

Rapid, distributed processing of medium velocity datastreams into contextualised 3D

visualisations:

Evaluating the cloud computing paradigm

by

Lauren Hankel

Submitted in partial fulfilment of the requirements

for the degree

MSc Geoinformatics

in the

Faculty of Natural and Agricultural Sciences

University of Pretoria

Submitted on 4 December 2014

Resubmitted on 28 April 2015

ii

Declaration

I, Lauren Hankel, declare that the dissertation, which I hereby submit for the degree MSc

Geoinformatics at the University of Pretoria, is my own work and has not previously been

submitted by me for a degree at this or any other tertiary institution.

________________________ ________________________

SIGNATURE DATE

iii

Rapid, distributed processing of medium velocity datastreams into contextualised 3D

visualisations: evaluating the cloud computing paradigm

Lauren Hankel

Supervisor: Professor Serena Coetzee Department: Geography, Geoinformatics

 and Meteorology

Co-Supervisor: Mr Graeme McFerren (CSIR) Faculty: Natural and Agricultural Sciences

Degree: MSc Geoinformatics University: University of Pretoria

iv

Abstract

Vegetation wildfires occur in most parts of the world, sometimes with disastrous effects.

Wildfire incidents could be mitigated if timeous and informative notifications are

disseminated to appropriate parties. Hundreds of detections might be obtained from an

intermittent data stream of active fire data, detected from earth observation satellites and

might be disseminated to hundreds of parties at any satellite overpass. Ideally, when an

interested or affected party receives a wildfire notification, the receiver should immediately

be able to link to the visualisation resource via a web connected device, i.e. the visualisation

should be available on demand or in ‗demand-time‘. To achieve demand-time results,

datastreams of wildfire events need to be processed rapidly in relation to large datasets of

contextual variables. Failure to do so would result in processing backlogs and cause a delay

in the generation of three-dimensional (3D) visualisations. The primary purpose of this

research was to evaluate the efficiency of different algorithmic and architectural styles for

process chaining in the cloud to generate 3D spatial context visualisations around detected

active fires in demand-time. This study investigated efficiencies across four dimensions: 1)

software libraries, 2) tightly-coupled and serial versus loosely-coupled and distributed

geoprocessing chain implementations, 3) standardised geoprocessing web service (OGC

WPS) implementations versus bespoke software solutions and 4) system deployment in a

cloud versus system deployment on a single thread on commodity hardware.

Geoprocessing chains were implemented in Python using open-source libraries and

frameworks. Results indicate that loading objects in memory by using a software library is

more efficient than using a spatial database. Loosely-coupled distributed geoprocessing is

faster than tightly-coupled serial geoprocessing. Web Processing Services cause a

significant deterioration in the performance of the geoprocessing chain. Overall,

geoprocessing with Web Processing Services on a single thread on commodity hardware

does not deliver demand-time results. Demand-time could only be achieved with bespoke

software solutions or with a larger number of cloud instances that was not cost effective.

The cloud computing paradigm can be evaluated due to free or less costly options. As the

number of cloud instances increased, the performance of the geoprocessing chain improved.

Therefore, demand-time results can be achieved when using the optimal number of cloud

instances to conduct geoprocessing. However, there is a trade-off between the number

and/or size of instances and costs.

v

Acknowledgements

I would like to thank my supervisor Professor Serena Coetzee and my co-supervisor Mr

Graeme McFerren.I sincerely appreciate the guidance that you have provided me throughout

this experience. Your advice was invaluable. It was a honour to learn so much from you.

Professor Serena Coetzee, thank you for all the time that you have invested into guiding me

with the write-up. Thank you for taking the time to thoroughly review draft versions of the

dissertation. I value all the comments and I appreciate all the advice you have given me.

Mr Graeme McFerren, thank you for supplying resources required to set up the public cloud

infrastructure. I would like to thank you for introducing me to all the technologies

experimented with. I have gained a new body of knowledge and capabilities. Thank you for

all of the advice you have given me and thank you for your patience.

Mr Uli Horn, although the OpenNebula private cloud was not used for one of the

experiments, I do appreciate all the time that you have spent on helping me to set up

machines in the private cloud. Experimenting with a private cloud was beneficial for future

research. It was nice to learn from you.

Mr Sives Govender, thank you for helping me acquire resources required to set up the public

cloud infrastructure. Thank you for the support you have given me.

Mr Riaan van den Dool, thank you for all of your support and interest in this research.

The management and staff at the CSIR who granted me the opportunity to complete my

MSc, I feel extremely privileged to have learnt so much from such remarkable people.

Thank you for funding the MSc and the trip to the 11th International Symposium on Location-

Based Services in Vienna, Austria on 26-28 November 2014.

vi

Finally, I would like to thank my mom, dad, sister and other members of the family for their

love and support. I would not have come this far without your encouragement. Thank you

for funding some of the cloud resources.

Herewith acknowledgement to my editor, Ms Liza Marx from Aqdemic Editing Services.

vii

List of Abbreviations and Acronyms

Abbreviation or Acronym Meaning

3D Three Dimensional

AFIS Advanced Fire Information System

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AWS Amazon Web Services

BPEL Business Process Execution Language

CPU Central Processing Unit

CSIR Council for Scientific and Industrial Research

DEM Digital Elevation Model

EBS Elastic Block Store

EC2 Elastic Compute Cloud

ESA European Space Agency

ESKOM Electricity Supply Commission

GeoTIFF Geo Tagged Image File Format

GML Geography Markup Language

GPU Graphics Processing Unit

HTML Hypertext Transfer Markup Language

IaaA Infrastructure-as-a-Service

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

KML Keyhole Markup Language

KVP Key Value Pair

MODIS Moderate Resolution Imaging Spectroradiometer

MSG Meteosat Second Generation

NASA National Aeronautics and Space Administration

NLC National Land Cover

OCG Open Geospatial Consortium

PaaS Platform-as-a-Service

PC Personal Computer

RAM Random Access Memory

RDS Relational Database Service

ROM Read-Only Memory

S3 Simple Storage Service

SaaS Software-as-a-Service

SCP Secure Copy

SEVIRI Spinning Enhanced Visible & Infrared Imager

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

SRTM NASA Shuttle Radar Topography Mission

SSH Secure Shell

viii

Abbreviation or Acronym Meaning

URL Uniform Resource Locator

WCS Web Coverage Service

WFS Web Feature Service

WKT Well Known Text

WMS Web Map Service

WPS Web Processing Service

WSDL Web Services Description Language

WWW World Wide Web

XML Extensible Markup Language

ix

Table of Contents

Declaration ...ii

Abstract...iv

Acknowledgements ... v

List of Abbreviations and Acronyms .. vii

List of Figures .. xii

List of Tables ... xiv

1 Chapter One: Introduction .. 1

1.1 Chapter Overview ... 1

1.2 Background... 1

1.3 Research Problem Statement ... 5

1.4 Research Question ... 6

1.5 Research Aims and Objectives ... 7

1.6 Significance of Research .. 8

1.7 Limitations of Research... 8

1.8 Overview of Remaining Chapters .. 9

1.9 Chapter Summary ... 9

2 Chapter Two: Literature Review .. 11

2.1 Chapter Overview ... 11

2.2 Research Context ... 11

2.2.1 Wildfires ... 11

2.2.2 Industry Use-Case: Advanced Fire Information System (AFIS) 13

2.2.3 Wildfire Detection ... 15

2.2.4 Big Geospatial Data ... 16

2.2.5 Distributed/High Performance Computing .. 18

2.2.6 Enterprise Messaging .. 24

2.2.7 Web Processing Service .. 25

2.2.8 Geovisualisation .. 27

2.3 Related Work .. 28

x

2.3.1 Distributed/High Performance Computing .. 28

2.3.2 Enterprise Messaging .. 31

2.3.3 Web Processing Service .. 31

2.3.4 Geovisualisation .. 33

2.4 Chapter Summary ... 34

3 Chapter Three: Research Methods and Experiment Design.. 36

3.1 Chapter Overview ... 36

3.2 Research Methods .. 36

3.3 Experiment Design .. 37

3.4 Required Data(Abstract) ... 39

3.5 Geoprocessing Chain (Abstract) ... 39

3.6 Chapter Summary ... 41

4 Chapter Four: Research Implementation... 42

4.1 Chapter Overview ... 42

4.2 Required Data (Implementation) ... 42

4.3 Software ... 44

4.4 Experimental Implementations .. 44

4.4.1 Geoprocessing Chain(Implementation) .. 44

4.4.2 Benchmarking .. 47

4.4.3 Pre-Tests ... 48

4.4.4 Architectural Styles .. 50

4.4.5 Experiment One - Single Thread on Commodity Hardware 53

4.4.6 Experiment Two - Cloud Computing Environment .. 55

4.5 Chapter Summary ... 60

5 Chapter Five: Results and Discussion ... 61

5.1 Chapter Overview ... 61

5.2 Pre-Tests Results .. 61

5.2.1 Graphs ... 61

5.2.2 Discussion ... 63

xi

5.3 Experiment One: Loosely-Coupled and Tightly-Coupled Architectural Style and

Web Processing Service Tests Conducted on a Single Thread on Commodity Hardware 65

5.3.1 Graphs ... 65

5.3.2 Discussion ... 67

5.4 Experiment Two: Loosely-Coupled Architectural Style and Web Processing Service

Tests in Cloud Environment ... 68

5.4.1 Graphs ... 68

5.4.2 Discussion ... 69

5.5 Comparison between Tests of Experiment One and Experiment Two.................... 73

5.5.1 Graphs ... 73

5.5.2 Discussion ... 74

5.6 Chapter Summary ... 75

6 Chapter Six: Conclusions and Future Research .. 77

6.1 Chapter Overview ... 77

6.2 Conclusions .. 77

6.3 Recommendations for Future Research .. 80

7 References .. 81

Appendix A - Source Code .. 89

Appendix B - Extended Results ... 90

Appendix C - Categorised References .. 108

Peer-Reviewed Scientific Literature ... 108

Online References ... 112

Other References .. 114

Conferences Presented ... 115

xii

List of Figures

Figure 1: Example 3D Visualisation ... 3

Figure 2: Advanced Message Queuing Protocol diagram .. 24

Figure 3: Web Processing Service sequence diagram ... 26

Figure 4: High-level description of geoprocessing chain components 41

Figure 5: Tightly-Coupled Geoprocessing Chain Components .. 47

Figure 6: Loosely-Coupled Geoprocessing Chain Components ... 52

Figure 7: Cloud configuration-four consumers per geoprocessing chain component. 59

Figure 8: Cloud configuration-six consumers per geoprocessing chain component. 60

Figure 9: Area of Interest Check-test results (Section 4.4.3, page 48) 62

Figure 10: Buffer and Bounding Box-test results (Section 4.4.3, page 48) 63

Figure 11: Elevation Calculation-test results (Section 4.4.3, page 48) 63

Figure 12: Single thread on commodity hardware tightly-coupled versus loosely-coupled and

WPS implementation versus function call implementation-permutation test results. One

consumer (Sections 4.4.4 (page 50), 4.4.5 (page 53)) .. 66

Figure 13: Single thread on commodity hardware tightly-coupled versus loosely-coupled and

WPS implementation versus function call implementation-permutation test results. Four

versus six consumers(Sections 4.4.4 (page 50), 4.4.5 (page 53)) 67

Figure 14: Cloud loosely-coupled WPS implementation versus function call implementation

test results. Four consumers versus six consumers (Sections 4.4.4 (page 50), 4.4.6 (page

55)) ... 69

Figure 15: Single thread on commodity hardware versus cloud, loosely-coupled, Web

Processing Service versus function call permutation tests results. Four consumers versus

six consumers (Sections 4.4.4 (page 50), 4.4.5 (page 53), 4.4.6 (page 55)) 74

Figure 16: Single Thread on Commodity Hardware Loosely-Coupled WPS Implementation

versus Function Call Implementation. One Consumer per Geoprocessing Chain Component

 ... 90

Figure 17: Single Thread on Commodity Hardware Tightly-Coupled WPS Implementation

versus Function Call Implementation .. 91

Figure 18: Single Thread on Commodity Hardware Tightly-Coupled versus Loosely-Coupled

WPS Implementation .. 92

Figure 19: Single Thread on Commodity Hardware Tightly-Coupled versus Loosely-Coupled

Function Call Implementation .. 93

Figure 20: Cloud-Based Loosely-Coupled WPS Implementation versus Function Call

Implementation. Four Consumers per Geoprocessing Chain Component 94

xiii

Figure 21: Cloud-Based Loosely-Coupled WPS Implementation versus Function Call

Implementation. Six Consumers per Geoprocessing Chain Component 95

Figure 22: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

WPS Implementation. Four Consumers per Geoprocessing Chain Component 96

Figure 23: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

WPS Implementation. Six Consumers per Geoprocessing Chain Component 97

Figure 24: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

Function Call Implementation. Four Consumers per Geoprocessing Chain Component 98

Figure 25: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

Function Call Implementation. Six Consumers per Geoprocessing Chain Component 99

Figure 26: Single Thread on Commodity Hardware Loosely-Coupled WPS Implementation

versus Function Call Implementation. Four Consumers per Geoprocessing Chain

Component ... 100

Figure 27: Single Thread on Commodity Hardware Loosely-Coupled WPS Implementation

versus Function Call Implementation. Six Consumers per Geoprocessing Chain Component

 ... 101

Figure 28: Single Thread on Commodity Hardware Loosely-Coupled Function Call

Implementation. One versus Four versus Six Consumers per Geoprocessing Chain

Component ... 102

Figure 29: Single Thread on Commodity Hardware Loosely-Coupled WPS Implementation.

One versus Four versus Six Consumers per Geoprocessing Chain Component 103

Figure 30: Cloud-Based Function Call Implementation. Four versus Six Consumers per

Geoprocessing Chain Component .. 104

Figure 31: Cloud-Based WPS Implementation. Four versus Six Consumers per

Geoprocessing Chain Component .. 105

Figure 32: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

WPS versus Function Call Implementation. Four Consumers per Geoprocessing Chain

Component ... 106

Figure 33: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

WPS versus Function Call Implementation. Six Consumers per Geoprocessing Chain

Component ... 107

xiv

List of Tables

Table 1: Combinations of Experimental Architectural Styles .. 39

Table 2: Abstract Description of Required Data ... 39

Table 3: Description of the Abstract Geoprocessing Chain Components 40

Table 4: Description of Data Required for Implementation ... 43

Table 5: High Level Description of Used Software Libraries or Packages 44

Table 6: Description of the Implemented Geoprocessing Chain Components (Experimental)

 ... 46

Table 7: Description of the Pre-Tests ... 49

Table 8: Combinations of Experimental Architectural Styles ... 54

1

1 Chapter One: Introduction

1.1 Chapter Overview

This chapter provides an extensive, high level overview of the problem addressed in this

research. This chapter puts the research problem into context by providing background

information. The research problem statement, research question and research objectives

are included to give a distinct description of the problem that the research attempted to solve

and the objectives that had to be achieved to solve the problem. The research significance

is included to highlight the research importance, and limitations are further included to

provide detail on the constraints of this research and the challenges faced during this

research. This chapter concludes with an overview of the remaining chapters in the

dissertation.

1.2 Background

Vegetation wildfires occur frequently in many parts of the world. In South Africa, vegetation

wildfires are well-known for being used as a land management tool. Wildfires have the

potential to get out of control fast and destroy valuable resources (Davies et al., 2008). They

can range from small scale fires that cause an insignificant quantity of damage (minimal

damage to property) to large scale wildfires that can cause a considerable quantity of

damage (complete destruction of property or loss of life). Wildfire incidents can be mitigated

by the expeditious dissemination of information derived from earth observation data. This

information allows a fire manager to gain early insight into wildfire incidents.

Kassab et al. (2010) stated that geographical data describes the spatial and descriptive

semantics of fires and their surroundings. Situational awareness is described as information

utilised to aid in the assessment and management of a situation (Vieweg et al., 2010).

Situational awareness in a wildfire situation can be enhanced if appropriate parties are

alerted of wildfire incidents in real-time and therefore wildfire notifications should be

disseminated in real-time.

The CSIR's Meraka Institute developed the Advanced Fire Information System (AFIS) with

the primary function to provide real-time information of active vegetation wildfires detected

from earth observation satellite data (CSIR, 2012). This industry use case (AFIS) was used

as inspiration for the research discussed in this dissertation.

http://www.wordhippo.com/what-is/another-word-for/frequently.html

2

AFIS provides users with prediction, detection, monitoring, alerting, and planning

capabilities. All these capabilities were created through the use of earth observation

satellites, weather models and information communication technologies (CSIR, 2012). The

web-based mapping service further offers the above-mentioned capabilities. The AFIS

mobile application was recently introduced for Apple iOS and Google Android mobile

operating systems. It provides users with similar capabilities offered by the web-based

mapping service (CSIR, 2012).

AFIS users receive wildfire notifications if wildfires occur nearby locations that users have a

specific interest in (McFerren et al., 2009). This is achieved through using spatial filters.

Wildfire notifications are disseminated as an SMS (short message service) or an e-mail

(electronic mail) containing a limited quantity of static information, such as the location and

intensity (FRP – Fire Radiative Power) of the detected fire as noted in McFerren et al.

(2013). The next iteration of wildfire alerting payloads are interactive maps associated with

wildfire notifications. Three-dimensional interactive maps are not included in the AFIS

alerting payloads yet, but they would significantly enhance situational awareness.

3D spatial context visualisations provide more significant and useful information than 2D

spatial context visualisations in the situation of a wildfire. This can be attributed to

topography (layout of the land) being viewed in three dimensions. This information maybe

vital information required to evaluate a wildfire situation. 3D wildfire context visualisations

allows firefighters or emergency responders to visualise the terrain that they have to deal

with when responding to the fire. Certain fires might not be reached if firefighters use their

fire trucks (fires on top of a steep hill), therefore the firefighters might need a helicopter or

another type of vehicle. 3D wildfire context visualisations may influence a user's decision on

what is the safest route to follow when caught up in a wildfire situation. This might save

lives.

3

Figure 1: Example 3D Visualisation

The motivation for this research was to develop an alerting component that adds a 3D

spatial context visualisation of a detected wildfire to a notification message. Notifications are

disseminated in near real-time. A Uniform Resource Locater (URL) is attached to a

notification message that binds the 3D visualisation to the notification message. The spatial

context referred to above, includes variables such as topography, vegetation types and

condition, population density and land cover. These variables are referred to as geospatial

data. A user is required to open the URL to view the 3D context visualisation message.

Figure 1 provides an example of a 3D wildfire contextual visualisation.

For this research, the term "demand-time" will be used with generating 3D context

visualisations. It is required that when an interested or affected party receives a wildfire

notification, the receiver should instantly link to the visualisation resource via a web

connected device. This implies that the visualisation should be available on demand

(generated rapidly, in ―demand-time‖). Demand-time is almost similar to real-time. Results or

outgoing data should be distributed or disseminated approximately at the same rate of the

incoming data. The fundamental difference is that the data has to be prepared (ready) when

required. To achieve demand-time results (rapidly disseminate a wildfire notification that

contains a link to a prepared 3D visualisation), datastreams of wildfire events need to be

processed rapidly in relation to large datasets of contextual variables. Failure to do so would

4

result in processing backlogs and unavailability of 3D visualisations in ―demand-time‖.

Datastreams of wildfire events are characterised as bursty streams of data. Bursty streams

is the intermittent arrival of groups of data. Wildfire data does not stream at a constant rate.

Thousands of wildfire event data messages stream for short periods of time and stop to

stream at other periods. This can be illustrated as a stream heavily flooded with wildfire

event data at specific periods and dried up at other periods in time. These datastreams

may require processing by powerful computing resources. It is costly and inefficient to own

these resources when they are seldom performing processing operations. Under these

circumstances, it is viable to resort to the use of public cloud computing resources, for they

require no upfront investment and can be accessed on a utility basis.

Cloud computing platforms offer significant advantages, but the most important advantage is

elasticity. Cloud computing instances can be added or removed according to demand. For

example, by taking into account the number of wildfire events in a datastream (equal to the

number of wildfire event messages in the messaging queues). Adding cloud instances

(nodes or virtual machines) will improve (shorten) the processing time of wildfire events as

processing tasks will be divided amongst multiple cloud instances. Removing cloud

instances by taking the wildfire event message loads (demand) into consideration will save

costs as cloud instance use is billed by the hour. This means that cloud instances (nodes or

virtual machines) will run when they are required. It is advantageous to know the peak fire

event times of the day. Cloud instances (nodes or virtual machines) require time to boot,

thus, by having prior knowledge of when fires occur is imperative for planning and auto-

scaling. Auto-scaling is the automatic addition or removal of cloud instances according to

demand. Messaging queues can be monitored in order to scale automatically. The scaling

referred to is horizontal scaling.

Web Processing Services facilitates the discovery and publishing of geospatial processes

(Open Geospatial Consortium, 2007). There are several benefits that can be gained when

utilising Web Processing Services to conduct geoprocessing, for instance, Web Processing

Services are interoperable, reusable, distributed and operating system independent. The

benefits makes it an attractive option for a geoprocessing system.

The design of the system should be planned to the finest detail for the geoprocessing

system to produce results in demand-time. The algorithmic style of each process should be

carefully planned as it can have a great influence on the performance of a method.

Algorithmic style refers to how the method should be constructed (loading an object from

5

memory versus loading an object in a database).The time to conduct geoprocessing is

influenced by the architectural style of the geoprocessing chain. Loose-coupling of

geoprocessing chain components distributes the producers and consumers so that fire

events can be processed in parallel (divide and conquer approach). Tight-coupling

components of the geoprocessing chain means that nested method or function calls are

used. Fire events are therefore processed in a serial style and thus one fire event must

move through the entire geoprocessing chain before the next fire event can be processed.

Twitter receives 5700 tweets (messages) per second (Raffi, 2013). Twitter data can be

viewed as high velocity data because of the fast rate of flow and the fact that it is real-time

data. The fire data utilised for this research according to the RabbitMQ web management

console, flows at a rate of 1009 messages per second. The fire data can therefore be

referred to as medium velocity data.

This research was conducted towards determining if Web Processing Services deployed in a

cloud computing environment are suitable to process streaming medium velocity geospatial

data for the purpose of rapidly generating 3D wildfire context visualisations in demand-time.

The primary purpose of this research was to evaluate the efficiency of different algorithmic

and architectural styles for process chaining in the cloud to generate 3D spatial context

visualisations around detected active fires in demand-time.

1.3 Research Problem Statement

Vegetation wildfires occur in most parts of the world. Wildfires can get out of control with

devastating consequences. Wildfires can be detected by sensors on earth observation

satellites. Incidents relating to wildfires can be mitigated by distributing timeous wildfire

detection notifications. Streaming active fire detection geospatial data generated by earth

observation satellites moves at a medium velocity. This streaming geospatial data can be

characterised as bursty. Streams are flooded with active fire detection data during certain

periods and run dry during other periods in time. Bursty medium velocity geospatial data is

complex to manage. A special computing paradigm might be required to handle this data.

An alerting component that adds a 3D spatial context visualisation of a detected wildfire to a

notification message should perform tasks at a rapid rate to produce results in ―demand-

time‖ when the wildfire event notification is ready to be disseminated. The alerting

component is formed out of a geoprocessing chain as several steps are required to generate

the 3D spatial context visualisation. The execution time of the entire geoprocessing chain is

6

not fast enough for 3D spatial context visualisations to be rapidly generated with tightly-

coupled processing chain components and components that make use of Web Processing

Services on a single thread on commodity hardware. This implies that messaging queues

that transport the wildfire notifications will backlog and thus, 3D spatial context visualisations

will not be ready in ―demand-time‖.

