STUDIES ON HAEMONCHUS CONTORTUS. VI. ATTEMPTS TO STIMULATE IMMUNITY TO ABOMASAL TRICHOSTRONGYLIDS IN MERINO SHEEP

R. K. REINECKE⁽¹⁾, I. L. DE VILLIERS⁽¹⁾ and CHRISTEL BRÜCKNER⁽²⁾

ABSTRACT

REINECKE, R. K., DE VILLIERS, I. L. & BRÜCKNER, CHRISTEL, 1982, Studies on Haemonchus contortus. VI. Attempts to stimulate immunity to abomasal trichostrongylids in Merino sheep. Onderstepoort Journal of Veterinary Research, 49, 3-6 (1982).

Two doses of infective larvae of 20 000 *Trichostrongylus axei*, dosed to Merino lambs at an interval of 14 days and subsequently challenged with *Ostertagia circumcincta*, caused a significant reduction (P < 0.01) in the establishment of 5th and adult stages of the latter. *T. axei* was unable to protect Merino sheep against homologous challenge nor was *Haemonchus contortus* a successful vaccine against challenge with the same species. The vaccinated group showed a reduction (P < 0.025) only in 5th and adult *H. contortus*, but not in the total worm burdens.

INTRODUCTION

In previous experiments we have concentrated on dosing worm-free weaned lambs or yearlings with either *Trichostrongylus axei* or *Ostertagia circumcincta* in attempts to protect them against subsequent challenge with *Haemonchus contortus* (Reinecke, 1977; Reinecke, Snyman & Seaman, 1979). In this paper experiments are described to assess whether *T. axei* has any protective effect against *T. axei* or *O. circumcincta* and whether *H. contortus* can stimulate autochthonous immunity.

Experiment 1. The protective effect of T. axei against either O. circumcincta or T. axei

Materials and Methods

The Merinos used in this trial were purchased at the age of 4 months and were treated with anthelmintics. They developed coccidiosis, pasteurellosis and diarrhoea and were treated with Amprolium (MSD) tetracycline (Terramycin Pfizer) and other antibiotics. Some 18 out of 150 died and the survivors were used in this and other experiments.

Forty Merinos were divided into 4 groups, 2 of 9 sheep each (Groups A and C), one of 12 (Group B) and one of 10 sheep (Group D).

The experimental design is summarized in Table 1.

Each lamb in Groups B and D received 20 000 infective larvae of T. axei on Day 0 and a similar dose on Day +14.

Three sheep in Group B and 1 in Group D died before challenge. In both Groups B and D one sheep died after challenge.

On Days 90, 91 and 92 Groups A and B were challenged with a total of 50 000 infective larvae of O. circumcincta. On the same days each sheep in Groups C and D was dosed with a total of 100 000 infective larvae of T. axei. All the survivors were killed on either Day +118 or Day +119.

Results

Worms recovered are summarized in Table 2. With the exception of Sheep 539, which died on Day +66, worms were counted from all sheep that died and the results are included in Table 2.

Worm burdens are ranked in Tables 3 and 4 and the results analysed. Only when sheep vaccinated with *T. axei* were challenged with *O. circumcincta* did fewer worms of the challenge dose develop to adults (P < 0,01, Table 3). *T. axei* was unsuccessful as a vaccine against challenge with *T. axei*.

Experiment 2. Autochthonous immunity against *H. contortus*

Materials and Methods

The experimental design is summarized in Table 5.

Twenty-one 4-month-old Merino lambs from the same flock used in Experiment 1 were divided into:

Group E: 11 controls each dosed with 50 000 infective larvae of H. contortus from Day +90–Day +92.

Group F: 12 animals each dosed with 5 000 infective larvae on Day 0 and a further 5 000 larvae on Day +14. From Day +90-Day +92 they were challenged with

Davia	Number of infective larvae dosed to each sheep						
Days	Group A	Group B	Group C	Group D			
0 +14	0 0	T. axei T. axei	0 0	T. axei T. axei			
Total	0	40 000	0	40 000			
+90 +91 +92	0. circumcincta 0. circumcincta 0. circumcincta	O. circumcincta O. circumcincta O. circumcincta	T. axei T. axei T. axei	T. axei T. axei T. axei			
Total	50 000	50 000	100 000	100 000			
+118 +119	Slaughtered	Slaughtered	Slaughtered	Slaughtered			

TABLE 1 Experiment 1. Experimental design. The days on which sheep were dosed with infective larvae of either *T. axei* or *O. circumcincta* and slaughtered

⁽¹⁾ Faculty of Veterinary Science, P.O. Box 12580, Onderstepoort, 0110

⁽²⁾ Medicines Control Council, Private Bag X63, Pretoria 0001 Received 28 September 1981—Editor

STUDIES ON HAEMONCHUS CONTORTUS. VI.

