power companies have to buy, and
constraint (16) represents the maximum amount of coals that the logistics enterprise can afford,
which are both stipulated in contracts.

∑
j∈J

yjkt ≥ Dkt, ∀k ∈ K, ∆t = 0, 1, 2, . . . , T − 1. (15)

∑
j∈J

yjkt ≤ Dkt, ∀k ∈ K, ∆t = 0, 1, 2, . . . , T − 1. (16)

According to (14), (15) and (16), obviously for any current time instant t = t0, the following
inequality holds:

Dkt ≤ Dkt ≤ Dkt, ∀k ∈ K, ∆t = 0 (17)

Constraint (18) denotes that the probability that the logistics enterprise plans to satisfy the
future demands of power company k should be no smaller than pk. This implies that the expected
counts to be able to meet demands of power company k during the future T − 1 periods are at
least pk(T − 1).

Pr

{∑
j∈J

yjkt ≥ Dkt

}
≥ pk, ∀k ∈ K, ∆t = 1, 2, . . . , T − 1. (18)

Constraint (19) means that the logistics enterprise cannot be too optimistic about the markets
in case that there will be many coals overstocked in the future. For example, if for some future
instant t, Dkt is a random variable of which the upper bound is unlimited or a very large value,

to satisfy all possible demands at time t, denoted by Pr
{∑

j∈J yjkt ≥ Dkt

}
= 1, will either be

impossible or too conservative. That is why a maximum probability pk needs to be enforced as
well.

Pr

{∑
j∈J

yjkt ≥ Dkt

}
≤ pk, ∀k ∈ K, ∆t = 1, 2, . . . , T − 1. (19)

It is noted that (18) and (19) are not deterministic but probabilistic constraints, which will be
handled in next section.

As is delineated before, due to environmental regulations or operational requirements of certain
burning plants, there are strict restrictions on the elements/attributes that reflect coal quality when
consuming coals in fired power companies. For example, coals with different sulfur oxide contents
can be blended to make sure the final products satisfy the corresponding regulation, e.g., no greater
than 0.7% in Guangdong Province of China. Such attributes/elements are additive since their
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values can be changed through blending. Other additive elements/attributes include ash content,
volatile matter, nitrous oxide, calorific value, etc. Constraints for additive elements/attributes can
be formed as:

Ekl ≤
∑

j∈J yjktejl∑
j∈J yjkt

≤ Ekl, ∀l ∈ La, for ∆t = 0, 1, . . . , T − 1. (20)

There are other elements/attributes that are not additive. It suggests that coal of that type is
not allowed to use in the burning plants, if the values of those elements/attributes are out of the
specifications. This cannot be solved by blending since the coal may be harmful to the plants.
These non-additive elements/attributes comprise of the grindability size and the moisture content.
The constraints are thus written as:

yjkt = 0, if ejl 6∈ [Ekl, Ekl], ∀l ∈ Ln, for ∆t = 0, 1, . . . , T − 1. (21)

Constraint (22) illustrates that the cumulative coals planned for power company k should not
be greater than those blended, according to Assumption 1. This formulation is less stringent than∑

j∈J yjkt ≤ Bkt for each t, which requires that the coals planned to send to power company k,
at each time instant, should not exceed those blended. It provides more flexibility for the logistics
enterprise to operate the blending equipments to minimise the cumulative costs in a prediction
horizon T , according to the predictions of future price and demands. (22a) is for the case when
t0 = 0. For t0 ≥ 1, the term in the bracket of the right hand side of (22b) expresses what have
happened in reality by time t0, which denotes the amount of coals that have been blended and
stored but not sold yet. (22) is applied for all the prediction instants ∆t = 0, 1, . . . , T − 1.

t0+∆t∑
t0

∑
j∈J

yjkt ≤
t0+∆t∑
t0

Bkt, ∀k ∈ K, when t0 = 0, (22a)

t0+∆t∑
t0

∑
j∈J

yjkt ≤
( t0−1∑

0

Bkt −
t0−1∑

0

∑
j∈J

yjkt

)
+

t0+∆t∑
t0

Bkt, ∀k ∈ K, when t0 ≥ 1. (22b)

And the total amount of coals blended for all power companies cannot surplus the maximum
blending capacity: ∑

k∈K
Bkt ≤ BM , ∆t = 0, 1, . . . , T − 1. (23)

Finally, there are non-negativity constraints on the decision variables and inventory level to
guarantee that the results are realistic.

uijt ≥ 0, yjkt ≥ 0, Bkt ≥ 0, ∀j ∈ J, k ∈ K, for ∆t = 0, 1, . . . , T − 1. (24)

In the above formulations, some parameters are prescribed in contracts, while others are defined
by the logistics enterprise, which are shown in Figure 2 for clarity.