Cloud computing might provide a potential solution to this problem. A benefit of a cloud

computing environment is the effortless use of horizontal scaling (elasticity). Cloud instances

can be added for the processing tasks to be divided amongst more instances to generate

results more rapidly. This is similar to a divide and conquer approach as more instances will

be responsible to do the work and the performance of the geoprocessing chain will improve.

Cloud computing further provides auto-scaling capabilities to deal with the bursty nature of

the data. By utilising auto-scaling, cloud instances will automatically start when there is a

demand for processing and will automatically shut down when there is no demand. The use

of public cloud computing is constrained by costs, thus, it will be required that resources be

used sparingly and strictly on demand. The resources must be powerful enough to handle

the fast incoming data or messages. This is required to prevent message queues from

backlogging and prevent a delay in the dissemination of f ire notifications. A trade-off exists

between the cost of the cloud instances' usage per hour and the size and number of

instances.

It is not yet known whether cloud computing can successfully address this problem but, from

thoroughly reviewing literature is hypothesised that by using Web Processing Services

deployed within a cloud computing environment, a 3D wildfire context visualisation will be

generated in just enough time to be attached to a fire notification that can be rapidly

disseminated.

1.4 Research Question

The initial research question that served as a guide for this research was:

Are Web Processing Services deployed in a cloud computing environment where horizontal

scaling can be achieved a suitable mechanism for rapidly processing medium velocity

streaming geospatial data in order to generate and deliver wildfire event notifications that

include 3D context visualisations of a wildfire scene in demand-time?

Initial experiments illustrated that certain approaches to rapidly process medium velocity

7

streaming geospatial data were inefficient, therefore the research question was changed to:

What is the optimal design for a geocomputational cloud environment that can rapidly

process medium velocity streaming geospatial data given cost and elasticity constraints,

data delivery requirements and interoperability tradeoffs in order to generate 3D wildfire

context visualisations?

The hypothesis of this research is that medium velocity streaming geospatial data cannot be

processed rapidly enough to generate and deliver notifications with 3D visualisation payload

in ―demand-time‖ by deploying a Web Processing Service-based solution on a single

process on commodity hardware.

1.5 Research Aims and Objectives

 Conduct a literature review on various topics that relates to the design of a 3D wildfire

context visualisation generating geoprocessing system.

 Design, setup and execute the desktop-based (single thread on commodity hardware)

experiments to: determine the optimal algorithmic style for a system required to process

medium velocity streaming geospatial data at a rapid rate and deliver 3D wildfire context

visualisations in demand-time; determine the architectural style for a system required to

process medium velocity streaming geospatial data at a rapid rate and deliver 3D wildfire

context visualisations in demand-time; determine if Web Processing Services is suitable

for a system required to process medium velocity streaming geospatial data at a rapid

rate and deliver 3D wildfire context visualisations in demand-time.

 Design, setup (with the algorithmic style results of objective two) and execute the cloud-

based experiment to: Evaluate if Web Processing Services are suitable for a system

required to process medium velocity streaming geospatial data at a rapid rate and deliver

3D wildfire context visualisations in demand-time; determine if the horizontal scaling of

cloud instances can speed-up the performance of the geoprocessing chain.

 Evaluate and compare the results of the desktop-based (single-thread on commodity

hardware) and cloud-based experiments.

8

1.6 Significance of Research

The final result that the geoprocessing chain delivers(a 3D wildfire context visualisation) will

help fire managers obtain enhanced insight into wildfire events. Wildfire context

visualisations in three dimensions enable viewers to view the topography of a fire scene that

has a significant influence on fire spread. The context visualisations will give emergency

responders a better understanding of the terrain where fire occurs. It will thus aid in planning

how to access and control fires. Cloud computing might improve the throughput of the

geoprocessing chain responsible for generating the 3D wildfire context visualisations by

providing horizontal scaling capabilities. Due to the bursty nature of the data, the cloud can

help to save costs by auto-scaling (scaling according to demand-automatically).

1.7 Limitations of Research

The project was merely applied to one domain (wildfire). It is not generic for the purposes of

this research, although it can be translated to other domains.

The utilisation of the public cloud (AWS - Amazon Web Services) was heavily constrained by

costs. Only Amazon EC2 (Elastic Compute Cloud) micro-instances were used because of

the free 750 hours a month on the free tier (eligible solely within the first 12 months of AWS

registration). Three Amazon Web Services accounts were used which meant that simply20

cloud instances per account might run at a time. The results may have been better if more

cloud instances were used.

A micro-instance (t2.micro) has one virtual CPU (Central Processing Unit), one GB memory

and is the lowest-cost general-purpose instance type. The physical processor of a micro-

instance belongs to the Intel Xeon family and has a clock speed of 2.5 GHz but it can boost

up to 3.3GHz. The network performance of an EC2 instance is very low. The poor

performance of a micro-instance will have a negative impact of the geoprocessing chain.

The CPU of an Amazon EC2 micro-instance is burstable but the baseline performance is

consistent (only 10%). The CPU can burst above the baseline CPU performance, but it is

governed by CPU credits. This limitation (CPU credit governing) has the potential to slow

down the CPU performance of a cloud instance after a while. This meant that every cloud

instance had to be stopped and restarted to receive CPU credits all over again. Every time

an instance was stopped and restarted, Amazon will charge an hour's usage. With 20 micro-

9

instances running for one hour, Amazon subtracted 20 hours from the free 750 hours of the

free tier.

Certain graphics cards might be problematic. This pertains to the rendering of 3D wildfire

context visualisations (when a URL attached to the fire event notification, is opened). The

graphics card drivers sometimes cause WebGL to stop working, often when drivers update.

1.8 Overview of Remaining Chapters

Chapter Two: A thorough literature review was conducted. The review includes aspects

addressed in this research such as wildfires, the Advanced Fire Information System, big

geospatial data, distributed and high performance computing, enterprise messaging, Web

Processing Services and geovisualisation. A section on related work is further included and

evaluated to illustrate research gap(s) in the field that can be addressed.

Chapter Three: The research methodology followed is included in this chapter. A section on

the design of the experiment is further included. The design of the abstract geoprocessing

chain and the data required for the abstract geoprocessing chain are also discussed in this

chapter.

Chapter Four: The implementation details of the geoprocessing chain are discussed in this

chapter. Other details such as the required data, software and hardware used are further

included.

Chapter Five: This chapter provides the results of the pre-tests, commodity hardware

experiment and cloud computing experiment conducted. An in-depth discussion of the

results of the pre-tests, experiment one and experiment two are also included in this chapter.

Experiment one refers to tests conducted in a desktop environment. Experiment two

contains tests conducted in a public cloud computing environment.

Chapter Six: The final chapter includes conclusions drawn through the analysis of the

results of this research. This chapter further includes recommendations for future research.

1.9 Chapter Summary

This chapter provided a high-level overview of the problem addressed in the research by

providing background information, the research problem statement, the research question,

research objectives, research significance and limitations and an overview of the remaining

chapters. 3D wildfire context visualisations are important as they can change the potential

outcome of disasters. The design of a geoprocessing system required to generate 3D

10

wildfire context visualisations in demand-time should be carefully considered. Rapid

geoprocessing is required and therefore it is pivotal to design such a system in the most

optimal manner possible. Due to the elastic nature of clouds, cloud computing might be a

suitable solution for this problem. Various implementations will be tested to inform the final

design of the system. Constraints have to be taken into consideration which will have an

outcome on the processing times. The following chapter provides the reader with more detail

regarding the surrounding aspects of the research.

11

2 Chapter Two: Literature Review

2.1 Chapter Overview

Chapter One provided a high-level overview of the problem addressed in the research by

providing background information, the research problem statement, the research question,

research objectives, research significance and limitations and finally, an overview of the

remaining chapters. It was stated that a 3D context visualisation that has to be prepared as

soon as a viewer views a wildfire notification could change the outcome of a disaster. Cloud

computing might suit this kind of scenario. This chapter will provide detail on the research

context and related work. This chapter will therefore contain information on aspects related

to a 3D wildfire context visualisation generating system.

The objective is to frame the research problem better. The reader will gain deeper insight of

aspects of the problem faced in this research and aspects of the potential solution. This

chapter starts with the basics by providing a high-level overview of wildfires. The industry

use case AFIS is introduced in this chapter and a discussion is included on wildfire detection.

Big geospatial data is discussed as the data that AFIS consumes is streaming medium

velocity geospatial data. Distributed and high performance computing is often applied when

dealing with geospatial data, relevant material is therefore included in this chapter. A section

on enterprise messaging is included on page 24. Web Processing Services were an integral

part of this research and is discussed in this chapter as well (on page 25). The final product

of the geoprocessing chain was a 3D context visualisation, thus a section on 3D

geovisualisation is included (on page 27). Related work is discussed on page 28 to highlight

the similarities and gaps in this research. This chapter gives the reader a more coherent

understanding of the research problem at hand and continues to give the reader an insight

into a potential solution of the research problem.

2.2 Research Context

2.2.1 Wildfires

Wildfires are fires that occur in areas with combustible vegetation outside the boundaries of

urban areas. Fires require 16% oxygen, fuel and heat to ignite (British Columbia Wildfire

Management Branch, 2014). There is 21% oxygen in the earth's atmosphere, thus one third

of the criteria for fire to occur is fulfilled automatically. Fuels refer to any living or dead

12

material that will burn. Heat can refer to the heat caused by the rays of the sun, lightning or

even lighted cigarettes (National Disaster Management, n.d.). Unfortunately, 90% of fires

are caused by humans, whether it be due to negligence or whether they are caused

deliberately. This implies that only 10% of fires are caused by natural occurrences,

(lightning) (National Disaster Management, n.d.).

In South Africa, fires are utilised as a landscape management technique and 70% of

ecosystems that cover the South African landscape are fire adapted. This implies that 70%

of ecosystems in South Africa require fires to maintain themselves. (Working on Fire, 2012).

Fires usually start small but they have the tendency to get out of control with devastating

consequences (Working on Fire, 2012). The rate of fire spread depends on:

 Weather conditions

 Wind

 Season

 Fuel conditions

 Topography (Working on Fire, 2012; Southern Cape Fire Protection Association,

2012)

Slope, aspect and terrain are three important elements of topography that play a significant

role in the spread of fire. Slope refers to the steepness of the land. Wildfires have a

tendency to spread faster uphill than downhill due to several factors:

 Flames are closer to fuel on the uphill side

 Fuels will become drier on the uphill side of a slope and will therefore ignite quicker than

on the downhill side

 Uphill wind currents push heat flames into new fuels

 A draft is caused by rising convected heat from a slope

Aspect refers to the direction that the land faces. Some aspects receive more direct heat

from the sun. This will have an influence on the dryness of the vegetation, temperature and

humidity (British Columbia Wildfire Management Branch, 2014). Terrain may cause

obstructions. When wind flows through a narrow path, it will increase in strength and

influence rapid fire spread (British Columbia Wildfire Management Branch, 2014).

All the above-mentioned situations are responsible for rapid fire spread (British Columbia

13

Wildfire Management Branch, 2014). Wildfires usually spread in the direction of the wind and

they spread faster when there are dead plant materials. Wildfires spread faster in fine fuels

(Southern Cape Fire Protection Association, n.d.; National Disaster Management, n.d.).

Wildfires will continue to burn as long as there is enough vegetation (fuel) to burn and the

weather conditions are favourable (Department of Water Affairs and Forestry, n.d.).

Favourable conditions for vegetation wildfires are:

 Dry season

 Warm temperatures

 Moderate to high wind speeds

 Continuously spread out vegetation (fuels)

Intervention is pivotal for managing incidents that might arise from uncontrolled fires.

Incidents relating to wildfires might be mitigated by the timeous dissemination of notifications

that contain information derived from earth observing satellites. The elements of topography

can be better viewed in three dimensions. Citizens and firefighters will gain a better

understanding of a wildfire by viewing the scene in three dimensions.

It can thus be noted that there are many variables that have an influence on wildfires such

as temperature, wind, fuel, topography and heat. All these variables can be visualised in two

dimensions to give an user an indication of what is going on in the area of the fire. To

enhance such a visualisation would be to create a three dimensional contextual visualisation

around a fire to enhance or increase a user's situational awareness.

2.2.2 Industry Use-Case: Advanced Fire Information System (AFIS)

The research undertaken was inspired by an industry use case. Researchers from the

CSIR's (Council for Scientific and Industrial Research) Meraka institute developed the

Advanced Fire Information System, known as AFIS. AFIS is a tool that provides near real-

time fire information derived from earth observation satellites to users in Southern Africa,

South America, Eastern Europe and East Africa. It allows near real-time identification of fires

and it has an automated notification capability. AFIS includes:

 Near real-time MODIS (Moderate Resolution Imaging Spectroradiometer) data

 SEVIRI (Spinning Enhanced Visible and Infrared Imager) data

 FIRMS (Fire Information for Resource Management System) data

14

 Weather station data

 Weather forecast data (CSIR, 2012)

The system utilises data from geostationary satellites such as:

 ESA's (European Space Agency)MSG (Meteosat Second Generation) satellite

 Polar orbiting satellites such as NASA's (National Aeronautics and Space Administration)

Aqua and Terra satellites for fire detection(CSIR, 2012)

The European Space Agency's (ESA) Meteosat Second Generation (MSG) satellite is

equipped with the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. The

MSG is a geostationary satellite. SEVIRI data has a spatial resolution of approximately four

kilometres and a temporal resolution of 15 minutes. The National Aeronautics and Space

Administration's (NASA) Terra and Aqua satellites are equipped with the Moderate

Resolution Imaging Spectroradiometer (MODIS) instrument. Terra and Aqua are polar-

orbiting satellites and thus they have a higher spatial resolution than geostationary satellites.

MODIS data has a spatial resolution of approximately one kilometre and a temporal

resolution of six hours. The significant difference in spatial resolution is because the

Meteosat Second Generation satellite is geostationary and Terra and Aqua are polar orbiting

satellites. This implies moving much closer to the earth than the Meteosat Second

Generation satellite. The higher spatial resolution data will represent more fires than the

lower spatial resolution data because the higher spatial resolution sensor can identify

smaller fires (McFerren et al., 2009).

Researchers from the CSIR developed algorithms to eliminate false alarms. Weather data is

utilised along with scientific models to predict the fire danger index (by measuring the

dryness of the vegetation) to predict whether an area is in danger of wildfires (Wild, 2013).

AFIS has a web-based mapping interface and a mobile application available for the Apple

iOS and Android mobile operating systems (CSIR, 2012). The web-based mapping interface

allows a user to view various map layers and query the layers. Fires can be viewed in near

real-time. The AFIS web-based mapping service likewise known as the AFIS viewer is a free

service but a user is required to register to use the service (CSIR, 2012). The mobile

application allows a user to define locations. The user will then receive notifications if fires

occur nearby defined locations. The mobile application provides the daily fire danger index

(degree of danger) and fire danger forecasts. Near real-time active fires are displayed on a

15

map and detailed information about the fires are included. The vegetation dryness and time

series data ("a series of values of a quantity obtained at successive times (Oxford University

Press, 2015)") is offered too. Geotagged photographs (photographs with a geographical

location assigned to it) of fire observations can be uploaded (CSIR, 2012).

Prediction capabilities are provided by the fire danger indices and forecasts. This may help

with planning, as a fire manager will be prepared for fires and will get the necessary tools

and put the parties that will help to extinguish fires on stand-by. The AFIS web-based

mapping interface enables the monitoring of fires. The mobile application additionally offers

this capability. Alerting is achieved by disseminating wildfire notifications. A wildfire

notification can be an SMS, an email or a push notification if a user is registered (CSIR,

2012).

AFIS provides users with prediction, detection, monitoring, alerting, and planning

capabilities. The system grants users the ability to mitigate catastrophic situations caused

by wildfires.

2.2.3 Wildfire Detection

In this research, wildfires are characterised as intermittent datastreams of events per

detecting sensor. Two datastreams were utilised for the research. The first datastream

consists of active fire events detected by the SEVIRI (Spinning Enhanced Visible & Infrared

Imager) sensor aboard the Meteosat 8 geostationary satellite. SEVIRI data has a temporal

resolution of 15 minutes. The maximum number of events detected by SEVIRI in the

CSIR‘s database are 8362.

The second datastream consists of active fire events detected by the MODIS (Moderate

Resolution Imaging Spectroradiometer), the instrument aboard Aqua and Terra polar orbiting

satellites. MODIS data has a temporal resolution of six hours. The maximum number of

detected MODIS events in the CSIR's database is 48606 (McFerren et al., 2009).

The overwhelming difference in the number of events detected by the two sensors relates to

spatial resolution: MODIS detects fires at approximately a one kilometre resolution while

SEVIRI detects at approximately a four kilometre resolution. MODIS can identify much

smaller fires and will therefore detect a larger quantity of fires. It can be deducted that a

large quantity of fires (atomic data) will be required to be processed rapidly with large

datasets of contextual variables.

16

2.2.4 Big Geospatial Data

Geospatial data is divided into:

 Locational data (position and dimension similar to geometric characteristics -what)

 Attribute data (non-geometric characteristics -where)

 Temporal data (valid time -when) (Kraak et al., 2010)

Geospatial data is a discrete presentation of continuous phenomena (Karimi, 2014).

Percivall (2013) stated that geospatial data has always been big data. The reasons that

geospatial data can be viewed as big data are because geospatial data is large in size,

comes in various forms and has an update rate that cannot be handled by standard spatial

computing technologies (Shekhar et al., 2012).

There are various types of geospatial data such as raster and vector. Big geospatial data is

an instance of these data types that exhibit at least one of the three Vs of big data, namely:

 Volume

 Velocity

 Variety (Karimi, 2014)

Consumers interact with several services that generate data daily. Several sensor arrays,

that continuously generate data, exist across the globe. Streaming geospatial data have

several characteristics:

 The data is voluminous

 It streams at high velocities

 It encompasses many things valuable (Goldberg et al., 2014)

According to Nick Skytland (2012) from NASA, big data is a ―collection of datasets so large

and complex that your legacy IT systems cannot handle them‖. Big data requires more

capabilities than average systems provide. Dumbill (2012) described big data as:

 Data that is large in size, that makes it too large to transfer

 Data that moves fast as it might stream in a matter of nanoseconds or milliseconds

 Data is diverse, as various data types or data structures might not fit into an existing

database's structure or architecture (Dumbill, 2012)

17

Three Vs are used to describe the three characteristics of big data. The three characteristics

(Vs) are volume, velocity and variety. Data that cannot be processed effectively and

efficiently will remain meaningless. A range of problems introduced by the characteristics of

big data can cause the processing of big data to be ineffective and inefficient. The

characteristics will be discussed below.

The first V is used to describe volume. Volume is the primary characteristic of big data.

Volume could be quantified in size of memory (Russom, 2011). The second V is used to

describe velocity. Velocity refers to the rate at which data flows (frequency and speed).

Velocity is not simply concerned with the rate of data input, but with the rate of data output or

the rate of data storage as well (Russom, 2011). Russom (2011) stated that velocity could

be thought of as ―the frequency of data generation or the frequency of data delivery". Dumbill

(2013) suggested that fast-moving data be streamed into bulk storage to do batch

processing. The third V is used to describe variety. Source data can be obtained from many

sources. The source data might have various data types and data structures. The

represented entities might vary (Russom, 2011).

The paragraphs above confirm that geospatial data can be regarded as big data. The

research conducted did not deal with the aspects of big data as a whole. The research

addressed two out of three aspects of big data that placed obstacles in the design of the

geoprocessing solution, they are:

 Medium velocity

 High volume

The first aspect was medium velocity streaming geospatial data. Wildfires are characterised

as intermittent datastreams of events. For data to be characterised as high velocity data it

must be streaming and it must be generated at a high rate (millions of messages per

second). Twitter data (tweets)can be viewed as high velocity data because of the fast rate of

flow and the fact that it is real-time data. Twitter receives 5700 tweets (messages) per

second (Raffi, 2013). According to the RabbitMQ web management console, fire data flows

at a rate of 1009 messages per second and the fire data is real-time data. Fire data can

therefore be referred to as medium velocity data.

The second aspect was the volume geospatial data required for determining values at a fire

scene. GeoTIFFS are high in volume. High volume data can introduce data transfer

18

challenges (time consuming), depending on location and bandwidth.

In current times organisations that do not have suitable computing resources to process big

data, have the opportunity to do so at affordable costs. This is due to a decrease in

hardware costs, an increase in the number of free and open source technologies and an

increase in cloud computing technologies (Dumbill, 2012).

The processing of streaming data can be problematic due to two reasons. The first reason,

is when the data input rate is too fast and the second reason is when the application

instantly requires a response (data output) (Dumbill, 2012). Dumbill (2012) noted that big

data could be processed by using various parallel processing architectures (distributed

computing) that distribute datasets across multiple servers, does some processing on the

datasets and combines the processing results from the multiple servers.

Skytland (2012) noted that data is continuously streaming, faster than it can be stored,

managed or interpreted. This is a perfect description of a problem that this research aimed

to address. From this section, it could be observed that the characteristics of big data place

specific requirements on how it should be processed. High performance computing or

distributed computing is one requirement.

2.2.5 Distributed/High Performance Computing

2.2.5.1 Demand for Grid Computing and Cloud Computing

Earth observation systems gather large quantities of data about the planet. This quantity of

data frequently increases at a rapid rate. Data sharing is becoming increasingly important

amongst people that have an interest in earth observation. Due to the high volume of data,

storage problems, computationally intensive processing, real-time access and resource

sharing, earth observation systems can benefit by shifting to a distributed environment such

as cloud computing or grid computing for big data processing (Petcu et al., 2010).

McCullough (2011) stated that: ―Processing spatial data is notoriously time-consuming, and it

is not uncommon for geoprocessing to present a bottleneck in spatial workflows‖. Parallel

processing can be utilised to reduce the processing time of spatial data. He stated that there

is an urgent need for near real-time geoprocessing.

There are two categories of real-time geoprocessing, according to McCullough et al (2011).

http://www.wordhippo.com/what-is/another-word-for/frequently.html

19

The categories are snapshot geoprocessing and stream geoprocessing. Snapshot

geoprocessing, refers to a fixed snapshot of spatial data processed. Snapshot

geoprocessing forms a part of a real-time monitoring system, the results should be produced

within a fixed time-frame. The input data used for the processing might come from an

unreliable sensor (McCullough et al., 2011). Datastream processing refers to a series of

observations (that represent a specific time interval) that will be processed. A datastream is a

―potentially unbounded sequence of tuple time-stamp pairs‖ (McCullough et al., 2011).

Various strategies can be followed with parallel geoprocessing. The first strategy is

synchronous geoprocessing. The same algorithm will run in parallel on several machines

that share the same information in regular time intervals. If different algorithms are executed

on different machines and they do not share information in regular time intervals, this is

referred to as asynchronous geoprocessing (McCullough, 2011).

Cloud computing and grid computing are service oriented architectures (McCullough, 2011).

Parallel processing can be performed in the cloud or on a grid. Cloud and grid computing

(otherwise referred to as parallel computing) are effective because ―monitoring events and

entities, and making predictions about their future state carries a large computational burden

(McCullough, 2011)‖. There are two categories of real-time systems: hard systems and soft

systems. Hard systems are real-time critical systems. To avoid disaster, hard systems are

required to meet a specific deadline. Soft systems are not real-time critical and thus, results

are still useful after a long period of time (McCullough, 2011).