TABLE 2 Experiment 1. Worms recovered at necropsy

Sheep		Total			
No.	*L ₃	*L4	*5	Adult	
	Grou	p A: O. circumcincta con	ntrols		
508	366	6 574	3 040	6 760	16 740
535	1 853	17 747	900	1 440	21 940
537	74	4 311	560	339	5 284
552	276	16 270	0	1 101	17 647
555	0	15 510	820	2 590	18 920
568	97	4 032	85	4 036	8 250
574	137	9 383	110	3 070	12 700
580	3	13 781	800	3 911	18 495
612	2 336	17 094	990	10 610	31 030

* $L_3 = 3rd$ stage larvae $L_4 = 4th$ stage larvae 5 = 5th stage

TABLE 2 (Continued)

Sheep No.	O. circumcincta Stage of development						S	T. axei tage of develo	pment	
140.	L ₃	L_4	5	Adult	Total	L ₃	L ₄	5	Adult	Total
	Group B:	$2 \times 20\ 000\ L_3$	T. axei							
502	0 1	23 140	1 280	1 050	24 470	0	0	120	1 080	1 200
523	0	14 490	0	440	14 930	0	0	0	24 698	24 698
538	40	3 124	0	0	3 164	98	98	0	16 690	16 886
548	0	9 744	280	400	10 424	0	0	200	15 560	15 760
553	0	11 424	360	160	11 944	0	0	10	6 924	6 934
554	0	19 460	600	5 850	25 910	0	0	100	1 800	1 900
559	22	19 384	80	444	19 930	0	0	0	18 090	18 090
565	7	15 225	760	800	16 792	0	0	0	29 383	29 383
*601	0	3 216	0	0	3 216	0	0	0	13 194	13 194
eep 579	died on Da	y +55 before cl	nallenge			6	5	113	21 179	21 303
		y +62 before cl				39	253	57	12 973	13 322
neep 564	died on Da	y +66 before ch	allenge			0	2	6	25 093	25 101

* Sheep 601 died on Day +114

TABLE 2 (Continued)

Sheep		T. axei Stage of development					
No.	L ₃	L ₄	5	Adult			
	Group C: T. axei con	trols					
503	1 300	1 510	4 780	21 850	28 440		
517	572	581	2 123	38 919	42 195		
581	807	3 156	5 009	31 200	40 172		
591	2 770	7 330	2 940	26 810	39 850		
613	745	8 070	4 445	18 210	31 470		
617	1 670	1 880	640	24 880	29 070		
624	1 780	4 220	4 330	32 950	43 280		
627	794	2 965	4 860	34 090	42 709		
632	4 570	11 620	5 690	31 100	52 980		

TABLE 2 (Continued)

Total	T. axei Stage of development						
	Adult	5	L ₄	L ₃	No.		
			L ₃ T. axei	Group D: 2 × 20 000			
8 960	3 442	716	1 2 495	2 307	506		
7 500	1 880	480	2 870	2 270	512		
36 516	29 288	699	4 112	2 417	513		
32 520	16 270	4 360	7 537	4 353	562		
34 084	32 693	964	409	18	*566		
44 832	42 925	323	1 064	520	567		
50 806	42 665	1 362	5 766	1 013	585		
33 660	7 820	5 890	6 960	12 990	587		
9 608	8 567	1	49	991	606		

* Sheep 566 died on Day +114

R. K. REINECKE, I. L. DE VILLIERS & CHRISTEL BRUCKNER

50 000 infective larvae of H. contortus. Four sheep died in this group, 2 before and 2 after challenge (Table 6).

The survivors of Group F and all the sheep in Group E were slaughtered on Day +119.