4. Stochastic model predictive control (SMPC)

4.1 Introduction of SMPC

The idea of model predictive control (MPC) has been well applied in diverse optimization prob-
lems (van Staden, Zhang, and Xia 2011; Perea-López, Ydstie, and Grossmann 2003; Seferlis and
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Giannelos 2004; Alessandri, Gaggero, and Tonelli 2011; Elaiw, Xia, and Shehata 2012; Zhang and
Xia 2011). MPC takes into account not only the current behaviour of the system but also the
future behaviour within a certain prediction horizon, thus it optimizes a predicted cost. It has a
strong ability to handle diverse constraints. Moreover, MPC is implemented using a receding hori-
zon manner such that it always makes use of the newest measurements and thus achieves optimal
performance.
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Figure 2. Parameters specified in contracts and chosen by the logistics enterprise

Power 

companies

Inventory level

Procuring coals

ijt
u

it
z

kt
B

, ,

Suppliers

Port

Storage Blending

Stochastic

MPC

Demand 

prediction

Price

information

Coal trade decisions

Selling coals

jkt
y

it
z

Figure 3. Stochastic MPC applied into the optimization of coal trade decisions

Stochastic model predictive control (SMPC) is a newly developed MPC methodology that is cur-
rently a hot topic in both theoretical and applied research. SMPC is proposed to handle random
system uncertainty which is in fact omnipresent in the modelling of most real systems. Due to the
random uncertainty, constraints are not necessarily to be deterministic. Instead they can be proba-
bilistic, which means that constraints are only required to be satisfied with a minimum probability.
The occurrence of probabilistic constraints mainly arises from two reasons: one is that random
uncertainty may have infinitely support such that constraints will be impossible to be obeyed with
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a probability of 100%, and the other is that probabilistic constraints can lead to considerably bet-
ter performance when the corresponding deterministic constraints are over conservative. There are
several interesting progresses on the research of the theory of SMPC recently (Cannon et al. 2011;
Oldewurtel et al. 2013; Calafiore and Fagiano 2013; Kouvaritakis et al. 2010; Cannon et al. 2012),
which readers can refer to.

According to Section 3, since the logistics enterprise aims at minimising the cumulative cost
during a prediction horizon subject to a set of random variables (ρPijt, ρTit, ρHt, ρSt and Dkt

for ∆t = 1, 2, . . . , T − 1), the discrete time SMPC strategy can be employed by Assumption 6, as
depicted in Figure 3. At each time instant, we can get new estimations of those random variables,
which need updating throughout the optimization. By implementing SMPC, the optimal set of coal
trade decisions, i.e., the procurement decision, the selling decision and the operational decision of
blending equipments, can be obtained. And it is long enough to implement these decisions during
one sampling period, according to Assumption 6.

Definition 1. γt|t0 and γt|t0 are the minimum values such that

Pr
{
Dkt ≤ γt|t0

}
= pk, ∀k ∈ K, ∆t = 1, 2, . . . , T − 1 (25a)

Pr
{
Dkt ≤ γt|t0

}
= pk, ∀k ∈ K, ∆t = 1, 2, . . . , T − 1 (25b)

with Dkt subject to a distribution Dkt|t0 forecast at t = t0.

According to Definition 1, probabilistic constraints (18) and (19), i.e., Pr
{∑

j∈J yjkt ≥ Dkt

}
≥ pk

and Pr
{∑

j∈J yjkt ≥ Dkt

}
≤ pk , can then be transferred to the following deterministic constraints:∑
j∈J

yjkt ≥ γt|t0 , ∀k ∈ K, ∆t = 1, 2, . . . , T − 1 (26a)

∑
j∈J

yjkt ≤ γt|t0 , ∀k ∈ K, ∆t = 1, 2, . . . , T − 1. (26b)