Real-time systems have the following problems:

 Have to process jobs of unknown size and time continuously

 Must keep track of the data as it arrives

 Must operate on datastreams by performing complex operations and pattern detection

 Should detect corrupt or missing data on the fly (due to the nature of satellite data)

(McCullough, 2011)

Satellite data might be unreliable in terms of shot noise, line start or stop problems, line or

column drops, or line or column stripping. Shot noise refers to multiple bad pixels in

imagery. A bad pixel represents an individual pixel which a sensor does not record spectral

data for (Jensen, 2004). Line start or stop problems occurs when spectral data was not

recorded at the beginning or the end of a scan line. Pixel data might be placed at the

20

incorrect location of the scan line in such a situation (Jensen, 2004). Line or column

stripping occurs when a detector of a sensor goes out of radiometric adjustment. Certain

pixels might have a systematically higher value than other for the same band (Jensen,

2004).

There are three reasons why distributed computing should be utilised when working with

earth observation data:

 The first reason to use distributed computing is because sensor or satellite data is large

and data storage might pose as a challenge

 The second reason is data analysis is time consuming because of the size of the data

 The third reason is that the software required to handle and process the data is

expensive

Because earth observation data is large, distributed file systems will be required when

working with earth observation data (Petcu et al., 2010). Cloud and grid computing can

provide distributed file systems.

Cloud and grid computing are almost similar due to the fact that they have rapid processing

capabilities. The first significant difference between the two computing paradigms is that

grid computing is application specific and the main user of a grid is a scientist and cloud

computing is not application specific and businesses usually utilises clouds (McCullough,

2011). The second difference, but perhaps the most important difference is that cloud

computing systems can be used on-demand but grid computing systems use scheduling

algorithms. A user will therefore be required to wait until other jobs are completed before his

or her job can start to be processed with grid computing. Grid computing is not as flexible as

cloud computing (McCullough, 2011).

2.2.5.2 Grid Computing

A grid is a collection of machines, referred to as nodes or resources (Kumar et al., 2012).

Grid computing applications utilise high-end computers and huge storage systems because

of the high dimensionality of the datasets processed on the grid. Geographically distributed

organisations and scientists who wish to share resources may benefit from grid computing

(Kumar et al., 2012).

Grid computing has several benefits. Grid computing can improve the performance of

21

applications that involve significant computational modelling. Sensor based geoprocessing

systems can either increase or decrease the scale of analysis in terms of datastreams,

geographic extent and precision of the analysis. Grid computing saves money. Less money

will be required to be invested in hardware and software processing resources, because

access to resources can occur remotely. A central data repository can facilitate the

integration of various data sources, thus it can be accessed as a service. Spatial data is

large in volume and not portable. This is one reason why remote data analysis is suitable

(McCullough, 2011).

Grid computing has several challenges as well. The first challenge is an architectural

challenge. It is a challenge to orchestrate services across geospatial and grid computing

domains. The second challenge is a computational challenge that deals with improving

geoprocessing performance. The third challenge refers to semantic descriptions of

geospatial services to facilitate discovery and reconfigurable chaining. Deploying web

services on a grid presents a challenge. Web services are stateless and grid applications

require the ability to store states (McCullough, 2011). It must be emphasised that real-time

processing cannot occur on a grid, therefore cloud computing can be viewed as an

alternative.

2.2.5.3 Cloud Computing

Goldberg et al. (2014) defined cloud computing as the hosting of services over the internet

that can be located all over the world. Users of these remote services do not have to

concern themselves over the underlying technologies. Baranski et al. (2011) stated that

cloud computing provides the capability to distribute applications, processing and data on

resources (nodes). There several other definitions of cloud computing. Vaquero et al.

(2008) provided a definition for the cloud that encompassed parts of various definitions.

They defined clouds as:“a large pool of easily usable and accessible virtualized resources

(such as hardware, development platforms and/or services). These resources can be

dynamically re-configured to adjust to a variable load (scale) and allowing for an optimum

resource utilization. This pool of resources is typically exploited by a pay-per-use model in

which guarantees are offered by the infrastructure provider by means of customized Service

Level Architectures”.

There are four cloud computing service models. They are Software-as-a-Service, Platform-

as-a-Service and Infrastructure-as-a-Service (Armbrust et al., 2010) and Data storage-as-a-

Service (Dillon et al., 2010). The first service model is Software-as-a-Service (SaaS). Cloud

22

users release applications in a hosting environment accessed through networks by clients

(Dillon et al., 2010). Jadeja et al. (2010) used when users run software from their

computers, on demand and remotely as an example of Software-as-a-Service. The second

model is Platform-as-a-Service (PaaS). Cloud users develop services and applications on

the cloud (Dillon et al., 2010). Jadeja et al. (2010) used the following as an example of

Platform-as-a-Service, when users deploy their own applications on a remote platform

comprised of hardware, software and data. The third model is Infrastructure-as-a-Service

(IaaS). Cloud users can directly use the information technology infrastructure. Jadeja et al.

(2010) used when users deploy virtual machine instances as an example of Infrastructure-

as-a-service. According to Dillon et al. (2010), Data storage-as-a-Service (DaaS) can be

seen as the delivery of virtual storage on demand.

There are three cloud deployment models (Armbrust et al., 2010). They are public, private

and hybrid. The public cloud is open for use by public consumers. The public cloud service

provider has full ownership of the cloud infrastructure. A public cloud is generally preferred

because no upfront investment is required for expensive infrastructure and public cloud

service providers enforce a pay-as-you-use policy. A private cloud is a cloud infrastructure

operated by a single organisation. A private cloud can be managed by the organisation or a

third party. Generally a private cloud is usually preferred due to the optimisation of

utilisation, security concerns, data transfer costs and control. The hybrid cloud is a

combination of a public cloud and a private cloud. A hybrid cloud is preferred when a private

cloud is used but more computing power is required at certain times. The private cloud will

therefore be used for general processing, but during peak loads instances can scale to a

public cloud (Dillon et al., 2010; Mell et al., 2011).

According to the documentation of Amazon Web Services (n.d.), a public cloud computing

provider, there is a variety of benefits of cloud computing. The benefits can be divided into

two comprehensive categories namely business benefits and technical benefits.

The most important business benefit is that no upfront investments are required for a public

cloud infrastructure. A user is not required to pay any fixed costs for hardware,

management, operations, personnel, real estate and physical security (Amazon Web

Services, n.d.). By utilising public cloud computing, a user is simply required to pay for

resources (instances, storage, etc.) that he/she has utilised. ―Cloud computing providers

have developed specialised software that allows them to link thousands of commodity

computers to act as a cloud of cloud computing resources (Goldberg et al., 2014)‖.

Computing resources can be shared in the cloud (Baranski et al., 2011). Cloud computing

23

provides a just-in-time infrastructure. The just-in-time infrastructure refers to just-in-time

provisioning. This implies that resources will strictly be used only when they are required if a

user desires this feature. This concept can furthermore be referred to as on-demand

computing. It provides more efficient resource utilisation by instances being started and

stopped according to demand. When dealing with bursty data (data that arrives in irregular

intervals), on-demand computing might aid in cost saving as merely the minimum quantity of

required resources will be used. The overall concept described above is the elasticity of the

cloud. Public cloud computing provides usage based costing by implementing a pay-as-you-

go infrastructure. This may mean pay-by-the-hour or pay-by-the-number-of-requests.

Unfortunately, every time an instance is stopped and restarted, the cloud computing service

provider will charge for a new hour of usage. Cloud computing exploits the concept of

parallelisation. Work can be divided amongst nodes to speed up the delivery time of results

by conducting parallel processing. This implies that more than one node might be

responsible for the same task, but several events (messages)can be processed

simultaneously (at the same time) (Amazon Web Services, n.d.).

The first technical benefit is automation. Cloud computing provides APIs to enable a

scriptable infrastructure so that portable systems can be designed to develop repeatable

systems. Horizontal scaling can be performed automatically with no need for human

intervention. When scaling occurs, the workload can be divided amongst cloud computing

nodes to decrease the time to produce results. Traffic or usage can be analysed to

determine usage patterns for proactive scaling and instances can be cloned seamlessly.

Cloud computing encourages distribution and redundancy. Data and applications in the

cloud can be replicated in any other location in the world. Cloud computing is therefore

reliable in terms of failover. Cloud computing enables load balancing. The overflow of the

traffic to the cloud maybe handled automatically by horizontal scaling (starting new machines

to conduct geoprocessing during peak times and reducing the number of active machines

during less busy times) (Amazon Web Services, n.d.).

With public cloud computing data transfer costs and data security are significant concerns.

Data transfer between different regions is costly. Security remains a concern, although

cloud computing providers attempted to address it by implementing strong authentication

mechanisms and rule-based firewalls.

Yang et al. (2013) demonstrated by doing a thorough literature review, that cloud computing

is an imperative factor required to enable Digital Earth. From the literature review conducted

in this research, it was explicitly illustrated that the benefits of cloud computing outweighs the

24

benefits of grid computing. The challenges of cloud computing are far less than the

challenges of grid computing. The horizontal scaling feature of cloud computing will greatly

improve parallelisation.

2.2.6 Enterprise Messaging

The Advanced Message Queuing Protocol (AMQP) enables applications to communicate

over messaging middleware servers, referred to as brokers (Aiyagari et al., 2008). The

brokers must comply with the AMQP standard (Eugster et al., 2003). AMQP relates to

enterprise messaging systems because it is a protocol that allows for the sending of

messages between computer systems. Loosely-coupled architectures are encouraged by

the AMQP.

Figure 2: Advanced Message Queuing Protocol diagram

An AMQP model, illustrated in Figure 2 consists of components that publish messages

(known as producers), routers (known as exchanges) that move messages to queues

according to a variety of messaging patterns (publish or subscribe), queues and consumers

that act on messages.

An exchange receives messages from a publisher and will route the messages to message

queues based on certain criteria. A message queue is a component that stores messages

until consumers can process them. The routing criteria is defined as the relationship

between a messaging queue and an exchange. The components of such a system are

loosely-coupled, thus, they are not aware of each other (Eugster et al., 2003). This

architecture allows flexible and scalable systems to be built. A scalable system such as a

demand-time fire message geoprocessing and 3D visualisation generating system.

An AMQP approach can enable concurrency capabilities and allows for distributed

processing. The protocol is binary and asynchronous. It can be divided into two layers

25

namely, a functional layer and a transport layer. The functional layer has a set of methods

that performs work on behalf of the application. The transport layer transports methods from

the application to the server and back again. It conducts error handling, content encoding,

data representation, heart-beating and multiplexing (Eugster et al., 2003).

Messaging brokers receive messages from producer applications that publish them and

routes them to consumers (applications that process messages). The routing algorithm

depends on the exchange type and rules referred to as bindings. Producers and consumers

may reside on different machines. Producers publish messages. A producer is a user

application that sends messages to exchange. Exchanges distribute messages to queues

(buffers used to store messages). Brokers push messages to consumers (used to process

messages) prescribed to queues or consumers. They can pull messages on demand. Whilst

publishing a message, producers might specify various attributes.

Networks are unreliable and this is why acknowledgements are important. Once a message

is delivered to a consumer, a consumer will notify the broker. A broker will then remove the

message from the queue when the notification was received (Eugster et al., 2003).

Point-to-point and synchronous communication lead to rigid applications, the

publish/subscribe style aims to improve this.

AMQP components are loosely-coupled. This means that the components are unaware of

each other. A system can scale and grow effortlessly and information can be disseminated

in demand-time. Multiple fire events can be processed in parallel if system components are

loosely-coupled.

2.2.7 Web Processing Service

The OGC Web Processing Service (WPS) provides a mechanism to perform a variety of

distributed web-based processing operations on geospatial data using the Remote

Procedure Call (RPS) architectural style.

26

Figure 3: Web Processing Service sequence diagram

The OGC Web Processing Service is defined as a standardised interface that provides rules

on how requests and responses of arbitrary geoprocessing services should be constructed.

A Web Processing Service acts as a middleware service for data (Meng et al., 2009). Data

can be obtained from external sources and middleware services.

The standardised interface contains three operations. Figure 3 illustrates the sequence in

which the operations occur. The first operation is GetCapabilities. The GetCapabilities

operation provides metadata and information about the processes offered, and metadata

about the service provider. The processes offered can be either spatial or non-spatial. The

second operation is DescribeProcess. The DescribeProcess operation accepts a process

listed by the GetCapabilities function as a parameter. The second operation includes

metadata, input-parameters and output-parameters of the specific process displayed by the

GetCapabilities operation. By executing the third operation, Execute, one can run a specific

process inserted as the input parameter by the GetCapabilities operation.

The ExecuteResponse document responds to the Execute operation, which indicates a

process status, used inputs and value outputs (if simple or if complex), and links. There are

various process status messages such as ProcessAccepted, ProcessStarted,

ProcessSucceeded or ProcessFailed. ProcessAccepted means the process is in the queue,

waiting to start. ProcessStarted means the process has begun. ProcessSucceeded means

the process has been executed successfully and ProcessFailed means that a problem has

occurred (Michael et al., 2007). The status will show where the ExecuteResponse document

is located and may show progress or error messages (Michael et al., 2007).

27

The Web Processing Service interface facilitates the discovery and publishing of geospatial

processes (Open Geospatial Consortium, 2007). The main advantages of using the OGC

Web Processing Service are interoperability (Geoprocessing.info, n.d.) and software

implementation abstraction. Geoprocessing can take place regardless of the software or

hardware on a user's computer. Multiple web service access approaches are supported by

an OGC Web Processing Service. These include standardised approaches such as HTTP

(HyperText Transfer Protocol) POST using Extensible Markup Language (XML), HTTP GET

using KVP (Key Value Pair arguments) and SOAP (Simple Object Access Protocol) request

(Kiehle et al., 2007).

Geoprocessing is highly distributed because it can occur anywhere on the internet and on

demand (Geoprocessing.info, n.d.). Software implementations of a geoprocessing

component on the server-side of an OGC Web Processing Service can change, but it will

have no impact on the Web Processing Service client (as the calling interface remains

unchanged).

Web Processing Services furthermore, enable clients to gain access to the most current data

and processing implementations, without a need to change client implementations.

Processes are re-usable in multiple applications (Geoprocessing.info, n.d.). Web Processing

Services can be exploited for cloud computing, grid computing or other forms of high

performance geoprocessing.

Web Processing Services are usually orchestrated (chaining) or combined to form a higher

level process or workflows. Participating services are chosen and organised by a central

orchestration service. Services are loosely-coupled with service orchestration. Web services

can be orchestrated manually or by passing the output of one web service, as input to

another web service. This can occur by using a configuration file to define the order of the

web service interaction or it can occur in an automatic manner. The processes offered by a

Web Processing Service execute locally inside an application-server (Baranski, 2008).

The advantages of Web Processing Services such as interoperability, software

implementation abstraction and the fact that Web Processing Services can be chained to

form higher level processes, makes it attractive to use for the geoprocessing of fire events.

2.2.8 Geovisualisation

The internet and a remarkable increase in geospatial data has created new opportunities to

28

visualise and interact with spatial information (Hildebrand et al. 2010). Improving availability

of more powerful computing resources enabled the access of distributed resources through

the internet. Web based visual displays of spatial information can aid with everyday problem

solving. Tiede et al., (2010) argues that 3D views provide additional information and

enhances information delivery. Plaisant (2004) stated ―Information visualization is

sometimes described as a way to answer questions you didn't know you had‖.

There are several definitions of geovisualisation. Several authors have attempted to define

the term geovisualisation.

Kwan et al. (2003) defined geovisualisation additionally known as the visualisation of

geographic information as the use of visual representations and visualisation abilities to

make the spatial context and problems visible. Spatial patterns, trends and relationships can

be identified and interpreted with geovisualisation (Kraak, n.d.; MacEachren et al., 2001).

Kraak (n.d.) and MacEachren et al. (2001) noted that geovisualisation integrates approaches

from "scientific visualisation, cartography, image analysis, visualisation, explanatory data

analysis and GIS. Geovisualisation provides theory, methods and tools for visual

exploration, analysis, synthesis and presentation of geospatial data". Large quantities of

data in various formats can be integrated to generate complex but realistic representations.

These representations can be understood by utilising human visualisation capabilities as

data can be viewed from various angles. Slocum et al. (2001) noted that the objective of

geovisualisation is to develop techniques that will assist in understanding the earth's

environment.

Castrillón et al. (2011) indicated that3Dvisualisations provide truthful and realistic depictions

of the real world events that can be useful to fire managers. 3D fire visualisations can give a

user or fire manager a better understanding of a fire situation and an indication fire spread.

3D visualisations are useful to emergency responders for planning in dangerous situations.

Geovisualisation may therefore play an important role monitoring wildfires and mitigating

incidents related to wildfires.

2.3 Related Work

2.3.1 Distributed/High Performance Computing

Extensive research was conducted that relates to distributed and high performance

29

computing. Researchers have experimented with public, private and hybrid clouds. Grid

computing was studied extensively.

Baranski et al. (2010) discussed an implementation of a hybrid cloud infrastructure. Similar

to previous experiments that they have conducted, it was based on 52°North's Web

Processing Service that utilises OpenNebula. OpenNebula is software used for building and

managing an infrastructure-as-a-service cloud. OpenNebula utilises infrastructures that

already exist to ensure reliability. OpenNebula is open source and completely platform

independent (OpenNebula, 2013).Huang et al. (2013) compared various open source cloud

computing solutions against each other. The cloud computing solutions were OpenNebula,

Eucalyptus and CloudStack. The authors found that OpenNebula was a good option for

cloud computing as it has the fastest internal network of the three solutions. OpenNebula

has the second fastest operations regarding handling virtual machines, images, snapshots,

volumes and networking.

Java was used with 52°North's Web Processing Service. A hybrid cloud should be

considered when an organisation might not have sufficient computational resources (in a

private cloud). An organisation should then outsource some of their processes to public

clouds. This concept can be referred to as a hybrid cloud (a combination of a public and a

private cloud). The authors deployed OpenNebula within a cluster (it had one head node and

various worker nodes). Virtual machines were interconnected in the virtual network and

managed by the front end. A XEN hypervisor was used to configure the worker node. It

enabled the Virtual Infrastructure Manager to start and stop a virtual machine at the worker

nodes. A virtual machine image was supplied to the Virtual Infrastructure Manager to deploy

on the worker nodes. An Amazon Machine Image was required to access the public cloud.

Scheduling rules were then defined. The virtual machine image contained the Web

Processing Service installation (Baranski et al., 2010). The article provided the reader with

details regarding the setup of a cloud based geoprocessing system. The article highlighted

the fact that private cloud computing should be combined with public cloud computing to

save costs. Utilising a public cloud computing service on its own would be expensive.

Brown et al. experimented with cloud computing and geoprocessing. The authors acquired

data and developed the geoprocessing functions (for the transformation and manipulation of

imagery). Thereafter, they developed a Nebula cloud computing framework (Brown et al.,

2012) and migrated their code. Imagery was obtained from NASA. Using the imagery, cloud

enabled processing was tested; data products were generated and validated. Software

packages such as ArcGIS and ERDAS imagine were used to test Nebula (Brown et al.,

30

2012). The article provided details on how cloud computing works in terms of cloud

instances, cloud storage and cloud security. The authors demonstrated the capabilities of the

Nebula platform.

Gong et al. (2010) experimented with a cloud infrastructure and a Web Processing Service

using Microsoft's Azure Platform. The Azure Platform merely supports Microsoft's Windows

operating system. The authors had to adapt their existing spatial analysis platform for the

cloud. They migrated their computational application to the compute service of the Azure

platform. The authors used AppFabric to connect the cloud-based services to the

geoprocessing applications. Storage services were used to store and manage the

application data. Geoprocessing systems should be scalable due to the nature of geospatial

data. The authors demonstrated that cloud computing may provide advantages if used for

geoprocessing systems.

Juve et al. (2012) executed experiments using three workflow applications on Amazon's EC2

cloud computing platforms. From the results of the experiments, the authors concluded that

cloud computing is convenient for deploying workflows. The authors noted that cloud

computing costs drastically increase when multiple instances are used. The authors

observed that the choice of storage system had an impact on workflow runtime. It can be

noted from the graphs they provided, that using a local file system is more efficient than

using the S3 file system (workflow runtime). The authors further noted that the processing

times of the workflow will decrease by increasing the number of nodes (virtual machines)

and number of cores (per machine).

Akioka and Muraoka (2010) investigated utilising Amazon's EC2 as a research tool. They

investigated the computational performance of EC2 instances and estimated the operational

costs of EC2 instances. This research raised a very important question, what is the virtual

machine management policy of Amazon Web Services? Virtual instances might be allocated

to a physical machine in excess. If true, this will slow down performance.

Several observations can be made from the work discussed in this subsection. Due to the

nature of geospatial data (high volume, high velocity) and the fact that there might exist a

high demand for geoprocessing, cloud computing can be considered as a good option as it

provides scalability. Public cloud computing is costly, although, processing times will

improve by increasing the number of processing nodes and "hiring" more powerful

machines. A hybrid cloud is therefore suggested as during less busy times, a private cloud

can be utilised that costs almost nothing. During peak times, processing can be outsourced

31

to a public cloud. This combination will optimise costs. Using a public cloud is risky, as an

insufficient amount of information is provided on the allocation of virtual instances and the

condition of the public cloud provider's physical machines.

2.3.2 Enterprise Messaging

Numerous experiments were conducted to benchmark the performance of the Advanced

Message Queuing Protocol. On internet forums, the community complains about the slow

performance of technologies that use the Advanced Message Queuing Protocol.

After conducting experiments, Fernandes et al. (2013) observed that the Advanced Message

Queuing Protocol provided acceptable results in performance when there were large

quantities of messages to exchange. The Advanced Message Queuing Protocol did not

provide acceptable results when few messages were exchanged. Johnsen et al. (2013)

noted that the Advanced Message Queuing Protocol generated a lot of communication

between the Advanced Message Queuing Protocol client and broker. AMQP should be used

with high bandwidth networks. It can furthermore cause an overhead.

Two important observations were made that were of interest. The Advanced Message

Queuing Protocol's performance is acceptable when large quantities of messages are

involved. Fire datastreams contains large quantities of messages. The Advanced Message

Queuing Protocol appears to be a good option for enterprise messaging. A high bandwidth

network is a requirement for using the Advanced Message Queuing Protocol.

2.3.3 Web Processing Service

Researchers experimented with Web Processing Services for several years. Geoprocessing

chains were created in most of the experiments that were conducted.

Baranski (2008) attempted to implement an approach to put a Web Processing Service on a

grid. This was based on 52° North's Web Processing service. The processes and algorithms

were managed inside an algorithm repository. Every process utilised third-party libraries

(Baranski, 2008). When a distributed process was executed, the input data and application

binaries were copied into the computation nodes and the application binaries were executed

concurrently on each computation node. As soon as all of the calculation processes

finished, the Web Processing Services fetched the resulting datasets and combined them

(Baranski, 2008). The authors concluded with the remark that the performance of the

32

calculations and availability of service maybe improved (Baranski, 2008).

Murillo evaluated the parallelisation of geoprocesses on Amazon Web Services through Web

Processing Services using 52˚ North. Java was utilised. The number of micro instances

were incremented by using GridGain. Murillo found that processing times decreased when

the number of instances increased. Murillo concluded that using Web Processing Services

in the cloud is acceptable for the purpose of calculating statistics.

Samadzadegan et al. (2013) proposed an architecture design based on OGC web services

for automated workflow for the acquisition and processing of remotely sensed data for

detecting fires and sending notifications out to authorities. The authors argued that Web

Processing Services should be chained to detect fires from MODIS data. They evaluated

the architecture by using a use case, the GeoPortal client. The authors determined that this

architecture can be used for several disaster management and environmental monitoring

geospatial applications.