TABLE 3 Experiment	1.	Ranked	worm	burdens	of	0.	circumcincta
--------------------	----	--------	------	---------	----	----	--------------

Group A				Group B	
$L_3 + L_4$	5 + A***	Total	$L_3 + L_4$	5 + A	Total
4 129 4 385 6 940 9 520 13 784 15 510 16 546 19 430 19 600	899 1 101 2 340 3 180 3 410 4 121 4 711 9 800 11 600	5 284 8 250 12 700 16 740 17 647 18 495 18 920 21 940 31 030	3 164 3 216 9 744 11 424 14 490 15 232 19 406 19 460 23 140	0 0 440 520 524 680 1 330 1 560 6 450 (P< 0,01)**	3 164 3 216 10 584 11 944 14 930 16 792 19 930 24 470 25 910 *Sheep 518 *Sheep 564 *Sheep 579

* Sheep died before challenge

** Significantly fewer worms than Group A by the Mann-Whitney U test *** A = Adult worms

TABLE 4 Experiment 1. Ranked worm burdens of T. axei

	Group C			Group D	
$L_3 + L_4$	5 + A	Total	$L_3 + L_4$	5 + A	Total
1 153	22 655	28 440	427	2 360	7 500
1 810	25 520	29 070	1 040	4 158	8 960
3 550	26 630	31 470	1 584	8 568	9 608
3 759	29 750	39 850	4 802	13 710	32 520
3 963	36 790	40 172	5 140	20 630	33 660
6 000	36 209	40 640	6 529	29 987	34 084
8 815	37 280	42 195	6 779	33 657	36 516
10 100	38 950	43 280	11 890	43 248	44 832
16 190	41 042	52 980	19 950	44 027	50 806

TABLE 5 Experiment 2. Experimental design. The days on which infective larvae were dosed to each sheep and sheep were slaughtered

D	Number of infective larvae dosed to each sheep				
Days	Group E	Group F			
0 +14	_	H. contortus H. contortus			
Total	_	10 000			
+90 +91 +92	H. contortus H. contortus H. contortus	H. contortus H. contortus H. contortus			
Total	50 000	50 000			
+119	Slaughtered	Slaughtered			

Results

The previous infestation of H. contortus caused a highly significant reduction (P < 0,025) in 5th and adult stages of the challenge dose of H. contortus, but not of total worm burdens (Table 7).

Four sheep died in Group F, 2 of them before challenge, probably because the initial dose of infective larvae of H. contortus was too high. The 2 that survived only to die after challenge had 7 907 (Sheep 524) and 11 805 (Sheep 569) H. contortus at necropsy respectively. Worm counts in Sheep 524 were less than the median of 8 075, while Sheep 569 had the highest worm burden in this group.

TABLE 6 Experiment 2. Worms recovered at necropsy

Sheep	Stag	Total		
No.	L ₄	5	Adult	
	Group E: C	ontrols		
509	302	113	6 340	6 755
525	39	0	6 767	6 806
531	122	100	9 628	9 850
533	35	40	12 989	13 064
575	256	170	7 991	8 417
578	344	445	12 330	13 119
590	41	410	6 728	7 179
594	192	312	13 680	14 184
595	75	281	5 151	5 507
598	219	293	10 973	11 485
608	195	223	10 511	10 929

TABLE 6 (Continued)

Sheep	Stag	Total		
No.	L ₄	5	Adult	
	Group F: 2	× 5 000 La	H. contortus	
*524	1 805	3 266	1 2836	7 907
544	695	1 086	1 157	2 938
551	1 864	2 190	1 691	5 745
558	851	18	7 752	8 621
*569	640	5 971	5 194	11 805
572	1 933	3 058	1 558	6 549
586	832	121	7 291	8 244
602	1 004	5 481	3 528	10 013
611	1 081	222	1 234	2 537
620	604	655	8 207	9 466

Sheep 501 died on Day +40 before challenge. 7606 H. contortus recovered

Sheep 589 died on Day +66 before challenge. No count was done * Sheep 569 died on Day +112 * Sheep 524 died on Day +118

TABLE 7 Experiment 2. Ranked worm burdens of H. contortus

Group E			Group F			
L ₄	5 + A	Total	L ₄	5 + A	Total	
35	5 432	5 507	604	1 456	2 577	
39	6 453	6 755	640	2 243	2 938	
41	6 767	6 806	695	3 881	5 745	
75	7 138	7 179	832	4 616	6 549	
122	8 161	8 417	851	6 102	7 907	
192	9 728	9 850	1 004	7 412	8 244	
195	10 734	10 929	1 081	7 770	8 621	
219	11 266	11 485	1 805	8 862	9 466	
256	12 775	13 064	1 864	9 009	10 013	
302	13 029	13 119	1 933	11 165	11 085	
344	13 992	14 184		*P < 0.025		

* Significantly fewer than Group E by the Mann-Whitney U test

DISCUSSION

We are indebted to Anderson (1972; 1973) for our knowledge of the epizootiology of T. axei and Ostertagia spp. in sheep in a winter rainfall area in Australia. T. axei is prevalent there from June to November and Ostertagia spp. from June to October. In non seasonal-rainfall areas in the Southern Hemisphere (Republic of South Africa, New Zealand and Australia) T. axei occurs from March to September and Ostertagia spp. from March to October (Muller, 1968; Brunsdon, 1970, 1973; Southcott, Major & Barger, 1976).