It is worth to mention that the distribution Dkt|t0 can be arbitrary rather than take on a particular
form (Kouvaritakis et al. 2010). Only if the probability density function (pdf ) of the distribution
Dkt|t0 is provided, γt|t0 and γt|t0 can be computed, either analytically with the use of the inverse

cumulative distribution function or numerically by discretizing the interval of the pdf.
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Figure 4. Receding horizon and decreasing horizon model predictive control

4.2 Receding horizon implementation

Generally in practice, contracts between suppliers and the logistics enterprise and between power
companies and the logistics enterprise are negotiated and signed every year.
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Definition 2. Contracts are regarded as continuous, in the sense that, if for some time instant
t = t̄0, contracts for next year have been signed, and the end of the prediction horizon t = t̄0 +T−1
is within the time when this year’s contracts are valid.

If all contracts are continuous, then constraints in Section 3.3 for the horizon T can always be
defined for any initial time t0. Correspondingly, the cumulative costs are minimised continuously
with a receding horizon manner (see Figure 4(a)), which is the most common way in MPC.

Algorithm 1. (SMPC algorithm)
At the current time t = t0 (t0 = 0, 1, 2, . . . , ),

Step 1. With the newest estimations of the parameters ρPijt, ρTit, ρHt, ρSt and Dkt, substitute the
expected values into objective function (8) and compute γt|t0 , γt|t0 in (25); Vjt0 is assumed to

be known at the first beginning when t0 = 0, and can be updated in Step 3 for t0 = 1, 2, . . ..
Step 2. Perform the following optimization:

min
{uijt, yjkt, Bkt, z̃it, zit}

(8)

subject to
{

(9), (10), (11), (12), (13), (14), (15), (16), (20), (21),

(22a) or (22b), (23), (24) and (26a, b).
} (27)

Step 3. Using the first element of the optimal solutions of Step 2, {uijt0 , yjkt0 , Bkt0 , z̃it0 , zit0}, decide
the coal trade pattern at the current time t0, calculate the inventory level Vj(t0+1) in (9).
Move to the next step t = t0 + 1, update constraint (22b), then repeat Step 1, 2 and 3.

It is noted that the objective function (8) is linear in the decision variables
{uijt, yjkt, Bkt, z̃it, zit} and all constraints in (27) are linear. Thus, the optimization problem (27)
is a mixed-integer linear program, which can be solved by many optimization packages available
for commercial/academic usages. We use the well known package, GUROBI 5.6, to figure out the
optimal solutions in the simulation experiments.

4.3 Decreasing horizon implementation

According to Definition 2, contracts are not continuous, if for some instant t̃0, by the end of the
prediction horizon t̃0 + T − 1 that is also the end of this contract year, contracts for next year
have not been available. In this case, the costs, only for the current year, are the attention of the
logistics enterprise, we will then implement the decreasing horizon MPC since t̃0. Consequently, at
the time step t = t0 (when t0 ≥ t̃0), the objective function (8) is modified to be

C̃T =

t̃0+T−1−t0∑
∆t=0

BCt + CV Ct + TCt +HCt +OCt + PSt
(1 + r)∆t

+ PCt0 , where ∆t = t− t0 (28)

From equation (28), it is revealed that the prediction horizon t̃0 + T − t0 is no greater than
T , which decreases as t0 increases. The algorithm for decreasing horizon MPC is the same as in
Algorithm 1, except that the prediction horizon changes to t̃0 + T − t0 (see Figure 4(b)). Thus
constraints in the optimization problem (27) should be revised to ∆t = 0, 1, . . . , t̃0 + T − 1− t0, as
the objective function (28).

5. Simulation experiments

An illustrative example with 8 suppliers are considered here, among which 4 suppliers are of IQC’s
and the other 4 are with BOA’s. In total, 23 types of coal will be provided by the suppliers, and
4 additive elements/attributes and 1 non-additive element are handled. 4 power companies are
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served by the logistics enterprise. Contracts last for one year and decisions are to be made every
half a month, thus there are 24 sampling periods altogether. The size of this example is comparable
to a real problem and all parameters are given in Table 2−6. We assume that the predictions of
the future price and demands can be made with a certain accuracy, though the way to do the
predictions are outside the purview of this paper. In this example, the future uncertain cost in
Yuan (the Chinese currency) and demands take on the forms in Table 7 and 3 respectively. From
Table 3, the demands at each sampling period are assumed to be normally distributed variables,
with mean µkt to be another random variables but standard deviations σkt to be fixed. The initial
inventory level is assumed to be 0 and the prediction horizon T is set to be 10. Only the profit of
current year is focused.