Dasgupta and Ghosh (2011) orchestrated Web Processing Services to provide access to

geospatial information on mobile devices. In 2010, Sun et al. (2010) created a workflow by

integrating geoprocessing services with Web 2.0. Shao et al. (2012) implemented a

geoprocessing service that integrated methods with Amazon Web Services to conduct

geoprocessing in a distributed environment.

Westerholt & Resch (2014) noted that geoprocessing tasks are complex and time

consuming due to messaging overheads. The authors proposed an event-driven

architecture for web-based asynchronous geoprocessing with Web Processing Services.

Push-based notifications are suggested to produce results in real-time. Evangelidis et

al.(2014) chained geoprocessing services in a cloud computing environment to do on-the-fly

geoprocessing.

The work discussed above proved that Web Processing Services have benefits that cannot

be ignored. Web Processing Services can be used for alerting applications. A large amount

of effort should be made to include Web Processing Services in the design of a

geoprocessing system.

33

2.3.4 Geovisualisation

A large quantity of work was conducted on3D geovisualisation. Work was further conducted

on the creation of 3D visualisations of wildfires. Various libraries such as WebGL,

OpenSceneGraph and OpenGL were experimented with. Some visualisations were

developed for desktop-based viewing and some for cloud-based viewing.

Over et al. (2010) generated 3D city models from OpenStreetMap data, this was a web-

based solution. Hildebrandt el al. (2010) discussed the design of a 3D geovisualisation

solution. They suggested that the system should be distributed, standards-based and

service oriented. Resch et al. (2011) used WebGL to create a system that provides web-

based 4D visualisation of marine geographic data. Resch et al. (2011) stated that

information should be understandable. ―Too much simplification might lead to a high level of

abstraction in conveying complex spatio-temporal geographic processes. The more abstract

the visualisation, the more disconnected from the physical world the visualisation is, and the

more effort is required to interpret the information represented in the digital environment

(Rensch el al., 2011).‖

Kim et al. (2014) integrated a spatial database management system, RESTful API and

WebGL to create 3D visualisations of satellite images on smart devices. Prandi et al. (2014)

created 3D city visualisations. Knoch et al. (2014) developed a solution to visualise 3D

hydrological data on the web to gain a better understanding of the groundwater resources in

New Zealand. Distributed data and processing resources were combined to generate an on-

demand 3D visualisation of geological and hydrological data (Knoch el al., 2014).

Heirring et al. (2011) developed a 3D campus information system by using WebGL. The

users were able to navigate the terrain of the campus and interact with the buildings to

obtain information. Zipf (2011) created a 3D viewer that displays terrain, buildings and

points-of-interest. Feng et al. (2012) developed a system that experimented with a web-

server, terrain-server, image-server and model-server. The data from the servers were

combined and rendered with the WebGL engine.

Woo et al. (2014) combined several existing technologies to create a 3D geovisualisation

developed for COMS (Korean Communication, Ocean and Meteorological Satellite) satellite

images on smart phones and tablets. They integrated a spatial database management

system (PostgreSQL and PostGIS), a RESTful application programming interface and

WebGL to create this system. To represent satellite images, spatio-temporal objects were

34

constructed within a database management system and a RESTful application programming

interface was created for querying the database. Satellite images were represented in

WebGL. Elevation data was used to provide a more realistic depiction of reality (Woo et al.,

2014). Wu et al. (2010) proposed a Web Service Oriented Architecture based on a virtual

globe for the creation of an 3D environment where urban planners can share information.

This architecture is based on CityGML.

Castrillón et al. (2011) designed a wildfire forecasting application based on a fire simulation

engine and a 3D virtual environment. The system took variables such as wind, vegetation

and topography into consideration. This system enabled users to monitor fires and also

provided the user with an indication of fire spread. The visualisations appear realistic. Yun

et al. (2012) implemented a wildfire spread simulation system to visualise wildfire spread.

The system is based on FARSITE (Fire Area Simulator) and Open Scene Graphs. A 3D

wildfire scenario can be visualised with this system and several factors can make the

simulation more realistic (terrain slope and wind).

From this subsection, it can be noted that a large amount of work was conducted towards

the development of various kinds of 3D visualisations. From the few fire visualisations, none

of the 3D fire visualisations were intended to be attached to wildfire notifications.

2.4 Chapter Summary

A high level overview of wildfires was provided in this chapter. The industry use case AFIS

was introduced and a discussion on wildfire detection and on big geospatial data was

included. Relevant material on distributed and high performance computing was also

included. Sections on enterprise messaging (page 24), Web Processing Services (page 25)

and 3D geovisualisation (page 27) formed part of this chapter. Related work was also

discussed (page 28). This chapter gave the reader background information on portions of

this research and highlighted the gaps.

A large volume of research has been conducted on cloud computing, enterprise messaging,

Web Processing Services and geovisualisation separately. No research has been conducted

in the optimisation of geoprocessing chains in software, only high performance distributed

computing. 3D wildfire visualisations have been created before, but not with the intention of

rapidly generating 3D wildfire visualisations and attaching them to wildfire notifications. This

gap should be filled as it can contribute significantly to managing wildfires.

35

The following chapter provides the reader with information on the methodology followed

during the research, the design of the geoprocessing chain and the experiment design of the

research.

36

3 Chapter Three: Research Methods and Experiment Design

3.1 Chapter Overview

The previous chapter provided related information on specific topics from literature, including

sections on wildfires (page 11), the Advanced Fire Information System (page 13), wildfire

detection (page 15), big geospatial data (page 16), distributed and/or High Performance

Computing (page 18), enterprise messaging (page 24), Web Processing Services (page 25)

and geovisualisation (page 27). The objective was to provide the reader with an in-depth

background of this research. A section on related work (page 28) was included and a gap

was identified. No research was conducted that designed a rapid geoprocessing system

that generates 3D wildfire context visualisations to attach them to wildfire notification

messages.

This chapter discusses the research methodology followed during the research (page 36).

This chapter also contains information that describes the abstract geoprocessing chain

(page 39) and the data required for an abstract geoprocessing chain (page 39). An abstract

geoprocessing chain separates the description and purpose of geoprocessing chain

components from the implementation specifics. The components of the abstract

geoprocessing chain were implemented. This chapter also provides the design of the

research experiment (page 37). The reader will therefore gain an understanding of the high

level design of the geoprocessing chain.

3.2 Research Methods

The research conducted falls within the positivistic research paradigm. The research was

conducted impartially and with the objective to measure the performance of various

geoprocessing techniques for an on-demand rapid geoprocessing system. Precise

quantitative measurements or benchmarks were noted for various fire event processing

implementations. Relationships amongst variables such as time and algorithmic style, time

and architectural style and time and implementation types were observed. Graphs that

represent the relationships amongst the variables were created and analysed to provide a

more coherent understanding. The research can therefore be viewed as quantitative

research.

Benchmarking was conducted in the pre-tests to determine which library would produce

37

results in the fastest time for specific functions of the geoprocessing chain such as the ―area-

of-interest check‖, the ―buffer and bounding box calculation operation‖ and the ―get elevation

operation‖. Implementations were benchmarked to determine what implementation such as

loosely-coupled Web Processing Services, loosely-coupled function calls, tightly-coupled

Web Processing Services and tightly coupled function calls, provided the fastest

performance (produced results in the fastest time). Specifically, the time dimension was

measured. Benchmarking was therefore used to obtain quantitative measurements to

ensure the objectiveness of the research.

A prototype is a simplified system that can serve as an example for a complex system. The

complex system is the Advanced Fire Information System. The prototype or experimental

system focussed on spatial filtering, obtaining contextual variables and 3D visualisation

generation. These specific aspects of the system were focussed on. The complex system

can disseminate text messages and emails. A prototype (proof-of-concept prototype) was

implemented to demonstrate such a system (rapid 3D fire visualisation rendering system)

could work efficiently and effectively. The prototype was used to benchmark focussed

aspects of such a system. The benchmarks of the pre-tests were required for the final

implementation of the prototype. The benchmarks measured the speed of the system and

only the implementations that produced output in the fastest time were chosen for the rapid

geoprocessing system.

Two experiments were conducted, a commodity hardware-based experiment (experiment

one) and a cloud-based experiment (experiment two). The experiments were conducted to

determine what geoprocessing chain implementation would produce results (output-3D fire

contextual visualisations) in the fastest time(which experimental inputs generated 3D fire

contextual visualisations in the fastest time). The commodity hardware-based experiment

was conducted in a controlled environment. The cloud-based experiment was conducted in

a semi-controlled environment. Control was enforced as rigorously as possible, but during

the experimentation process, there were external factors (variables) that had an impact

beyond the control of an Amazon Web Services user. All of the external variables are not

known. Current literature as discussed in Chapter Two illustrates some of the known

variables. The uncertainty is due to the nature of public cloud computing, which is also one

disadvantage of public cloud computing.

3.3 Experiment Design

The aim of this research was to find an optimal design to handle the geoprocessing of bursty

38

datastreams of geolocated events into notifications with visualisations, sent to appropriate

users in ―demand-time‖ (as rapidly as possible).

The first step of the experiment design was to determine the structure or design of the

geoprocessing chain. After the structure or design was determined, certain components in

the geoprocessing chain were implemented in up to four alternative ways by using different

software libraries or packages. The components were scripted in the Python programming

language. Several timing tests were conducted for each of the four alternative

implementations (the alternative implementations were benchmarked) to determine which

style of geoprocessing component offered the fastest performance. These timing tests are

referred to as pre-tests in this dissertation.

The first experiment was conducted on a single thread on commodity hardware. Web

Processing Services were then set up for each stage of the geoprocessing chain using the

fastest component implementations determined by the pre-tests. Timing evaluations were

performed on the Web Processing Services in two configurations (architectural styles): a)

tightly-coupled chaining- using method call chaining (Combination One)a)single detected

wildfire event must be processed before the next detected wildfire event can be processed);

and b) loosely-coupled chaining- using AMQP consumers/producers (Combination Three)

(detected wildfire events are processed in parallel). Thereafter geoprocessing components

were set up without Web Processing Services, also using the tightly-coupled (Combination

Two) and loosely-coupled (Combination Four) configurations. The components utilised

function calls instead of Web Processing Services. They were subjected to the same tests.

The experiment was aimed at showing which configuration offered the fastest throughput of

events to notifications with a visual payload.

The second experiment was conducted in a public cloud computing environment. Web

Processing Services were set up for each stage of the geoprocessing chain using the fastest

component implementations determined by the pre-tests. Timing evaluations were

performed on the Web Processing Services in one configuration: loosely-coupled chaining -

using AMQP consumers and producers. Geoprocessing components were then set up

without Web Processing Services, further using the loosely-coupled configuration, and were

then subjected to the same tests. The components utilised function calls instead of Web

Processing Services. Only the loosely-coupled chaining configuration was tested due to the

cloud computing environment. Cloud computing was considered because of horizontal

scaling (adding computing resources on demand). Therefore, conducting tightly-coupled

component tests was irrelevant.

39

Table 1: Combinations of Experimental Architectural Styles

With WPSs Without WPSs (function

call implementation)

Tightly-Coupled

Geoprocessing Chain

Components

Combination One Combination Two

Loosely-Coupled

Geoprocessing Chain

Components

Combination Three Combination Four

Table 1 illustrates the combinations of experimental architectural styles.

3.4 Required Data(Abstract)
Table 2 lists the data required for generating the 3D visualisation and context. It describes

all required datasets.

Table 2: Abstract Description of Required Data

Name Description

Vegetation

data

Data utilised for indicating vegetation types over a terrain and for indicating the

vegetation at the location of a fire. The data gives an indication of fuel types.

Elevation data Data utilised for building a realistic depiction of real world terrain and for extracting

the elevation at the location of a fire. The elevation data gives an indication of the

topography for fire spread. Emergency responders will benefit from elevation data.

Population

data

Data utilised for indicating the population density over a certain area and for

indicating the population density at the location of a fire. The data gives an

indication of the number of people affected by a wildfire.

Land cover

data

Data utilised for indicating land cover types over a certain area and for indicating the

land cover type at the location of a fire. The data gives an indication of fuel types.

3.5 Geoprocessing Chain (Abstract)
Table 3 lists the abstract geoprocessing chain components. It describes the purpose for

each of the components. Refer to Figure 5 (page 47) in Chapter Four to view the

component corresponding to the component number in Table 3 (page 40). Refer to Table 6

(page 46) for implementation details. Figure 4 (page 40) shows the functions of the

components of the geoprocessing chain.

40

Table 3: Description of the Abstract Geoprocessing Chain Components

Component

(refer to

Figure 5 on

page 47)

Name Description

1 agpc_parser Parses streaming data (lists of tuples) representing fire

detection events into a JSON (JavaScript Object Notation)

format in order to standardise the data format.

2 agpc_areaofinterest_checker Determines if a fire event occurred within a set of area of

interest geometries. If so, the event data is passed along

to the next step of the geoprocessing chain. If a fire event

did not occur within an area of interest, the fire event data

is discarded.

3 agpc_bufferboundingbox_calculator Derives a bounding box from a buffer of the event point

location. The bounding box is used in extracting contextual

data around an event to generate a 3D (three-

dimensional) scene visualisation.

4 agpc_elevation_calculator Calculates the elevation at the location of the fire from a

DEM (Digital Elevation Model) (raster).

5 agpc_population_calculator Calculates the population density at the location of the fire

from a population GeoTIFF (raster).

6 agpc_landcover_calculator Calculates the land cover at the location of the fire from a

land cover GeoTIFF (raster).

7 agpc_cookiecutter Cookie-cuts rasters and a shapefile according to the

extent calculated by agpc_bufferboundingbox_calculator.

8 agpc_converter Converts the rasters and shapefile that were cookie-cutted

by agpc_cookiecutter to other formats.

9 agpc_html_generator Generates a HTML (HyperText Markup Language) file that

contains JavaScript code that will setup the 3D contextual

visualisation of the scene of the fire.

41

Figure 4: High-level description of geoprocessing chain components

3.6 Chapter Summary

This chapter describes the related methods used during the research. The research can be

categorised into the positivistic research paradigm. Various implementations were

benchmarked and quantitative measurements were noted by conducting various

experiments. The benchmarks informed the design of the prototype created. Various

"flavours" of the prototype were tested to reach a conclusion on the most optimal design for

a rapid 3D wildfire visualisation geoprocessing system. The chapter further provides details

on the design of the abstract geoprocessing chain, the required data and the design of the

research experiment. The following chapter will provide an in-depth discussion of the

implementation details.

42

4 Chapter Four: Research Implementation

4.1 Chapter Overview

The preceding chapter provided the reader with details on the methodology followed during

this research. Various implementations and geoprocessing chain "flavours" were

benchmarked to determine the most optimal design of a 3D wildfire context visualisation

generating geoprocessing system. A prototype was created that does not contain all of the

functionality of AFIS (the industry use case). It further provided the reader with a detailed

description of an abstract geoprocessing chain and the data required for an abstract

geoprocessing chain. The design of the research experiment was further included in

Chapter Three.

This chapter focuses on the implementation details of the geoprocessing chain such as the

data required for the final implementation and the software libraries used for the final

implementation. Details are provided on the experimental implementations. Details such as

the design of the implemented processing chain, how benchmarking was conducted and

details on the pre-tests are provided. The four architectural styles are additionally discussed

in this chapter. This chapter includes discussions on experiment one and experiment two.

The discussions relate to hardware and software required for the two experiments and the

methods used to conduct the experiments.

4.2 Required Data (Implementation)

Two types of fire data were utilised for this research to provide locations of active fires. The

two types of data were utilised because the industry use case AFIS utilises them. The first

type of data was derived from detections of the SEVIRI (Spinning Enhanced Visible &

Infrared Imager) sensor aboard ESA's Meteosat 8 geostationary satellite. SEVIRI data has

a spatial resolution of approximately four kilometres and a temporal resolution of 15 minutes.

The second type of data was derived from MODIS (Moderate Resolution Imaging

Spectroradiometer) sensor detections. NASA's polar orbiting Terra and Aqua satellites are

equipped with these sensors. MODIS data has a spatial resolution of approximately one

43

kilometre and a temporal resolution of six hours if both satellite orbits are used.

The data used for the contextual variables was acquired from the World Wide Web. This

was the vegetation data, elevation data, population data and land cover data. Table 4 (page

43) lists the data required for the implemented geoprocessing chain. A description of the

data is further provided.

Table 4: Description of Data Required for Implementation

Name Description

Vegetation data-National Vegetation Map 2006 The vegetation data, vector data, was saved in a shapefile format. 440

Zonal and azonal vegetation types are contained within this dataset. The

vegetation map was compiled in 2006. Several organisations

contributed to this map over an extended period. It provides vegetation

data for South Africa, Lesotho and Swaziland. Fires require oxygen, fuel

and heat to occur. Vegetation data was important as it gave an

indication of the types of fuel. Certain types of vegetation are more

prone to burn that other types of vegetation (South African National

Biodiversity Institute, 2006).

Elevation data-SRTM90 For elevation values, a SRTM (NASA Shuttle Radar Topography Mission)

90m DEM was used. The DEM provides high quality elevation data for

the entire world. It has got a 90m resolution at the equator and the tiles

are mosaiced as 5º x 5º tiles (they are available for download). SRTM is

available as 3 arc second DEMs. The vertical error of these DEMs is

less than 16m. No data values are yielded for places with water or

places with large voids. Elevation data was used to build the terrain of

the 3D visualisation. Terrain data was required to show the topography

of the land. Users can get an indication of potential fire behaviour

(because fires spread fast uphill). The terrain data can give emergency

responders a better idea of the terrain, it can thus help them with

planning (NASA Land Processes Distributed Active Archive Centre,

2013).

Population data-Worldpop South Africa Population Population data was obtained from the WorldPop project website. The

population data(raster data) was saved in a geoTIFF format.

GlobeCover was used to capture these datasets as well as census data

from various countries. The spatial resolution of GlobeCover was

resampled to 100m and the urban class that caused an over-estimation

was removed. The unit of the dataset is population per square kilometre.

The 2015 estimates dataset was used. Population data was important

as a user was able to see how many people was affected by a certain

fire (Worldpop, 2013).

Land cover data-National Land Cover 2000 and

2009

Land cover data and vegetation data was supplied by the South African

National Biodiversity Institute. The land cover data(raster data) was

saved in geoTIFF format. Land cover indicates the impact on

biodiversity. The National land cover dataset of South Africa contains

eight extensive classes, namely: natural, cultivated, degraded, urban

built-up, water bodies, plantations, mines and missing data. The

NLC2009 (National Land Cover 2009) dataset was derived from various

data sources such as municipal land cover data, provincial land cover

data, ARC cultivation filled boundaries data and the ESKOM Spot 5

building count dataset. Land cover data was important as it gave an

indication of the types of fuel. Certain types of vegetation are more

prone to burn that other types of vegetation (South African National

Biodiversity Institute, 2009).

44

4.3 Software

Table 5: High Level Description of Used Software Libraries or Packages

Name Description

Fiona Python package providing Python interfaces to OGR functions (Python Community, 2013). It can

be used to read and write spatial data files. It relies on Python types. Fiona was used for the pre-

tests.

GDAL C++ translator library for geospatial raster data formats (OSGeo, 2013). Library used to read and

write raster data. GDAL was used for the pre-tests as well as the final implementation of the

geoprocessing chain.

OGR C++ translator library for geospatial vector data formats (OSGeo, 2013). Library used to read

and write vector data. OGR was used for the pre-tests and the final implementation of the

geoprocessing chain.

Pika Python implementation of the AMQP protocol (Python Community, 2014). It was developed with

the intention to work with RabbitMQ. Pika was used to work with RabbitMQ (refer to loosely-

coupled implementations)

PostGIS Spatial database extender for PostgreSQL. Allows queries on geographic objects in SQL

(OSGeo, 2013). PostGIS was used for the pre-tests.

Pyproj Python package that can be used to perform cartographic transformations and geodetic

computations (Python Community, 2014). It is based on the open-source geometry engine,

GEOS. Pyproj was used to reproject data.

PyWPS Python implementation of a Web Processing Service (Cepicky, 2013). PyWPS was the preferred

library for the WPSs.

RabbitMQ Open source enterprise messaging system based on the AMQP standard (Pivotal Software, inc

n.d.). RabbitMQ was used for the enterprise messaging system.

Rtree Python package providing advanced spatial indexing features (Python Community, 2012). Rtree

was used for the pre-tests.

Shapely Python package for manipulation and analysis of planar geometric objects (Python Community,

2012). Shapely was used for the pre-tests.

Three.js Three.js is a JavaScript 3D library which makes WebGL applications easier to develop (MrDoob,

2014). WebGL is a cross-platform Application Programming Interface (API) that can be used to

create 3D graphics in a web browser. It is based on OpenGL (Khronos, 2012). Three.js was used

to create the 3D WebGL visualisation.

Table 5 lists software packages or libraries used. A high level description is given for each of

the libraries. It is also mentioned where the software packages or libraries was used in the

scripts.

4.4 Experimental Implementations

4.4.1 Geoprocessing Chain(Implementation)

Table 6 lists the components of the implemented geoprocessing chain. It provides the

function of every component and lists the software used by each. Figure 5 (page 47) is a

45

diagram of the geoprocessing chain. Refer to the section on the abstract geoprocessing

chain design (Chapter Three, Section 3.5, page 39).

46

Table 6: Description of the Implemented Geoprocessing Chain Components (Experimental)

Components described in this implements abstract components described in Table 3 (page

40) of Chapter Three.

Name Implements Description Software

egpc_parser agpc_parser 1) Receives incoming fire data.

2) Parses streaming fire event

data that is a list of tuples are

parsed into a JSON format.

Python

egpc_areaofinterest_checker agpc_areaofinterest_checker 1) Loads a shapefile that contains

the defined areas-of-interest into

memory with OGR.

2) Constructs a point that

represents a fire at a specific

location.

3) Conducts a check to determine

if the point location of the fire

intersects with the polygons in the

shapefile that contains the areas-

of-interest.

Python

OGR

egpc_bufferboundingbox_calculat

or

agpc_bufferboundingbox_calculator 1) Constructs a point that

represents a fire at a specific

location.

2) Places a buffer around the

point.

3) Calculates the bounding box of

the buffer with OGR.

Python

OGR

egpc_elevation_calculator agpc_elevation_calculator 1) Loads a elevation GeoTIFF into

memory with GDAL.

2)Extracts the pixel value at the

location of the fire.

Python

GDAL

egpc_population_calculator agpc_population_calculator 1) Loads a population GeoTIFF

into memory with GDAL.

2) Extracts the pixel value at the

location of the fire.

Python

GDAL

egpc_landcover_calculator agpc_landcover_calculator 1) Loads a land cover GeoTIFF

into memory with GDAL.

2) Extracts the pixel value at the

location of the fire.

Python

GDAL

egpc_cookiecutter agpc_cookiecutter 1) Takes rasters and a shapefile

(contextual data) as input and

cookie-cuts them according to the

extent calculated by

egpc_bufferboundingbox_calculat

or. Uses OGR and GDAL.

Python

OGR

GDAL

Pyproj

egpc_converter agpc_converter 1) Takes the cookie-cutted data as

input and converts the cookie-

cutted rasters and shapefile to

PNG files.

Python

OGR

GDAL

egpc_html_generator agpc_html_generator 1) Takes all the data passed along

the geoprocessing chain and

generates a HTML file that

creates a 3D context visualisation

and a information box with static

data.