STUDIES ON HAEMONCHUS CONTORTUS. VI.

Muller (1968) has stated that retarded 4th stage larvae (L_4) of *Ostertagia* spp. are particularly abundant from May to September in a non-seasonal rainfall area (George, RSA). Anderson (1972, 1973) unfortunately did not distinguish between larval stages of *Ostertagia* spp. and those of *T. axei*.

In the present trials *T. axei* protected sheep against 5th stage and adult *O. circumcinta* (P < 0,01) but had no effect on L_4 of this species (Table 3). It is reasonable to assume that retardation of L_4 of *Ostertagia* spp. in the winter is due not only to the external environmental factors affecting the free-living stages with subsequent retarded development in the host, but to the fact that *T. axei* also prevents *Ostertagia* spp. from developing to 5th and adult stages under field conditions.

In the present trials vaccination with T. axei failed to immunize Merinos against T. axei. Possibly the 4month-old Merinos we used were immunologically incompetent, since Ross (1970) showed that Blackface lambs up to 5 months of age could not develop immunity.

Another possible reason is that in young lambs 2 doses of 20 000 infective larvae of T. axei is too pathogenic, since 2 sheep died before the experiment was completed in Group D (T. axei challenged with T. axei) and 3 in Group B (T. axei challenged with O. circumcincta) respectively. Whatever the reason further investigations are necessary to explain our failure to immunize sheep successfully against T. axei.

In Experiment 2 we attempted to immunize Merino lambs against *H. contortus* by predosing them with *H. contortus*. There were fewer L_4 in the controls (Group E) (P < 0,001) compared with those in the vaccinated sheep (Group F), and this situation, combined with the poor reaction against 5th and adult stages (P < 0,025) is reflected in the total worm burdens of *H. contortus* when those of the vaccinated group are compared with those of controls. In the latter there is no significant difference. This confirms the finding by Lopez & Urquhart (1968) that Merinos are unable to develop immunity to *H. contortus*.

ACKNOWLEDGEMENTS

We wish to thank the Department of Agriculture and Fisheries for financial assistance enabling us to carry out these trials and the Director, Veterinary Research Institute, Onderstepoort for the physical facilities.

REFERENCES

- ANDERSON, N., 1972. Trichostrongylid infections of sheep in a winter rainfall region. I. Epizootiological studies in the western district of Victoria 1966-67. Australian Journal of Agricultural Research, 23, 1113-1129.
- ANDERSON, N., 1973. Trichostrongylid infections of sheep in a winter rainfall region. II. Epizootiological studies in the western district of Victoria 1967–68. Australian Journal of Agricultural Research, 24, 599–611.
- BRUNSDON, R. V., 1970. Seasonal changes in the level and composition of nematode worm burdens in young sheep. New Zealand Journal of Agricultural Research, 13, 126–148.
- BRUNSDON, R. V., 1973. Inhibited development of Haemonchus contortus in naturally acquired infections in sheep. New Zealand Veterinary Journal, 21, 125–126.
- LOPEZ, V. & URQUHART, G. M., 1968. The immune response of Merino sheep to Haemonchus contortus infection. Veterinary Medical Review, Leverkussen. Proceedings of the International Conference of the World Association for the Advancement of Veterinary Parasitology, 3, Lyons, July 25–27, 1967, 153–159.
- MULLER, G. L., 1968. The epizootiology of helminth infestation in sheep in the south-western districts of the Cape. Onderstepoort Journal of Veterinary Research, 35, 159–194.
- REINECKE, R. K., 1977. The effect of abomasal parasites on subsequent infestations with *Haemonchus contortus*. M. Med. Vet. Thesis, University of Pretoria.
- REINECKE, R. K., SNYMAN, H. MARIA & SEAMAN, HELGA, 1979. Studies on *Haemonchus contortus*. II. The effect of abomasal nematodes on subsequent challenge with *H. contortus*. Onderstepoort Journal of Veterinary Research, 46, 199–205.
- ROSS, J. G., 1970. Investigations of acquired immunity of *Trichostron-gylus axei* infections in seven-month-old lambs. *British Veterinary Journal*, 126, 648-651.
- SOUTHCOTT, W. H., MAJOR, G. W. & BARGER, I. A., 1976. Seasonal pasture contamination and availability of nematodes for grazing sheep. Australian Journal of Agricultural Research, 27, 277-286.