To illustrate the effectiveness of the proposed stochastic model predictive control strategy, sim-
ulations and comparisons are conducted for three different strategies.

(i) The proposed model predictive control strategy is applied. For t0 = 0, 1, . . . , 13, (27) is solved
repeatedly with a receding horizon manner with T = 10, and for t0 = 14, 15, . . . , 23 (t̃0 = 14),
the decreasing horizon SMPC is implemented.

(ii) A closed loop model predictive control strategy is employed but the significant difference with
(i) is without treatment of probabilistic constraints. Although the actual demands will evolve
as in Table 3, only the expected future demands µkt (t > t0) are utilized and no consideration
is given to the stochastic distributions of the future demands. Thus, constraints (26a, b) of
the optimization problem in (27) are changed into

∑
j∈J

yjkt ≤ µkt, ∀k ∈ K, ∆t = 1, 2, . . . , T − 1.

And the objective function incorporates the expected future demands as follows:

ĈT = CT +

T−1∑
∆t=1

∑
k

ρbk ·
(
µkt −

∑
j∈J yjkt

)
(1 + r)∆t

,

where CT is defined in (8). For t0 = 0, 1, . . . , 13, the receding horizon MPC with T = 10 is
implemented, and for t0 = 14, 15, . . . , 23 (t̃0 = 14), the decreasing horizon MPC is applied.

(iii) An open loop optimization is implemented with a planning horizon T = 24 considering
probabilistic constraints, i.e., solving (27) only at t0 = 0. This means that all decision variables
across one year are computed at t0 = 0 and will be implemented in reality afterwards. An
adjustment is made at each sampling period according to the actual demands from power

companies. Ṽk(t+1) = max
{
Ṽkt +

∑
j yjkt −Dkt, 0

}
with Ṽkt0 = 0, where Ṽkt represents the

coal inventory for power company k at time instant t. When Ṽk(t+1) = Ṽkt +
∑

j yjkt −Dkt,
it means that demands of power company k at t can be met, but otherwise not.

Table 1 lists the size of the optimization problem at the initial time t0 = 0 for different strategies,
on a CPU Intel Core i5, 1.70 GHz with a 4GB of RAM.

Table 1. Size of the optimization problem at t0 = 0 for different strategies

Strategy Continuous variables Binary variables Horizon T CPUs
(i) 1190 120 10 5
(ii) 1190 120 10 5
(iii) 2856 288 24 618
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Due to the existence of stochastic variables, 50 times trials are carried out for the above three
strategies. In the following figures except 5(d), the y-axis values take the average of the 50 times
simulations. Figure 5 compares the results of different strategies. The amounts of coals blended for
all power companies, i.e.,

∑
k Bkt, are plotted in Figure 5(a). It is shown that the second strategy

requires the smallest amount of coals for blending, while the open loop optimization asks for the
largest. The reason is that strategy (ii) takes the expected future demands as the actual demands,
which are smaller than the probabilistic demands defined for strategy (i) (pk in Table 5 are all
greater than 50%). The open loop strategy needs full blending operations at all time instants since
it incorporates a larger horizon 24. This brings more uncertainty in the decision making process,
thus more coals needs to be prepared.

The inventory level for all types of coals is depicted in Figure 5(b). Strategy (i) has a slightly
bigger inventory than strategy (ii), again this is because strategy (i) prepares for more possible
realizations of demands. However, the open loop strategy will result in a much and much larger
inventory since that it manages the uncertainty along a very long horizon at time t0 = 0 and
does not make use of the information available at the future time instants. This demonstrates the
benefits of the MPC strategy clearly.

The absolute values of real cumulative costs, denoted by
∑tn

t0=0

(
BCt0 +CV Ct0 +TCt0 +HCt0 +

OCt0+PSt0
)

for tn = 0, 1, . . . , 23, are also referred to as the cumulative profits, shown in Figure 5(c).
The open loop strategy leads to the lowest profits, the reason for which is without updating decisions
according to the latest information. To be strange at first glance, strategy (ii) will even produce
more profits than strategy (i), though the difference is trivial (0.107%). Figure 5(b) partially hints
us since strategy (i) incurs a larger holding cost due to a larger inventory. The advantage of strategy
(i) is then manifestly displayed in Figure 5(d), which shows the counts of unsatisfied demands for
all power companies out of 50 times simulations at each sampling time. The total number for
strategy (i), (ii), (iii) is 13, 387, 199 respectively. Use of probabilistic constraints attests to its
powerful value, since even the open loop strategy (probabilistic constraints considered) generates
less number of lost sales. This index is vital since the logistics enterprise must keep the frequencies
of unsatisfied demands at a very low level, otherwise loyal customers may be lost and the reputation
will be degraded.