Python

Javascript

Three.js

47

Figure 5: Tightly-Coupled Geoprocessing Chain Components

4.4.2 Benchmarking

Several events were required to be processed. Various processing implementations were

benchmarked. The pre-tests included the processing of 1000 fire events, ten times. The

tests of experiment one and experiment two included the processing of fire events in 1000

48

intervals. The tests started with the processing of 1000 fire events and ended with the

processing of 10 000 fire events. The time that elapsed to execute a script (process several

events) was determined by using the python time module (benchmarking was achieved by

utilising the python time module). A queue listener was created to monitor the number of

messages in the messaging queues for the loosely coupled tests. Benchmarking was

initiated as soon as the fire events were produced. The listener indicated how many

messages there were in the messaging queues. As soon as there were no messages left in

the queue, the result of a test was recorded.

4.4.3 Pre-Tests

Pre-tests were conducted to determine which implementation of a geoprocessing chain

component provided the fastest performance. Table 7 describes the pre-tests conducted.

The pre-tests were conducted to inform the final design of the geoprocessing chain.

Only three pre-tests were conducted because the function of the third test was similar to

components that followed in the geoprocessing chain. The primary purpose of the tests is:

Test One: Accepts fire data in a JSON format, extracts the point location of the fire and

checks if the point falls within an AOI (Area of Interest).

Test Two: Accepts fire data in a JSON format, extracts the point location of the fire, places a

2.5 km buffer around the fire point, calculates the bounding box of the buffer.

Test Three: Accepts fire data in a JSON format, extracts the point location of the fire,

queries the elevation from a DEM at the fire location.

49

Table 7: Description of the Pre-Tests

Name Implements Description Software

pgcp_areaofinterest_check_rtree agpc_areaofinterest_check 1) Created indices that represents the

area of interest.

2) Constructed fire point location

3) Checked if the point intersected with

an index.

Python

Rtree

pgcp_areaofinterest_check_ogr agcp_areaofinterest_check 1) A shapefile (area of interest) was

loaded into memory.

2) Constructed fire point location

3) Checked if the geometry of the

shapefile contained the point.

Python

OGR

pgcp_areaofinterest_check_fiona+

shapely

agcp_areaofinterest_check 1) Loaded a shapefile (area of interest).

2) Determined the bounds of the area of

interest.

3) Constructed fire point location

4) Checked if the point was contained

within the bounds (optimised with

prepared geometries).

Python

Fiona +

Shapely

pgcp_areaofinterest_check_postgis agcp_areaofinterest_check 1) Imported the shapefile (area of

interest) to database.

2) Constructed fire point location.

3) Connected to database, checked if

geometry of point intersected with the

geometry of the shapefile (area of

interest).

Python

PostGIS

pgpc_bufferboundingbox_calculato

r_ogr

agpc_bufferboundingbox_c

alculator

1) Constructed fire point location

2) Placed a buffer around that point.

3) Calculate extent around the buffer.

Python

OGR

pgpc_bufferboundingbox_calculato

r_fiona+shapely

agpc_bufferboundingbox_c

alculator

1) Constructed fire point location.

2) Created a buffer around the point.

3) Calculate extent around the buffer.

Python

Fiona+Shapely

pgpc_bufferboundingbox_calculato

r_postgis

agpc_bufferboundingbox_c

alculator

1) Constructed fire point location.

2) Created a buffer around the point.

3) Calculate extent around the buffer.

Python

PostGIS

pgpc_elevation_calculator_gdal agpc_elevation_calculator 1) Loaded the GeoTIFF into memory.

2) Extracted a pixel value at the specific

location of the fire.

Python

GDAL

pgpc_elevation_calculator_postgis agpc_elevation_calculator 1) Imported the DEM into a database

using PostGIS raster.

2) Constructed fire point location.

3) Selected value from database where

the point intersects with the DEM.

Python

PostGIS

Process execution times were collated and compared for each library for all of the tests to

select the optimal algorithmic style for every component in the geoprocessing chain. The

50

process execution was timed for 1000 fire events repeated 10 times to account for vagaries

in system load.

4.4.4 Architectural Styles

4.4.4.1 Combination One: Web Processing Service Implementation with Tightly-Coupled

Components

PyWPS was utilised as the implementation of the Web Processing Service (Cepicky 2013).

A tightly-coupled Web Processing Service chain class was created. Several methods were

implemented (Section 4.4, page 44). Each method invoked a different Web Processing

Service that performed an operation on the input data and returned a result. Urllib was used

to invoke a Web Processing Service. Urllib provides a high level interface to retrieve data

across the internet (Python Community 2013). The chaining was designed so that each

method called the following method in the geoprocessing chain. Every result was passed

along the geoprocessing chain by nesting method calls. A class instance was created and

the first method to parse the data from the fire detection source was called. This initiated the

geoprocessing chain. The result of a process (returned result of a method) was used as

input parameter (input data) for the next process executed within the geoprocessing chain.

Nested method calls were used.

4.4.4.2 Combination Two: Function Call Implementation with Tightly-Coupled

Components

A tightly-coupled geoprocessing chain class was created. Several methods were

implemented (each method represents a component in the geoprocessing chain). Each

method called the next method in the geoprocessing chain. Every result was passed along

the geoprocessing chain by nesting method calls. A class instance was created and the first

method to parse the data from the fire detection source was called. This initiated the

geoprocessing chain. The result of a process (returned result of a method) was used as

input parameter (input data) for the next process executed within the geoprocessing chain.

Nested method calls were used. The Web Processing Service processes included XML

parsing that used the xml.dom.minidom library. To test the process chaining without using

Web Processing Services, XML parsing was accounted for by writing our result into XML and

parsing the XML with the xml.dom.minidom library.

51

4.4.4.3 Combination Three: Web Processing Service Implementation with Loosely-Coupled

Components

Classes were created to represent various components of the geoprocessing chain. Every

component utilised a Web Processing Service. Active fire event data is produced and

parsed into a JSON format by a consumer that listens on the queue that the fire data is

produced on. From here on the JSON data is consumed and used by a geoprocessing

chain component. Data is added to a JSON string and passed along by the production of

the JSON string onto another queue. The process is repeated for every component of the

geoprocessing chain until the HTML file that sets up the context visualisation is generated.

Refer to Figure 6 (page 52) to see the diagram of the loosely-coupled geoprocessing chain.

More than one fire detection event moved through the entire geoprocessing chain (from

process 1 up to process 9 in the diagram) at a time.

52

Figure 6: Loosely-Coupled Geoprocessing Chain Components

4.4.4.4 Combination Four: Function Call Implementation with Loosely-Coupled

Components

Classes were created to represent various components of the geoprocessing chain. Active

fire event data is produced and parsed into a JSON format by a consumer that listens on the

53

queue that the fire data is produced on. From here on the JSON data is consumed and

used by a geoprocessing chain component. Data is added to a JSON string and passed

along by the production of the JSON string onto another queue. The process is repeated for

every component of the geoprocessing chain until the HTML file that sets up the context

visualisation is generated. Refer to Figure 6 (page 52) to see the diagram of the loosely-

coupled geoprocessing chain. More than one fire detection event moved through the entire

geoprocessing chain (from process 1 up to process 9 in the diagram) at a time. The Web

Processing Service processes included XML parsing that used the xml.dom.minidom library.

To test the process chaining without using Web Processing Services, XML parsing was

accounted for by writing our result into XML and parsing the XML with the xml.dom.minidom

library.

4.4.5 Experiment One - Single Thread on Commodity Hardware

4.4.5.1 Hardware

The tests were conducted on a laptop with an Intel Core i7, quad core CPU (Central

Processing Unit) with four multi-threaded cores, therefore, eight cores running at 2.10GHz

with 8GB of RAM (Random Access Memory).

4.4.5.2 Software

Ubuntu 12.04 was used as the operating system, simply because it was the latest Ubuntu

version with long-term support at the time when this research started. Python was used as

the programming language of choice as parts of the industry use case, AFIS, are also

implemented in Python. The software described in Section 4.3 (page 44) was utilised for the

final implementation of the geoprocessing chain. Zoo WPS was also experimented with

when it was observed that the performance of PyWPS was slow.

The performance of the PyWPS and Zoo WPS implementations were compared. As the

performance improvement of Zoo WPS was almost negligible compared to the performance

of PyWPS, it was decided to not continue experimenting with Zoo WPS as it would not have

been beneficial.

Initially, Cesium was used as the library to create 3D visualisations. Cesium is a free virtual

54

globe and map engine, implemented in WebGL (AGI, 2013). Initially, Cesium was used as

the technology for creating the 3D wildfire visualisations. The wildfire data had to be

converted to CZML (JSON schema) to be visualised on the globe. Several layers including

WMS layers were included as well. Cesium has streaming capabilities and it has its own

terrain provider that utilises the SRTM90 and GTOPO30 datasets (AGI, 2013). It was

observed that tiles took too long to load. Thereafter it was decided that Three.js would be

used for the creation of the 3D visualisations.

Three.js is a JavaScript 3D library, which makes WebGL applications easier to develop

(MrDoob, 2014). Rasters cannot directly be used by WebGL, thus raster data had to be

read as arrays to display in the web browser. Several layers were added. Three.js is ideal

to use if one is required to present fires, because particle systems can be created.

4.4.5.3 Methods

The geoprocessing chain was set up in a loosely-coupled style and in a tightly-coupled style

by using Web Processing Services and by using function calls (without Web Processing

Services). Therefore, four combinations or configurations were set up; they are listed in

Table 8. The execution of the entire geoprocessing chain was timed or benchmarked

several times. The execution of the geoprocessing chain was timed for each of the

configurations. The results for each of the four configurations were compared against each

other. The test was conducted for each one of the four configurations 10 times, from 1000

up to 10 000 fire events were used as input in intervals of 1000.

Table 8: Combinations of Experimental Architectural Styles

With WPSs Without WPSs (function call

implementation)

Tightly-Coupled Geoprocessing

Chain Components

Combination One Combination Two

Loosely-Coupled

Geoprocessing Chain

Components

Combination Three Combination Four

55

4.4.6 Experiment Two - Cloud Computing Environment

4.4.6.1 Hardware

The distributed tests of experiment one (loosely-coupled components) were repeated in a

cloud computing environment. Amazon Web Services was utilised as the public cloud

service provider. EC2 (Elastic Compute Cloud) micro-instances with one virtual CPU and

0.6GB RAM were used as the virtual machines. The physical processor of a micro-instance

belongs to the Intel Xeon family and has a clock speed of 2.5 GHz but it can boost (over-

clock) up to 3.3GHz. The Amazon S3 (Simple Storage Service) was used to store the

resources in the cloud (Amazon Web Services, n.d.).

4.4.6.2 Software

The experimental system was implemented using the Python programming language,

because parts of the industry use case, AFIS, are implemented in Python and because it

was used in experiment one. Ubuntu 14.04 was used as the operating system. Ubuntu

14.04 was used because Amazon Web Services offered it and it is the latest Ubuntu version

with long-term support at this time. The software described in Section 4.3 (page 44) was

utilised for the final implementation of the geoprocessing chain.

4.4.6.3 Methods

Amazon Web Services was chosen as the public cloud service provider. Amazon Web

Services presents a user with computing resources that can be used for application

development and it utilises a pay-as-you-go structure. A virtual server can be rented and

used in a similar fashion to a physical server. The virtual server runs on a network managed

by Amazon Web Services. During peak times or high demand-time, the virtual server scales

into multiple servers automatically. Amazon Web Services provides advantages such as

APIs, horizontal scaling of resources, per hour billing and instance variations.

Amazon Web Services provides several services (Amazon Web Services, n.d.). Only a

small fraction of these services were utilised for this research. The first service of interest is

the Amazon Elastic Compute Cloud (EC2). It provides an opportunity to launch a virtual

server. The virtual server is similar to a physical server, but can automatically scale

56

horizontally (Amazon Web Services, n.d.). The second service of interest is the Amazon

Relational Database Service (RDS). This allows a person to run a PostgreSQL database

engine on Amazon Web Services (Amazon Web Services, n.d.). The third service of interest

is the Amazon Simple Storage Service (S3). The S3 exists for the storage and retrieval of

digital files (Amazon Web Services, n.d.). The fourth service of interest is the Amazon

Elastic Block Store (EBS). This provides a persistent file system used to store created

Amazon EC2 instances, even if the instances were terminated (Amazon Web Services,

n.d.). There are two services that can aid with cost saving - the auto scaling service and

load balancing service. The auto scaling services add and remove virtual servers according

to the demand in traffic. The load balancing service is responsible for distributing traffic

amongst multiple virtual servers (Amazon Web Services, n.d.).

A t2 Amazon EC2 instance is a low cost general purpose cloud instance type designed to

provide a baseline level of CPU performance but can burst above the baseline level when

required. Every t2 Amazon EC2 instance continuously receives CPU credits. At startup the

amount of credits per instance is 30 (restart). A credit is equal to one virtual CPU being

utilised at 100% of the capacity for one minute. Credits are accumulated when an instance

is idle and credits are consumed whenever an instance is active. A set rate of six credits per

hour can be earned at millisecond-level resolution. When an instance is in an idle state

(CPU requires less resources than its baseline performance), the unused credits are stored

in the credit balance for 24 hours (the maximum balance for a t2.micro-instance is 144 CPU

credits). When an instance is in a running state (CPU requires more resources than its

baseline performance), credits are consumed from the credit balance to burst the CPU

utilisation up to 100% (Amazon Web Services, n.d.).

More credits are equal to longer bursts beyond the CPU's baseline performance.

Unfortunately, credits do expire after 24 hours of acquisition. The credit balance is non-

persistent between instance stops and starts. Stopping an instance causes it to lose its

credit balance and restarting an instance causes it to receive its initial credit balance

(Amazon Web Services, n.d.).

In a situation where all the credits are used, the performance remains at the baseline

performance level. The CPU performance is gradually lowered to the baseline performance

level over a 15 minute interval as credits are consumed. The performance is gradually

lowered to prevent a steep drop in performance (Amazon Web Services, n.d.).

T2.micro-instances are on-demand instances. Billing occurs at an hourly rate and a partial

57

instance hour is billed as a full hour (Amazon Web Services, n.d.). When an instance is

stopped, it will cause the shutdown of the instance. An AWS user will not get charged for the

hourly usage of a stopped instance although charging will occur for Amazon EBS volumes

(Amazon Web Services, n.d.). Every time a stopped instance is started, Amazon will charge

a full instance hour (even if it is restarted multiple times within a single hour). When an

instance is explicitly restarted, Amazon will not charge a full instance hour (Amazon Web

Services, n.d.) and the instance will not receive the initial amount of CPU credits.

The utilisation of public clouds was heavily constrained by costs. If cloud instances run for

too long, the cost may become too high. If too little cloud instances get provisioned,

generating 3D wildfire context visualisations might take too long. This has a very high

impact on the research as it might have a drastic effect (negative) on the results. This can

be mitigated by doing careful planning, such as finding a good balance between cost and

performance.

An Amazon Web Services account was created to receive free tier privileges. Every

Amazon Web Services customer receives free privileges within the first year (12 months) of

registration. Any of 18 Amazon Web Services products or services can be used for free but

within certain usage limits. Services or products of interest for this experiment were the EC2

(Elastic Compute Cloud), S3 (Simple Storage Service), RDS (Relational Database Service)

and EBS (Elastic Block Store). A customer will get 750 hours of Linux t2.micro instance

usage free per month. With the S3, a customer will receive 5GB of standard storage free

per month plus 20000 get requests and 2000 put requests. For the RDS a customer will

receive 750 hours of micro instance usage per month for free. A customer will also receive

20GB of storage and backups, and 10000000 I/Os (input and output operations) free. A

customer will receive 30GB of EBS storage for free, along with 2000000 I/Os.

Thereafter, an Amazon S3 bucket (georesources) was created to store all the resource files

(Oregon region). Amazon Web Services are hosted in multiple locations worldwide. A

region is a specific geographic area. Every region comprises multiple zones. Amazon Web

Services prefer instances to be hosted in multiple zones for failover. Keeping costs as low

as possible was a challenge. Data transfer in different zones costs money, whilst data

transfer in the same zone is free.

Resource files were transferred to the Amazon S3 bucket named Georesources from South

Africa. This was a time-consuming process (it took approximately 60 minutes) due to the

difference in region. The file permissions were changed so that the cloud instances may

58

gain access to the files.

EC2 instances (in the Oregon region) were created for each component of the

geoprocessing chain. All of the required packages and software were installed on each

respective instance. Amazon Web Services use public-private key authentication for

security purposes. AMIs (Amazon Machine Images) were created for every component.

This makes the setup of an instance less tedious as software does not have to be reinstalled

on every machine. An AMI is an image of the operating system (customised Ubuntu 14.04 in

this case).

Enforced security rules had to be altered (custom TCP for ports 5432, 5672, 15672 and ssh

for port 22)for the instances to communicate with each other. Amazon has a security

mechanism for protecting instances, and is similar to a rule-based firewall. A user can

specify which machines (with IP addresses in specific regions) can connect to specific ports.

Required resource files were downloaded to their specific instances from the S3 bucket. This

is faster and cheaper than secure copying the resource files from a local machine due to the

difference in region. Cloud resource usage in certain regions are more expensive than

resource usage in other regions. At the time that the second experiment started, Oregon

was the cheapest region (us-west-2b).

If free tier privileges had not been available, the costs would have been as follows:

EC2 micro-instance usage: 58 instances * R0.14 = R8.12 per hour * 40 stop-starts = R324.8

EBS storage usage: 58 instances * 8 GB = 464 GB * R1.07 – R496.48 per GB per month

S3 storage: 97 GB * R0.32 (for 1st terrabyte) = R0.32

Put/Copy/Post/List Requests = 110000/1000 * R0,05 = R5.5

Get/Other Requests = 110000/10000 * R0.4 = R0.44

Total: R 827.54 (strict control of computing hours, weak EC2 instances)

Instance usage is not cheap and if larger instances were required the cost would have been

much higher. Computing hours should not be wasted and should be controlled for cost

saving purposes. EBS storage is also expensive but was required for the number of micro

instances used. S3 storage is very cheap considering the cost is for one terabyte. Data

transfer within the same region was free, but if instances were created in different regions, it

would have been costly.

59

No pre-tests were conducted. OGR was the library of choice for the implementation of the

geoprocessing chain because it was the most performant library in experiment one. Tests

were conducted by chaining components of the geoprocessing chain that utilises Web

Processing Services in a loosely-coupled style and chaining the components of the

geoprocessing chain that utilises function calls (without using Web Processing Services), in

a loosely-coupled style. The data was stored on the computing nodes and in a S3 bucket.

Checks were conducted to determine if accessing the resources from the computing nodes

(cloud instances) was more efficient than accessing resources from an Amazon S3 bucket.

Up to six nodes were utilised for every component of the geoprocessing chain. The results

of Chapter Five are included for four consumers per geoprocessing chain component (Figure

7) and six consumers per geoprocessing chain component (Figure 8).

Figure 7: Cloud configuration-four consumers per geoprocessing chain component.

Refer to Table 3 (page 40) to check the corresponding component number to see the

function of a component.

60

Figure 8: Cloud configuration-six consumers per geoprocessing chain component.

Refer to Table 3 (page 40) to check the corresponding component number to see the

function of a component.

4.5 Chapter Summary

This chapter included implementation details such as the data, hardware and software

required for the experiments. The methods used in this research were also discussed in this

chapter. Various implementations were benchmarked to inform the most optimal design of

the prototype. Pre-tests were conducted to determine the best algorithmic style for

components of the geoprocessing chain. Four "flavours" of the geoprocessing chain were

benchmarked. The first "flavour" is a tightly-coupled Web Processing Service

implementation. The second "flavour" is a tightly-coupled function call implementation. The

third "flavour" is a loosely-coupled Web Processing Service implementation and the fourth

"flavour" is a loosely-coupled function call implementation. The proceeding chapter will

provide the results of the experiments. It will also contain an in-depth discussion of the

results.

61

5 Chapter Five: Results and Discussion

5.1 Chapter Overview

The previous chapter provided an overview of the implemented experimental system by

discussing implementation detail. It provided details on the data, software and hardware

used for the prototype. It also provided information on the various "flavours" of the

geoprocessing chain that were experimented with.

This chapter provides illustrations of the results delivered in the pre-tests, experiment one

and experiment two. Illustrations are included comparing the results of experiment one and

the results of experiment two. A detailed discussion of the results is provided in this chapter.

All of the results in this chapter represent the tests that were created to time process

execution from start to finish. Shorter process execution times are preferred. More detailed

graphs are included in Appendix B.

5.2 Pre-Tests Results

5.2.1 Graphs

Referring to Figure 9, the OGR implementation outperformed the other implementations.

The Rtree implementation delivered the second best processing times and the

Fiona+Shapely implementation produced the third best. The PostGIS implementation

underperformed.

Referring to Figure 9, using the OGR library for the area of interest test proved to be the best

and fastest option. The Rtree and Fiona plus Shapely libraries used for this test, proved to

be the second and third best respectively. The PostGIS implementation exhibited the

poorest performance by a significant margin.

62

Figure 9: Area of Interest Check-test results (Section 4.4.3, page 48)

Referring to Figure 10, the OGR implementation performed the best in the buffer and

bounding box test. The Fiona plus Shapely implementation performed slower than the OGR

implementation. The PostGIS implementation underperformed.

Referring to Figure 11, the GDAL implementation strongly outperformed the PostGIS

implementation in the elevation calculation test. Other components of the geoprocessing

chain (getPopulation and getLandCover) utilised a similar approach to extract values from a

geoTIFF. The results for those components are likely represented by the elevation

extraction test.

63

Figure 10: Buffer and Bounding Box-test results (Section 4.4.3, page 48)

Figure 11: Elevation Calculation-test results (Section 4.4.3, page 48)

5.2.2 Discussion

Results from the first three sets of tests were surprising. It was expected that Rtree would

64

perform best in test one(the area of interest check test), due to its specialised spatial

indexing functionality. Fiona plus Shapely and PostGIS were expected to rival or surpass

OGR in the tests, due to the underpinning specialised geometry engine (GEOS-Geometry

Engine Open Source) software (OSGeo, 2014), but Rtree performed worse than OGR in the

area of interest check process. Several optimisations to improve the performance of Rtree

indexing are possible, such as streamed data loading, which improves performance via pre-

sorting before indexing (Python Community, 2012). If the size of the index is known a-priori,

Rtree will gain performance by pre-sizing the index to save on storage.

The OGR library allows performant spatial indexing of shapefiles through support for the

.sbn and .sbx indexes (GDAL, n.d.). The floating point comparisons in Rtree are a likely

explanation for the slower performance of Rtree compared to OGR (Python Community,

2012) which uses integer comparisons (Rouault, 2012). The difference in behaviour of

Rtree and OGR was distinctly demonstrated in the spatial filtering step(area of interest check

process) and the above-mentioned might be the reason for the difference in performance.

PostGIS supports indexing, although recent versions use Rtree-over-GIST (Generalised

Search Tree) schemes for indexing (OSGeo, 2013). This advanced indexing feature was

expected to deliver good performance, but the connection setup and query planner

overhead are suspected to be the reasons for slowing the process substantially (the two

processes or operations takes time to execute). Raster tile sizes in the PostgreSQL

database can similarly influence the performance of the processes. The atomic nature of the

data was an obstacle. A connection to the spatial database had to be established every time

a new fire event was processed. This caused an increase in the geoprocessing time

(caused an overhead) as it is time consuming to make a connection to the database. It is

preferred with relation databases, to work with bulks of data and not atomic pieces of data or

messages that require repeated connections.