Figure 6 shows the closed loop objective costs produced by strategy (i). Total cost in the figure
means the total profit at each sampling period t0, i.e.,

{
BCt0 +CV Ct0 +TCt0 +HCt0 +OCt0 +PSt0

}
.

In the setting of this example, the procurement cost and transportation cost dominate the whole
costs. That is why the importance of the employment of MPC strategy is highlighted, since it
always exploit the newest forecast on the corresponding price information.

6. Conclusions

A typical coal trade process with the logistics enterprise as the key node is investigated. Several cru-
cial issues have been addressed in the modelling of the process, i.e., contract violation, unsatisfied
demands, operations of the blending equipments, update of the predictions of unit cost informa-
tion and arbitrarily distributed stochastic demands. A mixed-integer linear model is formulated.
A stochastic model predictive control strategy, with both receding horizon and decreasing horizon
manner, is devised for the optimization. The proposed strategy is compared with two other strate-
gies through an illustrative case, which clearly demonstrates its strong capability either in aiming
at high profits or reducing the possibilities that unsatisfied demands happen. Thus, the model fits
the process as simulated rather well, and the SMPC strategy constructs a powerful optimization
and decision tool for the problem. Additionally, our results will also generate implications on the
trade decision optimization of similar commodities, such as soybean, wheat and corn.

Although newest predictions of the average unit cost are incorporated in the MPC strategy, they
are stochastic in nature as well and the stochastic properties have not been treated explicitly. Future
research will focus on investigating the stochastic issue of the unit cost information in modelling
and optimization techniques, and perhaps the theory of stochastic model predictive control needs
to be developed accordingly.
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Table 2. Trading limits, ordering fees and discounts

Supplier Coal type j uijt (tons) ũit (tons) uit (tons) OFit (Yuan) ηi

IQC 1

Qtype11 8000

17000 12000 467500 0.96
Qtype12 5000
Qtype13 6000
Qtype14 7000

IQC 2
Qtype21 8000

12000 8000 330000 0.93
Qtype22 7000

IQC 3
Qtype31 8000

10000 5000 275000 0.94
Qtype32 7000

IQC 4

Qtype41 9000

25000 20000 825000 0.96
Qtype42 13000
Qtype43 7000
Qtype44 8000

BOA 1

Btype11 8000

15000
Btype12 11000
Btype13 7000
Btype14 10000

BOA 2
Btype21 10000

15000
Btype22 10000

BOA 3
Btype31 7000

10000
Btype32 8000

BOA 4
Btype41 5000

10000Btype42 6000
Btype43 7000

Table 3. Values of µkt (thousand tons); Dkt = 0.85 · µkt and Dkt = 1.15 · µkt; Dkt are normally
distributed: N (µkt, σkt) with µkt = µkt+0.06 ·µkt ·εkt and σkt = 0.08 ·µkt, where εkt are uniformly
distributed random variables on [−1, 1]

t 0 1 2 3 4 5 6 7 8 9 10 11

P1 15.5 15.4 15.1 15.5 16.0 16.1 17.8 17.6 16.8 16.8 17.5 16.2
P2 22.0 22.8 22.2 22.5 23.0 25.5 26.5 26.9 26.0 25.6 26.0 25.5
P3 32.5 32.6 32.6 32.6 32.5 33.0 33.6 33.5 30.0 33.7 34.8 33.3
P4 38.7 38.5 38.5 39.7 42.0 43.0 43.5 43.0 43.5 42.7 44.0 43.5

t 12 13 14 15 16 17 18 19 20 21 22 23

P1 16.7 16.7 17.0 18.0 18.5 20.0 19.5 18.0 17.0 16.5 15.0 14.8
P2 24.4 23.6 24.5 25.0 24.5 27.5 27.5 26.0 26.5 25.0 24.5 25.3
P3 33.7 32.5 36.0 38.0 37.0 36.5 35.0 35.0 32.2 32.0 32.5 32.7
P4 42.5 41.6 39.5 39.0 40.5 40.0 41.5 42.5 42.5 41.5 41.5 41.8
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Table 4. Values of both additive and non-additive coal elements/attributes