The result of the Fiona plus Shapely implementation can be explained effortlessly. Fiona

utilises Python objects which impact negatively on the performance, compared to OGR

which uses C pointers (Python Community, 2013)which are less memory intensive. Fiona's

documentation states that it ―trades memory for simplicity and reliability‖. Fiona copies

features from the data source to Python objects. The performance of the Fiona plus Shapely

implementations improved after using prepared geometries.

65

5.3 Experiment One: Loosely-Coupled and Tightly-Coupled Architectural

Style and Web Processing Service Tests Conducted on a Single Thread

on Commodity Hardware

5.3.1 Graphs

For all of the tests conducted in experiment one, illustrated times represent the interval

between fire event ingest and 3D scene rendering output. It therefore represents the time it

takes for the specified number of events to move through the entire geoprocessing chain

(geoprocessing time). An increase or improvement in performance is equivalent to a

decrease in the geoprocessing time.

The difference in the resulting execution or processing times of the tightly-coupled function

call implementation and the loosely-coupled function call implementation (Figure 12), is

almost negligible. The loosely-coupled process chaining implementations performed

significantly faster than the tightly-coupled process chaining implementations. The function

call implementations performed far better than the Web Processing Service

implementations. The performance of the four implementations was consistent for various

numbers of events as the pattern of the graph remained consistent.

66

Figure 12: Single thread on commodity hardware tightly-coupled versus loosely-coupled and

WPS implementation versus function call implementation-permutation test results. One

consumer (Sections 4.4.4 (page 50), 4.4.5 (page 53))

No general pattern can be viewed from the graph in Figure 13. It was expected that the

processing times would decrease as the volume of consumers increased. The expectation

was met in the case of the Web Processing Service implementation where 2000, 3000, 4000

and 10000 events had to be processed. For the function call implementation, the

expectation was met where 6000, 7000, 8000 and 9000 events had to be processed.

67

Figure 13: Single thread on commodity hardware tightly-coupled versus loosely-coupled and

WPS implementation versus function call implementation-permutation test results. Four

versus six consumers(Sections 4.4.4 (page 50), 4.4.5 (page 53))

5.3.2 Discussion

By comparing the two chaining approaches, the loosely-coupled component chaining

approach provided a better performance than the tightly-coupled component chaining

approach. The process execution time halved with the loosely-coupled component chaining

approach that utilises the enterprise messaging solution, compared to the tightly-coupled

component chaining approach where the process execution time doubled. This is because

with the tightly-coupled component chaining approach, one event has to be processed from

start to finish before the next one can commence. This can be referred to as serial

geoprocessing. With the loosely-coupled component chaining approach, one event does not

have to be fully processed for the next one to start because of multiple consumers and

producers in the system. This can be referred to as parallel geoprocessing. The

components of the system are unaware of each other.

A big difference in performance is noted from the process chaining with a Web Processing

Service and without a Web Processing Service. The processing time from 1000 to 10000

events without the Web Processing Service for tight and loosely-coupled component

68

chaining was almost constant. The processing time with the Web Processing Service from

1000 to 10000 events increased linearly. The PyWPS implementation itself might be slow,

but performance likely suffers due to the time it takes to construct and destroy Web

Processing Service instances in a web server environment such as Apache. Due to the

atomic nature of the data, repeated "calls" to Web Processing Service had to be made.

Differences between passing geoprocessing payloads by POST payloads or GET URL

key/value pairs do not appear to be a significant contributor to performance results. These

results require further investigation, beyond the scope of this master's research that requires

demonstrating that one can master a skill or skills.

5.4 Experiment Two: Loosely-Coupled Architectural Style and Web

Processing Service Tests in Cloud Environment

5.4.1 Graphs

For the tests conducted in experiment two, illustrated times represent the interval between

fire event ingest and 3D scene rendering output. It represents the time it takes for the

specified number of events to move through the entire geoprocessing chain (geoprocessing

time). An increase or improvement in performance is equivalent to a decrease in the

geoprocessing time.

69

Figure 14: Cloud loosely-coupled WPS implementation versus function call implementation

test results. Four consumers versus six consumers (Sections 4.4.4 (page 50), 4.4.6 (page

55))

As seen in Figure 14, an increase in consumers (four to six) leads to a decrease in the

duration of processing fire events. More nodes were added to process events; therefore

processing nodes had less responsibilities. There were two cases with outliers, when 6000

and 7000 events were processed. Function call process chaining implementations produced

output in a shorter time than Web Processing Service implementations.

5.4.2 Discussion

Due to the limitation of solely using micro-instances within the limits of the free tier, tests had

to be conducted within the 750 hour monthly limit. As stated, two instances running

concurrently for one hour is billed for two hours.

Initially one consumer was utilised for every component in the geoprocessing chain for the

tests conducted in the cloud. By conducting the test that did not utilise Web Processing

Services to facilitate geoprocessing in the cloud (for 1000 events), it was established that

geoprocessing with one consumer took over double the time it took on a desktop.

70

In order to not waste any computing hours, there was no need to continue experimenting

with one consumer per component of the geoprocessing chain.

The experiment resumed with two and three consumers per component and because it did

not provide sufficient results, there was no need to repeat the experiment with more fire

events. When the time arrived to repeat the experiment with four consumers per

component, there was a remarkable improvement in the performance of the geoprocessing

chain.

The approach that utilises Web Processing Services in the cloud became faster than the one

on the desktop. It was expected that the performance of the Web Processing Services

would be slow due to a statement made by Giuliani et al. (2012). The authors noted that

high-performance computing is essential in a situation where Web Processing Services are

successfully utilised.

The experiment concluded with six consumers per component due to only having access to

the free tier of three accounts and being limited to only running 20 cloud micro-instances at a

time.

It was previously stated that the geoprocessing chain consists of a fire producer and nine

components. Every account (there were three accounts) enabled that every component was

assigned two consumers, thus 18 cloud instances were running on every account.

It was required for every account to have its own queue listener for timing the geoprocessing

chain execution. A new public IP address is assigned to an Amazon EC2 instance every

time it is stopped and started. Not only was it tedious to modify the IP addresses of the

consumers to create a connection, but the process had to be modified 55 times for 10

connections. It is more expensive to access an EC2 instance from a public IP address than

a private IP address due the difference in geographic region.

The solution was to create an Amazon EC2 instance for one listener per account. A listener

listened on the messaging queues for each account. The connections were created by

using private IP addresses.

The results of the tests conducted in the cloud by processing from 6000 and 7000 fire

events(using four consumers per component), were troubling. It appeared as if Amazon

enforced some kind of message throttling. Amazon does not have any documentation on

71

message throttling with regards to AMQP but they do throttle requests to their Simple Queue

Service (similar to AMQP) when necessary (Amazon Web Services, n.d.). Another

explanation for this occurrence, maybe that more fires occurred within the area of interest

and were required to move down along the geoprocessing chain. Two consumers were

added per component, making the total six consumers per component and the curves

appearing to be more smoothed out. This result verified the assumption that more fires

occurred within the area of interest.

Amazon's CPU credit concept was unknown at that stage. After observing the appearance

of the graphs and by conducting research into possible explanations for the strange

appearance, the CPU credit concept became clear.

Refer to the second paragraph on page 56 for an explanation.

When a significant quantity of geoprocessing is required, cloud instances might utilise all

their CPU credits. This leads to a degradation in the performance of the geoprocessing

chain that will cause messaging queues to backlog and therefore not prepare the 3D wildfire

context visualisations in time. This is the reason why auto-scaling is imperative. Cloud

instances can be stopped and started according to demand and will lead to the receiving of a

large amount of CPU credits every time an instance is started.

In this situation, an instance receives 30 credits at start-up equal to 30 minutes of 100%

CPU utilisation. The tests did not take 30 minutes to execute, thus running out of CPU

credits was not the cause of the degradation in performance.

Lê-Quôc et al. (2014) states that there can be several reasons why Amazon Web Services

Elastic Compute Cloud has performance issues. Amazon only releases a small quantity of

information regarding the hardware that the virtual machines (cloud instances) are running

on. Amazon Web Services is an opaque system, thus a user has no idea as to the state of

the hardware and how it is utilised (what is happening "under-the-hood"). Hardware is

shared amongst several users. Hardware can be allocated virtual machines that exceed its

limits even to a point where multiple users might compete for resources. The Amazon Web

Services infrastructure is large, and because of this, instances might run on damaged

components which can take a while to detect that the components are damaged. Because

of Amazon Web Services (where several users share resources), performance cannot be

guaranteed. The authors of this eBook presented a few situations that may have an impact

on the EC2 performance. The main conclusion that can be drawn after reading this book,

72

was that larger instances should avoid sharing resources.

Mukherjee et al. (2013) tested the performance of web applications running on different

sizes of EC2 instances. They found that results of response times fluctuate for the same

workload. They accounted for the EC2 instance type, time of the day and day of the week.

Wayner (2013) observed that the behaviour in performance (of an EC2 instance) was similar

to the behaviour of the instances observed in experiment two. EC2 instances will have a

relatively good performance at certain times and then for no specific reason, the

performance will degrade at other times. These findings are concerning and Amazon Web

Services should be prompted for an explanation, or further research should be conducted.

Mukherjee et al. (2013) stated that more research is required on this topic.

Every time an instance is started, an hour's usage is added to the bill. This may possibly

make the stop-start (auto-scaling) solution more expensive, but there must be some kind of

trade-off (as the CPU credits are designed to make an instance burstable). It should be

noted that resetting an instance will enable an instance to receive the initial amount of CPU

credits and therefore an hour's usage will not be added to the bill.

Because of the slow performance of the initial cloud tests, two approaches to storing data

had to be investigated. The first approach was to upload the resource files to an Amazon S3

bucket and the second approach was to store the resource files on the computing nodes

(EC2 instances).

The first approach enabled the mounting of the Amazon S3 file system (bucket) to the cloud

instance. The second approach entailed downloading the resource files from the S3 bucket

once the instance was started for the first time. Downloading a file from the S3 bucket to an

EC2 instance was faster than downloading a file from the S3 bucket to a machine in

Pretoria, South Africa. The reason for this being that the S3 bucket and the EC2 instance

were in the same region (Oregon, US). Data transfer within the same region is free but data

transfer between different regions is not free. Accessing data when using the first approach

was slower than accessing data when using the second approach. This was due to the

connection that had to be kept alive between the EC2 instance and the S3 bucket in the first

approach. There was no connection that had to be kept alive for the second approach. The

only thing that was time-consuming, but only once, was the downloading of the data when

the instance was started for the first time.

73

Similar to the results of the tests conducted in experiment one, in a desktop (single thread on

commodity hardware) environment, process chaining without a web processing service

performed better than process chaining with a web processing service. The performance of

the PyWPS implementation itself might be slow, but it does take extra time to invoke and

destroy Web Processing Server instances in a web server environment.

5.5 Comparison between Tests of Experiment One and Experiment Two

5.5.1 Graphs

In Figure 15, it can be viewed that an increase in the number of consumers for the cloud-

based implementation will lead to a decrease in the processing times of fire events. There

are outliers such as with the cloud-based Web Processing Services implementation where

6000 and 7000 fire events were required to be processed. The situation is not similar for the

commodity hardware-based implementations. The performance of the implementations

were inconsistent as there is no general pattern that can be viewed. This might be due to

the single thread used.

74

Figure 15: Single thread on commodity hardware versus cloud, loosely-coupled, Web

Processing Service versus function call permutation tests results. Four consumers versus

six consumers (Sections 4.4.4 (page 50), 4.4.5 (page 53), 4.4.6 (page 55))

5.5.2 Discussion

Several observations have been noted by comparing the desktop-based (single thread on

commodity hardware) and cloud-based tests. By not utilising Web Processing Services and

utilising four consumers (per component of the geoprocessing chain) for the desktop-based

(single thread on commodity hardware) and cloud-based tests, the desktop-based (single

thread on commodity hardware) approach to do geoprocessing performed better than the

cloud-based approach to do geoprocessing. The result was similar when utilising six

consumers (per component of the geoprocessing chain).

By utilising Web Processing Services to conduct geoprocessing with the number of

consumers (per geoprocessing chain component) being any number from one to three, the

cloud-based approach performed worse than the desktop-based (single thread on

commodity hardware) approach.

As discussed, Web Processing Service invocation and destruction overhead maybe

75

responsible for the slow performance of Web Processing Services-based geoprocessing. It

is unclear if the implementation of the Web Processing Service (PyWPS) is responsible for

slowing down the performance as well. The hypothesis was that adding more consumers

may smooth out the graph as the geoprocessing tasks are divided amongst more nodes.

This is equal to a divide and conquer approach.

By utilising Web Processing Services to do geoprocessing and utilising four consumers (per

component of the geoprocessing chain) for the desktop-based (single thread on commodity

hardware) and cloud-based test, the performance of the cloud-based approach improved. It

performed faster than the desktop-based (single thread on commodity hardware) approach.

The situation was similar when utilising six consumers (per component of the geoprocessing

chain), but the performance was faster with the utilisation of six consumers (per component

of the geoprocessing chain) compared to the utilisation of four consumers (per component of

the geoprocessing chain).

There is a simple explanation for this occurrence. It was previously stated that the desktop

machine is a laptop with an Intel Core i7, quad core CPU (Central Processing Unit) with four

multi-threaded cores, therefore, eight cores running at 2.10GHz, but can turbo boost

(dynamic over-clocking) up to 3.10GHz and it has 8GB of RAM (Random Access Memory).

A consumer is an EC2 cloud micro-instance with one CPU and 0.6GB RAM. The physical

processor of a micro-instance belongs to the Intel Xeon family and has a clock speed of 2.5

GHz but can boost (over-clock) up to 3.3GHz. For the approaches that utilised Web

Processing Services, combining several small machines might have resulted in an

improvement in performance because of a single core being solely dedicated to one

consumer and the fact that a consumer has its own dedicated RAM.

5.6 Chapter Summary

This chapter included illustrations of the results delivered in the pre-tests, experiment one

and experiment two. Illustrations were correspondingly included that compared the results of

experiment one and the results of experiment two. The illustrations were discussed in-

depth. Several observations were made. It is faster to load an object into memory than to

access it from a database if it is desired to obtain values for a specific location. A loosely-

coupled process chaining implementation produces results faster than a tightly-coupled

process chaining implementation. Web Processing Service implementations

underperformed compared to implementations that use function calls. By adding more

76

consumers in a loosely-coupled configuration the processing times will speed up

(decrease).The following chapter will conclude the dissertation and make recommendations

for future research.

77

6 Chapter Six: Conclusions and Future Research

6.1 Chapter Overview

The preceding chapter presented the results and an in-depth discussion of the results of the

pre-tests, experiment one and experiment two. A comparison between the results of these

experiments was included. The observation made is that it is faster to load an object into

memory than to access it from a database if it is desired to obtain values for a specific

location. A loosely-coupled process chaining implementation produces results faster than a

tightly-coupled process chaining implementation. Web Processing Service implementations

underperformed compared to implementations that use function calls. Adding more

consumers in a loosely-coupled configuration will speed up (decrease) processing times.

Included in this chapter are the conclusions drawn from this research and the

recommendations for further study.

6.2 Conclusions

The research question related to the optimal design for a geo-computational cloud

environment that can rapidly process medium velocity streaming geospatial data given cost

and elasticity constraints, data delivery requirements and interoperability tradeoffs to

generate 3D wildfire context visualisations.

The optimal design for a geo-computational cloud environment that can rapidly process

medium velocity streaming geospatial data to generate 3D wildfire context visualisations was

determined in several steps. Pre-tests were conducted to determine which "algorithmic

style" (implementations that used different libraries) offered output in the shortest amount of

time for specific components of the geoprocessing chain.

The first aim of the research was to conduct a literature review on:

 Cloud computing

 Algorithmic styles

78

 Architectural styles

 Enterprise messaging solutions

 Web Processing Services

 3D visualisations

The literature review is included in Chapter Two. There was no literature that compared

algorithmic styles and architectural styles to each other. Pre-tests were conducted thereafter

to benchmark the algorithmic and architectural styles. The pre-tests are described in

Section 4.4.3 on page 48. The results of the pre-tests indicate that an implementation that

utilises a library will produce output faster than an implementation that utilises databases.

The OGR library proved to be the best option as it provided output in the shortest quantity of

time. From the results of the pre-tests, it can additionally be noted that it is faster to retrieve

values from rasters by loading objects into memory than by accessing objects from a

database. The libraries generating output in the least quantity of time were chosen for the

geoprocessing chain component implementations used in experiment one and in experiment

two. The results of the pre-tests are described in Section 5.2 on page 61.

The second aim of the research was to design and execute desktop-based (single thread on

commodity hardware) experiments to:

 Determine the optimal algorithmic style for a system required to process medium velocity

streaming geospatial data at a rapid rate, and deliver 3D wildfire context visualisations in

demand-time

 Determine the architectural style for a system required to process medium velocity

streaming geospatial data at a rapid rate and deliver 3D wildfire context visualisations in

demand-time

 Determine if Web Processing Services is suitable for a system required to process

medium velocity streaming geospatial data at a rapid rate and deliver 3D wildfire context

visualisations in demand-time. The desktop-based experiments are described in Section

4.4.5 on page 53.

Results of tests conducted in experiment one indicates that geoprocessing techniques that

invoke Web Processing Services had a poor performance, compared to techniques that do

not invoke Web Processing Services. Results of tests conducted in experiment two also

confirmed the fact that Web Processing Services are responsible for a decrease in

geoprocessing performance. The processing time will correspondingly decrease (improve)

79

only if the quantity of machines responsible for geoprocessing increases. This will divide the

workload amongst the quantity of machines. This situation is similar for geoprocessing

techniques that do not utilise Web Processing Services. The results of the desktop-based

experiments are included in Section 5.3 on page 65.

The third aim of the research was to design and execute the cloud-based experiment to

evaluate if Web Processing Services are suitable for a system required to process medium

velocity streaming geospatial data at a rapid rate and deliver 3D wildfire context

visualisations in demand-time. This was done to determine if the horizontal scaling of cloud

instances would speed-up the geoprocessing performance. The cloud-based experiments

are described in Section 4.4.6 on page 55.

By deploying the experimental processing system in a cloud computing environment, storing

resource files directly on computing nodes and accessing them from a node itself is more

efficient than mounting a S3 file system and retrieving files from a mounted file system.

Web Processing Services deployed within a cloud computing environment are not able to

generate 3D wildfire context visualisations in just enough time for them to be attached to

wildfire notifications. The performance of public cloud computing instances (in this case

Amazon Web Service EC2 instances) is unreliable due to unknown reasons. Amazon Web

Services are unreliable because it can be viewed as a black box. This is due to a lack of

supporting documentation and a lack of information on virtual machine allocation and

throttling. The results of the cloud-based experiments are included in Section 5.4 on page

68.

The fourth aim of the research was to evaluate and compare the results of the desktop-

based (single-thread on commodity hardware) and cloud-based experiments. The graphs

comparing the results of the desktop-based and cloud-based experiments are included in

Section 5.5 on page 73.

When more consumers were added, the cloud-based experiments seemed to generate 3D

wildfire context visualisation in less time than the desktop-based experiments.

Based on the results of the research and by using all the available resources, Web

Processing Services is not recommended for geoprocessing within a cloud environment

when dealing with atomic or bursty data where demand-time results are required. Demand-

time results can be achieved without the use of Web Processing Services. The demand-

80

time production of 3D wildfire context visualisations cannot be achieved by using Web

Processing Services. The overhead might be caused by a function call to a Web

Processing Service. Many repeated "calls" to Web Processing Services will slow down the

performance of a geoprocessing chain. If less pieces of data or messages were required to

be processed, but the pieces required more processing, the geoprocessing performance in

the cloud might have improved. A solution to improve the geoprocessing performance might

have been to utilise less Web Processing Service components.

The optimal design for a geo-computational cloud environment that can rapidly process

medium velocity geospatial data to generate 3D wildfire context visualisations is therefore a

design utilising OGR/GDAL as the library to handle geospatial data with. The design should

moreover not make use of databases to access data. Files should rather be stored on a

machine/node's local file system. The design should not make use of Web Processing

Services. The design should allow that the highest possible number of consumers be

assigned to every component of the geoprocessing chain. Specifically referring to this

research and given the cost constraint, six consumers per component of the geoprocessing

chain is required.

6.3 Recommendations for Future Research

Several questions were raised during the research that were not necessarily answered. It

should be investigated why querying rasters by using a database query language approach

performed slower than using an approach that utilised a library to load rasters into memory.

Indexing may very well be the reason for this result, but it should be investigated.

The reason why Web Processing Services drastically slowed down the execution of the

geoprocessing chain should be investigated. It might be because of the Web Processing

Service invocation and destruction. Another factor to rule out is that the cause of the poor

performance might be the Web Processing Service implementation itself. Several Web

Processing Service implementations should be compared to each other.

The reason behind the unreliable performance of Amazon EC2 instances should be

thoroughly investigated as it might be too unreliable for demand-time or real-time

applications.

81

7 References

AGI 2013, Cesium - WebGL Virtual Globe and Map Engine, viewed 7 July 2013,

 http://cesiumjs.org

Aiyagari, S, Arrott, M, Atwell, M, Brome, J, Conway, A, Godfrey, R, Greig, R, Hintjens, P,

 O'hara, J, Radestock, M, Richardson, A, Ritchie, M, Sadjadi, S, Schloming, R, Shaw,

 S, Sustrik, M, Trieloff, C, van der Riet, K & Vinoski, S 2008. Advanced Message

 Queuing Protocol Specification, Version 0.9.1, OASIS

Akioka, S,& Muraoka, Y 2010, HPC benchmarks on Amazon EC2, Advanced Information

 Networking and Applications Workshops (WAINA), 2010 IEEE 24th International

 Conference, 20-23 April 2010, Perth, Australia, pp. 1029-1034, doi:

 10.1109/WAINA.2010.166

Amazon Web Services n.d., Amazon Simple Queue Service, viewed 17 February 2015,

 http://docs.aws.amazon.com/AWSSimpleQueueService/2008-01-

 01/SQSDeveloperGuide/index.html?Query_QueryErrors.html

Amazon Web Services n.d., Amazon Web Services-Cloud Computing Services, viewed 1

 May 2014,http://aws.amazon.com

Armbrust, M, Fox, A, Griffith, R, Joseph, AD, Katz, R, Konwinski, A & Zaharia, M 2010. A

 view of cloud computing, Communications of the ACM, vol. 53(4), pp. 50-58

Baranski, B, Schaffer, B, Lange, K & Foerster, T 2010, Geoprocessing in hybrid clouds,

 Geoinformatik, 2010, Kiel, Germany, pp. 13-19

British Columbia Wildfire Management Branch 2014, Wildfire Management Branch,

 viewed 21 July 2014, http://bcwildfire.ca

Brown, RB, Smoot, JC, Underwood, L & Armstrong, CD 2012, Investigation into Cloud

 Computing for more robust automated bulk image geoprocessing, MAPPS/ASPRS

 Speciality Concurrence, 29 October – 1 November 2012, Tampa, Florida, United

 States

Castrillón, M, Jorge, PA, López, IJ, Macías, A, Martín, D, Nebot, RJ & Trujillo, A 2011.