Supplier Coal type j

Additive Non-additive
Calorific Volatile Ash Sulfur Moisture

value matter content content content
(Mcal/kg) (%) (%) (%) (%)

IQC 1

Qtype11 6.0 30 8 0.8 10
Qtype12 5.5 27 17 0.3 10
Qtype13 5.0 28 20 0.3 12
Qtype14 4.5 27 28 0.9 9

IQC 2
Qtype21 6.0 36 12 0.8 15
Qtype22 5.5 28 15 0.8 6

IQC 3
Qtype31 5.3 27 7 0.5 10
Qtype32 5.5 27 7 0.4 14

IQC 4

Qtype41 5.0 15 23 1.5 8
Qtype42 5.8 14 12 0.8 8
Qtype43 6.0 20 22 1 10
Qtype44 5.5 16 26 1.2 17

BOA 1

Btype11 3.8 38 4 0.6 33
Btype12 4.0 40 4 0.6 33
Btype13 4.7 42 5 0.6 22
Btype14 5.4 33 5 0.6 16

BOA 2
Btype21 4.6 22 8 0.4 23
Btype22 5.5 40 6 0.3 13

BOA 3
Btype31 6.5 30 16 1.6 6
Btype32 5.5 26 18 0.6 3

BOA 4

Btype41 5.5 40 22 1.2 12
Btype42 4.8 34 28 0.8 19
Btype43 5.8 36 16 1 8

Table 5. Parameters related to power companies

Power

pk pk

ρbk
Additive Non-additive

Calorific value Volatile Ash Sulfur Moisture

company (×620 (Mcal/kg) matter (%) content (%) content (%) content (%)

Yuan) Ekl Ekl Ekl Ekl Ekl Ekl Ekl Ekl Ekl Ekl

P1 0.65 0.9 2.2 5.3 6.0 19 32 10 19 0 0.7 3 33

P2 0.58 0.85 2 5.5 6.5 20 35 12 22 0 0.7 3 34

P3 0.61 0.86 2.1 5.1 6.0 22 36 9 23 0 0.7 2 33

P4 0.54 0.83 1.9 5.6 6.5 18 30 14 25 0 0.7 2 35

Table 6. Other parameter values for the simulations

ρSt = 620 + 40 cos(π9 t) + 5εt Yuan/ton r = 0.004
ρOt = 15 Yuan/ton BM = 120000 tons
ρHt = 20 Yuan/ton V = 130000 tons
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Table 7. Simulations of ρPijt and ρTit with the form µ+ a · cos(αt+ r) + b · εt (Yuan/ton), where
ε0 = 0 and εt (t ≥ 1) are uniformly distributed random variables on [−1, 1]

Supplier Coal type j
Parameters of ρPijt Parameters of ρTit
µ a b α r µ a b α r

IQC 1

Qtype11 565 45 5 π/8 0

37 2 0.25 π/24 π
Qtype12 536 44 5 π/8 0
Qtype13 499 41 5 π/8 0
Qtype14 420 40 5 π/8 0

IQC 2
Qtype21 514 46 5 π/8 0

120.4 2.4 0.25 π/24 π
Qtype22 492 43 5 π/8 0

IQC 3
Qtype31 438 42 5 π/8 0

128.4 2.4 0.25 π/24 π
Qtype32 455 45 5 π/8 0

IQC 4

Qtype41 437 48 5 π/8 0

42 2 0.25 π/24 π
Qtype42 520 50 5 π/8 0
Qtype43 520 50 5 π/8 0
Qtype44 439 46 5 π/8 0

BOA 1

Btype11 392 38 5 π/8 0

65.5 2.5 0.25 π/24 π
Btype12 384 36 5 π/8 0
Btype13 492 38 5 π/8 0
Btype14 520 40 5 π/8 0

BOA 2
Btype21 407 43 5 π/8 0

84.5 2.5 0.25 π/24 π
Btype22 479 44 5 π/8 0

BOA 3
Btype31 407 38 5 π/8 0

200.7 2.7 0.25 π/24 π
Btype32 378 37 5 π/8 0

BOA 4
Btype41 427 43 5 π/8 0

117.4 2.4 0.25 π/24 πBtype42 376 39 5 π/8 0
Btype43 441 44 5 π/8 0
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Appendix A. Optimization of the choices of contractors

In the body of the paper, many of the constraints are defined according to contracts. We did not
touch upon how to make contracts and choose contractors, since those contents are out of the scope
of this research. However, in our framework, a straightforward extension can be made to optimize
one set of choices of contractors, which may be viewed as a guide for the logistics enterprise.

Supplementary Parameters
mi the number of suppliers to be chosen for IQC’s
mk the number of power companies to be chosen
τi binary variable to denote whether the logistics enterprise signs the IQC with supplier i,

which takes a value of 1 when contract is signed and 0 otherwise
τk binary variable to denote whether the logistics enterprise signs the IQC with power com-

pany k, which takes a value of 1 when contract is signed and 0 otherwise

BOA can be handled easily in reality since it is not a strict contract without ordering fee or
discount. Only suppliers with IQC’s are optimized here. There are totally mi suppliers and mk

power companies to be selected, with deterministic parameters and current predictions of stochastic
parameters provided.

The cost of buying coals and the transportation cost are approximated as follows:

BCt =
∑
i

ηi ·
∑
j

ρPijt · (1 + αj)uijt, TCt =
∑
i

ρTit ·
∑
j

(1 + αj)uijt, (A1)

where αj is a constant that the logistics enterprise predefines, which means the ratio of the amount
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of coal type j bought from suppliers with BOA’s to the amount bought from suppliers with IQC’s.
Similarly, the dynamics for the inventory level is rewritten as

Vj(t+1) = Vjt + (1 + αj)
∑
i

uijt −
∑
k

yjkt, for ∆t = 0, 1, . . . , T̃ − 1, (A2)

where T̃ denotes the number of sampling periods across one whole year in which contracts will do
effect. Correspondingly, objective and constraints here will be considered for the horizon T̃ as well.

And the total cost of (8) changes into

CT =

T̃−1∑
∆t=0

BCt + TCt +HCt +OCt + PSt
(1 + r)∆t

+

T̃−1∑
∆t=0

∑
i

OFit · τi +

T̃−1∑
∆t=0

∑
k

(Dkt −Dkt) · (ρHt + ρOt) · τk

(A3)

Comparing the first term of (A3) with (8), the reason to rule out CV Ct is that the case of explicit
breach of IQC is not considered here since there are no suppliers with BOA’s, but nevertheless the
total constraint violation fees are accounted for in the second term. And the third term presents
the limit of the uncertainty of the holding and operational costs, which is expected to be as small
as possible.

Constraints on uijt can then be formed as

τiũit ≤
∑
j

uijt ≤ τi
∑
j∈J

uijt, τi ∈ {0, 1}, ∀i, j, ∆t = 0, 1, . . . , T̃ − 1. (A4)

Constraints to interpret satisfaction of demands of power companies are formulated as∑
j

yjkt ≥ τkDkt,
∑
j

yjkt ≤ τkDkt,

∑
j

yjkt ≥ τk γt,
∑
j

yjkt ≤ τk γt, τk ∈ {0, 1},
(A5)

where γt, γt are computed using the current estimations of Dkt provided by power companies.
Then solve the following optimization problem:

min
{uijt, yjkt, Bkt, τi, τk}

(A3)

subject to (A2), (10), (11), (A4), (20), (21), (22a), (23), (24) and (A5).
(A6)

It should be noted that all the equations/constraints should be reformulated for i =
1, 2, . . . ,mi, j ∈ J, k = 1, 2, . . . ,mk. Following the results of (A6), choose suppliers and pow-
er companies with τi = 1 and τk = 1 as contractors of the logistics enterprise.

It is pointed out that there are two simplifications, compared to the formulation in the body of
the paper.

1. (A1) presents only rough calculations of the costs since it is assumed implicitly that the coals
from suppliers with BOA’s have the same average price as those from suppliers with IQC’s.

2. Explicit breach of contract is not taken into account.

Both of the above points depend explicitly on the real time market information (supply and
transportation), which is not yet available at the stage of choosing contractors. This justifies the
employment of model predictive control strategy to update the trade decisions at each time period,
which will result in better performance.
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