 Forecasting and visualization of wildfires in a 3D geographical information system,

 Computers & Geosciences, vol. 37 (3), pp. 390-396

Cepicky, J 2013, Welcome to PyWPS \&mdash; PyWPS, viewed 21 November 2013,

 http://pywps.wald.intevation.org

CSIR 2012, Advanced Fire Information System, viewed 21 July 2014, www.afis.co.za

Dasgupta, A & Ghosh, SK 2011, Service chaining for accessing geospatial information in

 mobile devices.Proceedings of the 2nd International Conference on Computing for

 Geospatial Research & Applications, ACM, doi: 10.1145/1999320.1999343

http://dx.doi.org/10.1109/WAINA.2010.166#_blank
http://aws.amazon.com/
http://bcwildfire.ca/
http://pywps.wald.intevation.org/
http://www.afis.co.za/
http://dx.doi.org/10.1145/1999320.1999343#_blank

82

Davis, DK, Vosloo, HF, Frost, PE & Vannan, SS 2008, Near real-time fire alert system in

 South Africa: From desktop to mobile service, Proceedings of the 7th ACM

 Conference on Designing Interactive Systems, 25 – 27 February 2008, Cape Town,

 South Africa, pp. 315-322

Department of Water Affairs and Forestry n.d., Veldfires in South Africa, viewed 3 November

 2014,

 www.daff.gov.za/doaDev/sideMenu/ForestryWeb/webapp/Documents/ForestFire/19

 2.168.10.11/nvffa.nsf/cba79e2e60cb841f2256d6eoo3942fa/64a7c7f6bea728c94225

 6dff003121a502.ec.html?OpenDocument

Dillon, T, Wu, C, Chang, E Chang 2010, Cloud Computing: Issues and Challenges, 24th

 IEEE International Conference on Advanced Information Networking and

 Application Cloud Computing, 20-23 April 2010, Perth, Australia, pp.27-33

Dumbill, E 2012, What is big data: An introduction to the big data landscape, viewed 1 March

 2013, http://radar.oreilly.com/2012/01/what-is-big-data.html#variety

Eugster, PTH, Felber, PA, Guerraoui, A & Kermarrec, AM 2003, The many faces of

 publish/subscribe, ACM computing surveys, vol.35, pp. 114-131

Evangelidis, K, Ntouros, K, Makridis, S & Papatheodorou, C 2014, Geospatial services in the

 Cloud, Computers & Geosciences, vol. 63, pp. 116-122

Fernandes, JL, Lopes, IC, Rodrigues, JJ, & Ullah, S 2013, Performance evaluation of Restful

 Web services and AMQP protocol. The Fifth International Conference on Ubiquitous

 and Future Networks, 2-5 July 2013, IEEE, pp. 810-815,

 doi:10.1109/ICUFN.2013.6614932.

GDAL n.d., OGR: Simple Feature Library, viewed 21 November 2013,

 http://www.gdal.org/ogr/

Geoprocessing.info n.d., Geoprocessing.viewed 21 November 2013,

 http://geoprocessing.info/wpsdoc/

Giuliani, G, Nativi, S, Lehmann, A, & Ray, N 2012, WPS mediation: An approach to process

 geospatial data on different computing backends, Computers & Geosciences, vol. 47,

 pp. 20-33

Goldberg, D, Olivares, M, Li, Z & Klein, AG 2014, Maps and GIS Data Libraries in the Era of

 Big Data and Cloud Computing, Journal of Map and Geography Libraries, vol.10, pp.

 100-120

Gong, J, Zhou, H & Yue, P 2010, Geoprocessing in the Microsoft Cloud Computing

 Platform-Azure, International Journal of Digital Earth, vol.6, pp. 404-425

Hankel, L 2013, Exploiting Cloud Computing and Web Processing Services for the

 Processing and Visualisation of Big Geospatial Data, First Postgraduate Research

 Seminar by the Department of Geography, Geoinformatics and Meteorology,

http://radar.oreilly.com/2012/01/what-is-big-data.html#variety
http://dx.doi.org/10.1109/ICUFN.2013.6614932#_blank
http://www.gdal.org/ogr/
http://geoprocessing.info/wpsdoc/

83

 University of Pretoria, 10-11 October 2013, Pretoria, South Africa

Hankel, L, McFerren, G, Coetzee, S 2014, Distributed Geoprocessing of Streaming Data for

 a 3D Context Aware Visualisation Solution of a Wildfire Scenario, The 11th

 International Symposium on Location Based Services, 26-28 November 2014,

 Vienna, Austria

Hildebrandt, D & Döllner, J 2010, Service-oriented, standards-based 3D geovisualization:

 Potential and challenges, Computers, Environment and Urban Systems, vol. 34(6),

 pp. 484-495

Huang, Q, Yang, C, Liu, K, Xia, J, Xu, C, Li, J, & Li, Z 2013, Evaluating open-source cloud

 computing solutions for geosciences, Computers & Geosciences, vol. 59, pp. 41-52

Hyong-Woo, K, Dae-Sun, K, Yang-Won, L & Jae-Seong, A 2014, 3-D Geovisualization of

 satellite images on smart devices by the integration of spatial DBMS, RESTful API

 and WebGL, Geocarto International, doi: 10.1080/10106049.2014.888485

Jadeja, Y & Modi, K 2012, Cloud computing-concepts, architecture and challenges. 2012

 International Conference on Computing, Electronics and Electrical Technologies

 (ICCEET), Kumaracoil, pp. 877-880, doi:10.1109/ICCEET.2012.6203873

Jensen, JR 2004, Introductory Digital Image Processing, 3rd edition. Prentice Hall

Johnsen, FT, Bloebaum, TH, Avlesen, M, Spjelkavik, S,& Vik, B 2013, Evaluation of

 transport protocols for web services. Military Communications and Information

 Systems Conference (MCC), St. Malo, pp. 1-6

Juve, G, Deelman, E, Berriman, GB, Berman, BP, & Maechling, P 2012, An evaluation of

 the cost and performance of scientific workflows on Amazon EC2, Journal of Grid

 Computing, vol. 10 (1), pp. 5-21

Karimi, HA 2014, Big Data: Techniques and Technologies in Geoinformatics. CRC Press.

Kassab, A, Liang, S & Gao, Y 2010, Real-time notification and improved situational

 awareness in fire emergencies using geospatial-based publish/subscribe,

 International Journal of Applied Earth Observation and Geoinformation, vol. 12(6),

 pp. 431-438

Kiehle, C, Greve, K & Heier, C 2007, Requirements for next generation spatial data

 infrastructures -standardized web based geoprocessing and web service

 orchestration, Transactions in GIS, vol.11, pp. 819-834

Kim, HW, Kim ,DS, Lee ,YW & Ahn,JS 2014, 3-D Geovisualization of satellite images on

 smart devices by the integration of spatial DBMS, RESTful API and WebGL,

 Geocarto International,(ahead-of-print), pp.1-19

Kmoch, A & Klug, H 2014, Visualization of 3D Hydrogeological Data in the Web, GI Forum

 2014 Proceedings, Symposium and Exhibit Geospatial Innovation for Society, 1-4

 July 2014, Salzburg, Austria, viewed 24 August 2013,

http://dx.doi.org/10.1109/ICCEET.2012.6203873#_blank

84

 http://hw.oeaw.ac.at/0xc1aa500d%200x0030d3d3.pdf

Kraak, MJ & Ormeling, F 2011, Cartography: Visualization of Spatial Data, 3rd edn.

 Pearson Education Limited, London

Kraak, MJ n.d., The Space-time cube revisited from a geovisualization perspective,

 Proceedings of the 21st International Cartographic Conference

Kumar, A & Bawa S 2012, Distributed Big Data Storage Management in Grid Computing,

 International Journal of Grid Computing and Applications (IJGCA), vol. 2, pp. 28-29

Kwan, MP, Lee, J 2003, Geovisualization of Human Activity Patterns Using 3D GIS: A Time-

 Geographic Approach, Spatially Integrated Social Science: Examples and Best

 Practice, Oxford University Press

Lê-Quôc, A, Fiedler, M, Cabanilla, C 2013, The Top 5 AWS EC2 Performance Problems,

 viewed 27 October 2014, http://www.infoworld.com/article/2613784/cloud-

 computing/benchmarking-amazon-ec2--the-wacky-world-of-cloud-performance.html

MacEachren, AM, Kraak, MJ 2001, Research Challenges in Geovisualisation, Cartography

 and Geographic Information Sciences, vol.28 (1), pp. 3-2,

 DOI:10.1559/152304001782173970.

McCullough, A, James, P, Barr, S 2011, A Typology of Real-Time Parallel Geoprocessing for

 the Sensor Web Era, Proceedings of the Workshop on Integrating Sensor Web and

 Web-Based Geoprocesssing, AGILE, 18 April 2011, Utrecht, CEUR, pp. 1-5

McCullough, AR 2011, Sensor Web Processing on the Grid, Phd Thesis, Newcastle

 University, England, Handle: http://hdl.handle.net/10443/1321

McFerren, G & Frost, P 2009, The South African Advanced Fire Information System,

 Proceedings of the 6th International ISCRAM Conference, 10 – 13 May 2009,

 Gothenburg, Sweden, viewed 25 July 2014, http://hdl.handle.net/10204/3631

McFerren, G, Swanepoel, D & Lai, C 2013, Wide Area Alerting System for Wildfires &Other

 Nasties, E-learning for the Open Geospatial Community Conference Series,

 FOSS4G 2013, 17-21 September 2013, Nottingham, United Kingdom

Mell, P & Grance, T 2011, The NIST Definition of Cloud Computing, Special Publication

 pp.800-146

Meng, X, Bian, F & Xie, Y 2009, Geospatial Services Chaining with Web Processing

 Service, Proceedings of the International Symposium on Intelligent Information

 Systems and Applications, 28-30 October 2009, Qingdao, China, pp. 7-10

Michaelis, CD & Ames, DP 2007, Evaluation of the OGC Web Processing Service for use in

 a client-side GIS, OSGEO Journal, vol. 1, pp. 1-8

MrDoob 2014, JavaScript 3D Library, viewed 1 June 2014,

 https://github.com/mrdoob/three.js

Mukherjee, J, Wang, M & Krishnamurthy D 2014, Performance Testing Web Applications on

http://hdl.handle.net/10443/1321

85

 the Cloud, 2014 IEEE Seventh International Conference on Software Testing,

 Verification and Validation Workshops (ICTSTW), 31 March - 4 April 2014,

 Cleveland, Ohio, pp. 363-369, doi: 10.1109/ICSTW.2014.57

 Murillo, CAO 2011, Parallelization of Web Processing Services on Cloud Computing: A

 case study of Geostatistical Methods, Masters Dissertation, Universidade Nova de

 Lisboa, Handle: http://hdl.handle.net/10362/8294

NASA Land Processes Distributed Active Archive Centre (LP DAAC), 2013, SRTM Version

 3. USGS/Earth Resources Observation and Science (EROS) Centre, Sioux

 Falls, South Dakota

National Disaster Management n.d., Veld Fire Awareness, viewed 3 November 2014,

 www.iimp.co.za/Brochures/Veld_Fire_Awareness.pdf

Open Geospatial Consortium (OGC) 2007, OpenGIS® Web processing Service Version

 1.0.0. OGC 05-007r7, viewed 20 August 2014,

 http://www.opengeospatial.org/standards/wps

OpenNebula 2013, OpenNebula, viewed 26 February 2013, http://opennebula.org/

OSGeo 2013, GDAL/OGR Info Sheet, viewed 21 November 2013,

 http://www.osgeo.org/gdal_ogr

OSGeo 2013, PostGIS – Spatial and Geographic Objects for PostgreSQL, viewed 21

 November 2013, http://postgis.net/

OSGeo 2014, GEOS - Geometry Engine, Open Source, viewed 20 June 2013,

 http://trac.osgeo.org/geos/wiki.

Over, M, Schilling, A, Neubauer, S & Zipf, A 2010, Generating web-based 3D City Models

 from OpenStreetMap: The current situation in Germany, Computers, Environment

 and Urban Systems, vol. 34 (6), pp. 496-507

Oxford University Press 2015, Definition of time-series, viewed 4 March 2014,

 http://www.oxforddictionaries.com/definition/english/time-series

Percivall, G 2013, Big Processing of Geospatial data, viewed 9 August 2014,

 http://www.opengeospatial.org/blog/1866

Petcu, D, Neagul, M, Frincu, M, Zaharie, D & Panica, S 2010, Earth Observation Data

 Processing in Distributed Systems,Informatica, vol. 34, pp. 463-476

Pivotal Software, inc n.d., RabbitMQ – Messaging that just works, viewed 21 November

 2013, http://www.rabbitmq.com/

Plaisant, C 2004, The Challenge of information visualization evaluation, AVI'04

 Proceedings of the working conference on advanced visual interfaces, 25-28 May

 2004, SIGCHI, Italy, pp. 109-116

Prandi, F, Soave, F, Devigli, M, Andreolli, R & De Amicis, R 2014, Services oriented smart

 city platform based on 3D city model visualization, ISPRS Annals of the

http://dx.doi.org/10.1109/ICSTW.2014.57#_blank
http://hdl.handle.net/10362/8294
http://www.opengeospatial.org/standards/wps
http://opennebula.org/
http://www.osgeo.org/gdal_ogr
http://postgis.net/
http://trac.osgeo.org/geos/wiki
http://www.opengeospatial.org/blog/1866
http://www.rabbitmq.com/

86

 Photogrammetry, Remote Sensing and Spatial Information SciencesVol.2, ISPRS

 Technical Commission IV Symposium, 14 – 16 May 2014, Suzhou, China

Raffi 2013, New tweets per second record and how, viewed 3 March 2015,

 https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

Resch, B, Wohlfahrt, R & Wosniok, C 2014, Web-based 4D visualization of marine geo-data

 using WebGL, Cartography and Geographic Information Science, vol. 41(3), pp.

 235-247

Roualt, E 2012, Geo tips \&tricks: GDAL/OGR using Shapefile native .sbn spatial index,

 viewed 18 November 2013, http://erouault.blogspot.com/2012/06/gdalogr-using-

 shapefile-native-sbn.html

Russom, P 2011, Best Practices Report: 4th Quarter. Big Data Analytics

Samadzadegan, F, Saber, M, Zahmatkesha, H, & Khanlou, HJG 2013, An Architecture for

 Automated Fire Detection Early Warning System Based on Geoprocessing Service

 Composition, ISPRS-International Archives of the Photogrammetry, Remote Sensing

 and Spatial Information Sciences, vol. 1(3), pp. 351-355

Shao, Y, Di, L, Bai, Y, Guo, B & Gong, J 2012, Geoprocessing on the Amazon cloud

 computing platform—AWS. Agro-Geoinformatics,The First International Conference

 on Agro-Geoinformatics, 2-4 August 2012, Shanghai, pp. 1-6, doi: 10.1109/Agro-

 Geoinformatics.2012.6311655

Shekhar, S, Gunturi, G, Evans, MR, & Yang, KS 2012, Spatial Big-Data Challenges

 Intersecting Mobility and Cloud Computing. Proceedings of the Eleventh ACM

 International Workshop on Data Engineering for Wireless and Mobile Access, 20

 May 2012, Arizona, USA, pp. 1-6, doi: 10.1145/2258056.2258058

Skytland, N 2012, Big data: What is NASA doing with big data today?, viewed 1 March

 2013, http://open.nasa.gov/blog/2012/10/04/what-is-nasa-doing-with-big-data-today

Slocum, TA, Blok, C, Jiang, N, Koussoulakon, A, Montello, DR, Fuhrmaann, Hedley,

 NR 2001, Cognitive and Usability Issues in Geovisualization, Cartography and

 Geographic Information Science, vol. 28 (1), pp. 61-75, DOI:

 10.1559/152304001782173998

South African National Biodiversity Institute 2006, Vegetation Map 2006, viewed 20 August

 2014, http://www.bgis.sanbi.org/vegmap/project.asp

South African National Biodiversity Institute 2009, National Land Cover 2009, viewed 20

 August 2014, http://www.bgis.sanbi.org/land cover/project.asp

Southern Cape Fire Protection Association n.d., Fire Safety-Some facts about fire and how

 to deal with it, viewed 3 November 2014,

 http://www.scfpa.co.za/index.php?comp=content&id=7

Sun, Z,& Yue, P 2010, The use of Web 2.0 and geoprocessing services to support

http://erouault.blogspot.com/2012/06/gdalogr-using-shapefile-native-sbn.html
http://erouault.blogspot.com/2012/06/gdalogr-using-shapefile-native-sbn.html
http://dx.doi.org/10.1109/Agro-Geoinformatics.2012.6311655#_blank
http://dx.doi.org/10.1109/Agro-Geoinformatics.2012.6311655#_blank
http://dx.doi.org/10.1145/2258056.2258058#_blank
http://open.nasa.gov/blog/2012/10/04/what-is-nasa-doing-with-big-data-today
http://www.bgis.sanbi.org/landcover/project.asp

87

 geoscientific workflows, 18th International Conference on Geoinformatics, Beijing,

 pp. 1-5, doi: 10.1109/GEOINFORMATICS.2010.5567702

The Python Community 2012, Rtree 0.7.0: Python Package Index, viewed 21 November

 2013, https://pypi.python.org/pypi/Rtree

The Python Community 2013, Fiona 1.0.2: Python Package Index, viewed 21 November

 2013, https://pypi.python.org/pypi/Fiona

The Python Community 2013, Open arbitrary resources by URL Python Package Index,

 viewed 21 November 2013, http://docs.python.org/2/library/urllib.htm

The Python Community 2013, Shapely 1.2.18: Python Package Index, viewed 21

 November 2013, https://pypi.python.org/pypi/Shapely

The Python Community 2014, Pika 0.9.14: Python Package Index, viewed 19 November

 2014, https://pypi.python.org/pypi/pika

The Python Community 2014, pyproj 1.9.3: Python Package Index, viewed, 18 November

 2014, https://pypi.python.org/pypi/pyproj

Tiede, D, & Lang, S 2010, Analytical 3D views and virtual globes—scientific results in a

 familiar spatial context, ISPRS Journal of Photogrammetry and Remote Sensing,

 vol.65(3), pp. 300-307

Vaquero, LM, Rodero-Merino, L, Caceres, J, Linder, M 2008. A break in the clouds: towards

 a cloud definition, ACM SIGCOM Computer Communication Review, vol. 39(1), pp.

 50-55

Vieweg, S, Hughes, AL, Starbird, K & Palen, L 2010, Microblogging during two natural

 hazard events: What Twitter may contribute to situational awareness, CHI 2010:

 Crisis Informatics. 10-15 April 2014, Atlanta, Georgia, USA

Wayner, P 2013, Benchmarking Amazon EC2: The wacky world of cloud performance,

 viewed 27 October 2014, http://www.datadoghq.com/wp-

 content/uploads/2013/07/top_5_aws_ec2_performance_problems_ebook.pdf

Westerholt, R, & Resch, B 2014, Asynchronous Geospatial Processing: An Even Driven

 Push Based Architecture for the OGC Web Processing Service, Transactions in GIS,

 doi: 10.1111/tgis.12104

Wild, S, 2013, Hot warning system for tracking fires, Mail and Guardian, viewed 26

 September 2014, http://mg.co.za/article/2013-09-06-00-hot-warning-system-for-

 tracking fires

Working on Fire 2012, Fire in South Africa, viewed 3 November 2014,

 http://www.workingonfire.org/index.php/about-wof/fire-in-sa

WorldPop, 2013, WorldPop Population Map, viewed 20 August 2013,

 http://www.worldpop.org.uk/data/summary/?contselect=Africa&countselect=South+

 Africa&typeselect=Population

http://dx.doi.org/10.1109/GEOINFORMATICS.2010.5567702#_blank
https://pypi.python.org/pypi/Rtree/
https://pypi.python.org/pypi/Fiona/
http://docs.python.org/2/library/urllib.htm/
https://pypi.python.org/pypi/Shapely/
https://pypi.python.org/pypi/Fiona/

88

Wu, H, He X, Gong, J 2010, A virtual globe-based 3D visualization and interactive

 framework for public participation in urban planning processes, Computers,

 Environment and Urban Systems, vol.34, pp. 291-298

Yang, C, Xu, Y, & Nebert, D 2013, Redefining the possibility of digital Earth and

 geosciences with spatial cloud computing. International Journal of Digital Earth, vol.

 6(4), pp. 297-312

Yun, S, Chen, C, Li, J & Tang, L 2011, Wildfire spread simulation and visualization in virtual

 environments. International Conference on Spatial Data Mining and Geographical

 Knowledge Services (ICSDM), Fuzhou,pp. 315-31

89

Appendix A - Source Code

The code developed for the experimental geoprocessing system can be found at:

https://www.dropbox.com/sh/m9v695zq4p7e56e/AAAe3iNRhJnLXYaFqPQ8pUBga?dl=1

90

Appendix B - Extended Results

Figure 16: Single Thread on Commodity Hardware Loosely-Coupled WPS Implementation

versus Function Call Implementation. One Consumer per Geoprocessing Chain Component

It can be observed from the graph in Figure 16, that a loosely-coupled function call

implementation produces output faster than a loosely-coupled Web Processing Service

implementation. The processes were executed on commodity hardware. The performance

of the function call implementation remained consistent whist the performance of the Web

Processing Service slowed down linearly as the number of messages (events) increased.

91

Figure 17: Single Thread on Commodity Hardware Tightly-Coupled WPS Implementation

versus Function Call Implementation

It can be noted from the graph in Figure 17, that a tightly-coupled function call

implementation produces output faster than a tightly-coupled Web Processing Service

implementation. The processes were executed on commodity hardware. The performance

of the function call implementation remained consistent whilst the performance of the Web

Processing Service slowed down linearly as the number of messages (events) increased.

92

Figure 18: Single Thread on Commodity Hardware Tightly-Coupled versus Loosely-Coupled

WPS Implementation

Referring to Figure 18, it can be noted that a loosely-coupled Web Processing Service

implementation produces output quicker than a tightly-coupled Web Processing Service

implementation. The processing was conducted on commodity hardware. As the number of

messages (events) increased, the processing time slowed down linearly.

93

Figure 19: Single Thread on Commodity Hardware Tightly-Coupled versus Loosely-Coupled

Function Call Implementation

It can be observed from Figure 19, that a loosely-coupled function call implementation

produces output faster than a tightly-coupled function call implementation. The processing

was conducted on commodity hardware. The tightly-coupled implementation had a linear

decrease in performance (slow down) whilst no pattern can be viewed with the loosely-

coupled implementation.

94

Figure 20: Cloud-Based Loosely-Coupled WPS Implementation versus Function Call

Implementation. Four Consumers per Geoprocessing Chain Component

It can be noted from Figure 20, that a loosely-coupled cloud-based function call

implementation that utilises four consumers per component of the geoprocessing chain,

produces results in much less time than a cloud-based Web Processing Service

implementation that utilises four consumers per component of the geoprocessing chain. The

performance of the function call implementation was almost constant except for when 7000,

8000, 9000 and 1000 messages (events) were processed. There was a decrease (slow

down) in geoprocessing performance.

95

Figure 21: Cloud-Based Loosely-Coupled WPS Implementation versus Function Call

Implementation. Six Consumers per Geoprocessing Chain Component

It can be observed from Figure 21, that a loosely-coupled cloud-based function call

implementation that utilises six consumers per component of the geoprocessing chain,

produces results in less time than a cloud-based Web Processing Service implementation

that utilises six consumers per component of the geoprocessing chain. A linear decrease in

performance of the Web Processing Service implementation can be viewed as the number

of messages (events) increased. There was one outlier (spike), when 2000 messages were

processed. The performance of the function call implementation was almost consistent,

except for the decrease in performance between 2000 and 3000 events.

96

Figure 22: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

WPS Implementation. Four Consumers per Geoprocessing Chain Component

From Figure 22, it can be observed that a cloud-based loosely-coupled Web Processing

Service implementation that utilises four consumers per geoprocessing chain component

delivers output quicker than a commodity hardware-based loosely-coupled Web Processing

Service implementation that utilises four components per geoprocessing chain component in

most cases. The single outlier was when 10000 messages (events) were processed.

97

Figure 23: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

WPS Implementation. Six Consumers per Geoprocessing Chain Component

It can be noted from Figure 23, that a cloud-based loosely-coupled Web Processing Service

implementation that utilises six consumers per geoprocessing chain component produces

output quicker than a commodity hardware-based loosely-coupled Web Processing Service

implementation that utilises six components per geoprocessing chain component, in most

cases. The one outlier that exists is when 2000 messages (events) were processed.

98

Figure 24: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

Function Call Implementation. Four Consumers per Geoprocessing Chain Component

It can be observed from Figure 24, that a loosely-coupled commodity hardware-based

function call implementation that utilises four consumers per geoprocessing chain

component produces output faster than a cloud-based loosely-coupled function call

implementation that utilises four components per geoprocessing chain component.

99

Figure 25: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

Function Call Implementation. Six Consumers per Geoprocessing Chain Component

From Figure 25 it can be noted that a loosely-coupled commodity hardware-based function

call implementation that utilises six consumers per geoprocessing chain component

produces output faster than a cloud-based loosely-coupled function call implementation that

utilises six components per geoprocessing chain component. The processing time of the

instance where 10000 events were processed, was an anomaly.

100

Figure 26: Single Thread on Commodity Hardware Loosely-Coupled WPS Implementation

versus Function Call Implementation. Four Consumers per Geoprocessing Chain

Component

From Figure 26 it can be observed that a loosely-coupled function call implementation can

produce output faster than a loosely-coupled Web Processing Service implementation that

utilises four consumers per geoprocessing chain component. The performance of the

function call implementation was constant and there was an almost linear decrease in the

performance of the Web Processing Service implementation.

101

Figure 27: Single Thread on Commodity Hardware Loosely-Coupled WPS Implementation

versus Function Call Implementation. Six Consumers per Geoprocessing Chain Component

It can be observed from Figure 27 that a loosely-coupled function call implementation can

produce output faster than a loosely-coupled Web Processing Service implementation that

utilises six consumers per geoprocessing chain component. The performance of the

function call implementation was constant and there was a linear decrease in the

performance of the Web Processing Service implementation.

102

Figure 28: Single Thread on Commodity Hardware Loosely-Coupled Function Call

Implementation. One versus Four versus Six Consumers per Geoprocessing Chain

Component

It can be observed from Figure 28 that message (event) processing time will decrease as

more consumers are added. This is the case in six out of ten instances (when 1000, 4000,

6000, 7000, 8000 and 9000 events were processed). The implementation utilised is the

loosely-coupled function call implementation.

103

Figure 29: Single Thread on Commodity Hardware Loosely-Coupled WPS Implementation.

One versus Four versus Six Consumers per Geoprocessing Chain Component

From Figure 29 it can be noted that the performance of the Web Processing Service

implementation becomes unpredictable. It was expected for the processing time to

decrease as the number of consumers increased. This was not the case, it merely

happened for three out of ten instances (when 2000, 3000 and 4000 events were

processed).

104

Figure 30: Cloud-Based Function Call Implementation. Four versus Six Consumers per

Geoprocessing Chain Component

Referring to Figure 30,it can be observed that the cloud-based function call implementation

provided inconsistent processing times. It was expected for the event processing times to

decrease as consumers were added. The expectation was only met when 1000, 3000,

7000, 8000, 9000 and 1000 events were processed.

105

Figure 31: Cloud-Based WPS Implementation. Four versus Six Consumers per

Geoprocessing Chain Component

From Figure 31, it can be noted that by processing messages (events) using a cloud-based

Web Processing Service implementation and by increasing the number of consumers per

geoprocessing chain component, the processing time will decrease in most cases (when

1000, 2000, 3000, 4000, 5000, 9000 and 1000 events were processed).

106

Figure 32: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

WPS versus Function Call Implementation. Four Consumers per Geoprocessing Chain

Component

It can be noted from Figure 32, that the commodity hardware-based function call

implementation that utilises four consumers per geoprocessing chain component produced

output in the fastest time. The cloud-based function call implementation performed the

second best. The cloud-based Web Processing Service implementation produced output in

the third fastest time and the commodity hardware-based Web Processing Service

implementation produced output in the slowest time.

107

Figure 33: Single Thread on Commodity Hardware versus Cloud-Based Loosely-Coupled

WPS versus Function Call Implementation. Six Consumers per Geoprocessing Chain

Component

It can be noted from Figure 33, that the cloud-based function call implementation that utilises

six consumers per geoprocessing chain component produced output in the fastest time. The

commodity hardware-based function call implementation produced output in the second

fastest time. The cloud-based Web Processing Service implementation produced output in

the third fastest time and the commodity hardware-based Web Processing Service

implementation produced output in the slowest time.

108

Appendix C - Categorised References

Peer-Reviewed Scientific Literature

Akioka, S,& Muraoka, Y 2010, HPC benchmarks on Amazon EC2, Advanced Information

 Networking and Applications Workshops (WAINA), 2010 IEEE 24th International

 Conference, 20-23 April 2010, Perth, Australia, pp. 1029-1034, doi:

 10.1109/WAINA.2010.166

Armbrust, M, Fox, A, Griffith, R, Joseph, AD, Katz, R, Konwinski, A & Zaharia, M 2010. A

 view of cloud computing, Communications of the ACM, vol. 53(4), pp. 50-58

Baranski, B, Schaffer, B, Lange, K & Foerster, T 2010, Geoprocessing in hybrid clouds,

 Geoinformatik, 2010, Kiel, Germany, pp. 13-19

Brown, RB, Smoot, JC, Underwood, L & Armstrong, CD 2012, Investigation into Cloud

 Computing for more robust automated bulk image geoprocessing, MAPPS/ASPRS

 Speciality Concurrence, 29 October – 1 November 2012, Tampa, Florida, United

 States

Castrillón, M, Jorge, PA, López, IJ, Macías, A, Martín, D, Nebot, RJ & Trujillo, A 2011.

 Forecasting and visualization of wildfires in a 3D geographical information system,

 Computers & Geosciences, vol. 37 (3), pp. 390-396

Dasgupta, A & Ghosh, SK 2011, Service chaining for accessing geospatial information in

 mobile devices.Proceedings of the 2nd International Conference on Computing for

 Geospatial Research & Applications, ACM, doi: 10.1145/1999320.1999343

Davis, DK, Vosloo, HF, Frost, PE & Vannan, SS 2008, Near real-time fire alert system in

 South Africa: From desktop to mobile service, Proceedings of the 7th ACM

 Conference on Designing Interactive Systems, 25 – 27 February 2008, Cape Town,

 South Africa, pp. 315-322

Dillon, T, Wu, C, Chang, E Chang 2010, Cloud Computing: Issues and Challenges, 24th

 IEEE International Conference on Advanced Information Networking and

 Application Cloud Computing, 20-23 April 2010, Perth, Australia, pp.27-33

Eugster, PTH, Felber, PA, Guerraoui, A & Kermarrec, AM 2003, The many faces of

 publish/subscribe, ACM computing surveys, vol.35, pp. 114-131

Evangelidis, K, Ntouros, K, Makridis, S & Papatheodorou, C 2014, Geospatial services in the

 Cloud, Computers & Geosciences, vol. 63, pp. 116-122

Fernandes, JL, Lopes, IC, Rodrigues, JJ, & Ullah, S 2013, Performance evaluation of Restful

 Web services and AMQP protocol. The Fifth International Conference on Ubiquitous

 and Future Networks, 2-5 July 2013, IEEE, pp. 810-815,

http://dx.doi.org/10.1109/WAINA.2010.166#_blank
http://dx.doi.org/10.1145/1999320.1999343#_blank

109

 doi:10.1109/ICUFN.2013.6614932.

Giuliani, G, Nativi, S, Lehmann, A, & Ray, N 2012, WPS mediation: An approach to process

 geospatial data on different computing backends, Computers & Geosciences, vol. 47,

 pp. 20-33

Goldberg, D, Olivares, M, Li, Z & Klein, AG 2014, Maps and GIS Data Libraries in the Era of

 Big Data and Cloud Computing, Journal of Map and Geography Libraries, vol.10, pp.

 100-120.

Gong, J, Zhou, H & Yue, P 2010, Geoprocessing in the Microsoft Cloud Computing

 Platform-Azure, International Journal of Digital Earth, vol.6, pp. 404-425

Hildebrandt, D & Döllner, J 2010, Service-oriented, standards-based 3D geovisualization:

 Potential and challenges, Computers, Environment and Urban Systems, vol. 34(6),

 pp. 484-495

Huang, Q, Yang, C, Liu, K, Xia, J, Xu, C, Li, J, & Li, Z 2013, Evaluating open-source cloud

 computing solutions for geosciences, Computers & Geosciences, vol. 59, pp. 41-52

Hyong-Woo, K, Dae-Sun, K, Yang-Won, L & Jae-Seong, A 2014, 3-D Geovisualization of

 satellite images on smart devices by the integration of spatial DBMS, RESTful API

 and WebGL, Geocarto International, doi: 10.1080/10106049.2014.888485

Jadeja, Y & Modi, K 2012, Cloud computing-concepts, architecture and challenges. 2012

 International Conference on Computing, Electronics and Electrical Technologies

 (ICCEET), Kumaracoil, pp. 877-880, doi:10.1109/ICCEET.2012.6203873

Johnsen, FT, Bloebaum, TH, Avlesen, M, Spjelkavik, S,& Vik, B 2013, Evaluation of

 transport protocols for web services. Military Communications and Information

 Systems Conference (MCC), St. Malo, pp. 1-6

Juve, G, Deelman, E, Berriman, GB, Berman, BP, & Maechling, P 2012, An evaluation of

 the cost and performance of scientific workflows on Amazon EC2, Journal of Grid

 Computing, vol. 10 (1), pp. 5-21

Kassab, A, Liang, S & Gao, Y 2010, Real-time notification and improved situational

 awareness in fire emergencies using geospatial-based publish/subscribe,

 International Journal of Applied Earth Observation and Geoinformation, vol. 12(6),

 pp. 431-438

Kiehle, C, Greve, K & Heier, C 2007, Requirements for next generation spatial data

 infrastructures -standardized web based geoprocessing and web service

 orchestration, Transactions in GIS, vol.11, pp. 819-834

Kim, HW, Kim ,DS, Lee ,YW & Ahn ,JS 2014, 3-D Geovisualization of satellite images on

 smart devices by the integration of spatial DBMS, RESTful API and WebGL,

 Geocarto International,(ahead-of-print), pp.1-19

Kmoch, A & Klug, H 2014, Visualization of 3D Hydrogeological Data in the Web, GI Forum

http://dx.doi.org/10.1109/ICUFN.2013.6614932#_blank
http://dx.doi.org/10.1109/ICCEET.2012.6203873#_blank

110

 2014 Proceedings, Symposium and Exhibit Geospatial Innovation for Society, 1-4

 July 2014, Salzburg, Austria, viewed 24 August 2013,

 http://hw.oeaw.ac.at/0xc1aa500d%200x0030d3d3.pdf

Kraak, MJ n.d., The Space-time cube revisited from a geovisualization perspective,

 Proceedings of the 21st International Cartographic Conference.

Kumar, A & Bawa S 2012, Distributed Big Data Storage Management in Grid Computing,

 International Journal of Grid Computing and Applications (IJGCA), vol. 2, pp. 28-29

MacEachren, AM, Kraak, MJ 2001, Research Challenges in Geovisualisation, Cartography

 and Geographic Information Sciences, vol.28 (1), pp. 3-2,

 DOI:10.1559/152304001782173970.

McCullough, A, James, P, Barr, S 2011, A Typology of Real-Time Parallel Geoprocessing for

 the Sensor Web Era, Proceedings of the Workshop on Integrating Sensor Web and

 Web-Based Geoprocesssing, AGILE, 18 April 2011, Utrecht, CEUR, pp. 1-5

McFerren, G & Frost, P 2009, The South African Advanced Fire Information System,

 Proceedings of the 6th International ISCRAM Conference, 10 – 13 May 2009,

 Gothenburg, Sweden, viewed 25 July 2014, http://hdl.handle.net/10204/3631

McFerren, G, Swanepoel, D & Lai, C 2013, Wide Area Alerting System for Wildfires & Other

 Nasties, E-learning for the Open Geospatial Community Conference Series,

 FOSS4G 2013, 17-21 September 2013, Nottingham, United Kingdom

Meng, X, Bian, F & Xie, Y 2009, Geospatial Services Chaining with Web Processing

 Service, Proceedings of the International Symposium on Intelligent Information

 Systems and Applications, 28-30 October 2009, Qingdao, China, pp. 7-10

Mukherjee, J, Wang, M & Krishnamurthy D 2014, Performance Testing Web Applications on

 the Cloud, 2014 IEEE Seventh International Conference on Software Testing,

 Verification and Validation Workshops (ICTSTW), 31 March - 4 April 2014,

 Cleveland, Ohio, pp. 363-369, doi: 10.1109/ICSTW.2014.57

Over, M, Schilling, A, Neubauer, S & Zipf, A 2010, Generating web-based 3D City Models

 from OpenStreetMap: The current situation in Germany, Computers, Environment

 and Urban Systems, vol. 34 (6), pp. 496-507

Petcu, D, Neagul, M, Frincu, M, Zaharie, D & Panica, S 2010, Earth Observation Data

 Processing in Distributed Systems,Informatica, vol. 34, pp. 463-476

Plaisant, C 2004, The Challenge of information visualization evaluation, AVI'04

 Proceedings of the working conference on advanced visual interfaces, 25-28 May

 2004, SIGCHI, Italy, pp. 109-116

Prandi, F, Soave, F, Devigli, M, Andreolli, R & De Amicis, R 2014, Services oriented smart

 city platform based on 3D city model visualization, ISPRS Annals of the

 Photogrammetry, Remote Sensing and Spatial Information SciencesVol.2, ISPRS

http://dx.doi.org/10.1109/ICSTW.2014.57#_blank

111

 Technical Commission IV Symposium, 14 – 16 May 2014, Suzhou, China

Resch, B, Wohlfahrt, R & Wosniok, C 2014, Web-based 4D visualization of marine geo-data

 using WebGL, Cartography and Geographic Information Science, vol. 41(3), pp.

 235-247

Samadzadegan, F, Saber, M, Zahmatkesha, H, & Khanlou, HJG 2013, An Architecture for

 Automated Fire Detection Early Warning System Based on Geoprocessing Service

 Composition, ISPRS-International Archives of the Photogrammetry, Remote Sensing

 and Spatial Information Sciences, vol. 1(3), pp. 351-355

Shao, Y, Di, L, Bai, Y, Guo, B & Gong, J 2012, Geoprocessing on the Amazon cloud

 computing platform—AWS. Agro-Geoinformatics,The First International Conference

 on Agro-Geoinformatics, 2-4 August 2012, Shanghai, pp. 1-6, doi: 10.1109/Agro-

 Geoinformatics.2012.6311655

Shekhar, S, Gunturi, G, Evans, MR, & Yang, KS 2012, Spatial Big-Data Challenges

 Intersecting Mobility and Cloud Computing. Proceedings of the Eleventh ACM

 International Workshop on Data Engineering for Wireless and Mobile Access, 20

 May 2012, Arizona, USA, pp. 1-6, doi: 10.1145/2258056.2258058

Slocum, TA, Blok, C, Jiang, N, Koussoulakon, A, Montello, DR, Fuhrmaann, Hedley,

 NR 2001, Cognitive and Usability Issues in Geovisualization, Cartography and

 Geographic Information Science, vol. 28 (1), pp. 61-75, DOI:

 10.1559/152304001782173998

Sun, Z,& Yue, P 2010, The use of Web 2.0 and geoprocessing services to support

 geoscientific workflows, 18th International Conference on Geoinformatics, Beijing,

 pp. 1-5, doi: 10.1109/GEOINFORMATICS.2010.5567702

Tiede, D, & Lang, S 2010, Analytical 3D views and virtual globes—scientific results in a

 familiar spatial context, ISPRS Journal of Photogrammetry and Remote Sensing,

 vol.65(3), pp. 300-307

Vaquero, LM, Rodero-Merino, L, Caceres, J, Linder, M 2008. A break in the clouds: towards

 a cloud definition, ACM SIGCOM Computer Communication Review, vol. 39(1), pp.

 50-55

Vieweg, S, Hughes, AL, Starbird, K & Palen, L 2010, Microblogging during two natural

 hazard events: What Twitter may contribute to situational awareness, CHI 2010:

 Crisis Informatics. 10-15 April 2014, Atlanta, Georgia, USA

Westerholt, R, & Resch, B 2014, Asynchronous Geospatial Processing: An Even Driven

 Push Based Architecture for the OGC Web Processing Service, Transactions in GIS,

 doi: 10.1111/tgis.12104

Wu, H, He X, Gong, J 2010, A virtual globe-based 3D visualization and interactive

 framework for public participation in urban planning processes, Computers,

http://dx.doi.org/10.1109/Agro-Geoinformatics.2012.6311655#_blank
http://dx.doi.org/10.1109/Agro-Geoinformatics.2012.6311655#_blank
http://dx.doi.org/10.1145/2258056.2258058#_blank
http://dx.doi.org/10.1109/GEOINFORMATICS.2010.5567702#_blank

112

 Environment and Urban Systems, vol.34, pp. 291-298

Yang, C, Xu, Y& Nebert, D 2013, Redefining the possibility of digital Earth and

 geosciences with spatial cloud computing. International Journal of Digital Earth, vol.

 6(4), pp. 297-312

Yun, S, Chen, C, Li, J & Tang, L 2011, Wildfire spread simulation and visualization in virtual

 environments. International Conference on Spatial Data Mining and Geographical

 Knowledge Services (ICSDM), Fuzhou,pp. 315-331

Online References

AGI 2013, Cesium - WebGL Virtual Globe and Map Engine, viewed 7 July 2013,

 http://cesiumjs.org

Amazon Web Services n.d., Amazon Simple Queue Service, viewed 17 February 2015,

 http://docs.aws.amazon.com/AWSSimpleQueueService/2008-01-

 01/SQSDeveloperGuide/index.html?Query_QueryErrors.html

Amazon Web Services n.d., Amazon Web Services-Cloud Computing Services, viewed 1

 May 2014,http://aws.amazon.com

British Columbia Wildfire Management Branch 2014, Wildfire Management Branch,

 viewed 21 July 2014, http://bcwildfire.ca

Cepicky, J 2013, Welcome to PyWPS \&mdash; PyWPS, viewed 21 November 2013,

 http://pywps.wald.intevation.org

CSIR 2012, Advanced Fire Information System, viewed 21 July 2014, www.afis.co.za

Department of Water Affairs and Forestry n.d., Veldfires in South Africa, viewed 3 November

 2014,

 www.daff.gov.za/doaDev/sideMenu/ForestryWeb/webapp/Documents/ForestFire/19

 2.168.10.11/nvffa.nsf/cba79e2e60cb841f2256d6eoo3942fa/64a7c7f6bea728c94225

 6dff003121a502.ec.html?OpenDocument

Dumbill, E 2012, What is big data: An introduction to the big data landscape, viewed 1 March

 2013, http://radar.oreilly.com/2012/01/what-is-big-data.html#variety

GDAL n.d., OGR: Simple Feature Library, viewed 21 November 2013,

 http://www.gdal.org/ogr/

Geoprocessing.info n.d., Geoprocessing.viewed 21 November 2013,

 http://geoprocessing.info/wpsdoc/

Lê-Quôc, A, Fiedler, M, Cabanilla, C 2013, The Top 5 AWS EC2 Performance Problems,

 viewed 27 October 2014, http://www.infoworld.com/article/2613784/cloud-

 computing/benchmarking-amazon-ec2--the-wacky-world-of-cloud-performance.html

MrDoob 2014, JavaScript 3D Library, viewed 1 June 2014,

http://aws.amazon.com/
http://bcwildfire.ca/
http://pywps.wald.intevation.org/
http://www.afis.co.za/
http://radar.oreilly.com/2012/01/what-is-big-data.html#variety
http://www.gdal.org/ogr/
http://geoprocessing.info/wpsdoc/

113

 https://github.com/mrdoob/three.js

National Disaster Management n.d., Veld Fire Awareness, viewed 3 November 2014,

 www.iimp.co.za/Brochures/Veld_Fire_Awareness.pdf

OpenNebula 2013, OpenNebula, viewed 26 February 2013, http://opennebula.org/

OSGeo 2013, GDAL/OGR Info Sheet, viewed 21 November 2013,

 http://www.osgeo.org/gdal_ogr

OSGeo 2013, PostGIS – Spatial and Geographic Objects for PostgreSQL, viewed 21

 November 2013, http://postgis.net/

OSGeo 2014, GEOS - Geometry Engine, Open Source, viewed 20 June 2013,

 http://trac.osgeo.org/geos/wiki.

Oxford University Press 2015, Definition of time-series, viewed 4 March 2014,

 http://www.oxforddictionaries.com/definition/english/time-series

Percivall, G 2013, Big Processing of Geospatial data, viewed 9 August 2014,

 http://www.opengeospatial.org/blog/1866

Pivotal Software, inc n.d., RabbitMQ – Messaging that just works, viewed 21 November

 2013, http://www.rabbitmq.com/

Raffi 2013, New tweets per second record and how, viewed 3 March 2015,

 https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

Roualt, E 2012, Geo tips \&tricks: GDAL/OGR using Shapefile native .sbn spatial index,

 viewed 18 November 2013, http://erouault.blogspot.com/2012/06/gdalogr-using-

 shapefile-native-sbn.html

Skytland, N 2012, Big data: What is NASA doing with big data today?, viewed 1 March

 2013, http://open.nasa.gov/blog/2012/10/04/what-is-nasa-doing-with-big-data-today

Southern Cape Fire Protection Association n.d., Fire Safety-Some facts about fire and how

 to deal with it, viewed 3 November 2014,

 http://www.scfpa.co.za/index.php?comp=content&id=7

The Python Community 2012, Rtree 0.7.0: Python Package Index, viewed 21 November

 2013, https://pypi.python.org/pypi/Rtree

The Python Community 2013, Fiona 1.0.2: Python Package Index, viewed 21 November

 2013, https://pypi.python.org/pypi/Fiona

The Python Community 2013, Open arbitrary resources by URL Python Package Index,

 viewed 21 November 2013, http://docs.python.org/2/library/urllib.htm

The Python Community 2013, Shapely 1.2.18: Python Package Index, viewed 21

 November 2013, https://pypi.python.org/pypi/Shapely

The Python Community 2014, Pika 0.9.14: Python Package Index, viewed 19 November

 2014, https://pypi.python.org/pypi/pika

The Python Community 2014, pyproj 1.9.3: Python Package Index, viewed, 18 November

http://opennebula.org/
http://www.osgeo.org/gdal_ogr
http://postgis.net/
http://trac.osgeo.org/geos/wiki
http://www.opengeospatial.org/blog/1866
http://www.rabbitmq.com/
http://erouault.blogspot.com/2012/06/gdalogr-using-shapefile-native-sbn.html
http://erouault.blogspot.com/2012/06/gdalogr-using-shapefile-native-sbn.html
http://open.nasa.gov/blog/2012/10/04/what-is-nasa-doing-with-big-data-today
https://pypi.python.org/pypi/Rtree/
https://pypi.python.org/pypi/Fiona/
http://docs.python.org/2/library/urllib.htm/
https://pypi.python.org/pypi/Shapely/
https://pypi.python.org/pypi/Fiona/

114

 2014, https://pypi.python.org/pypi/pyproj

Wayner, P 2013, Benchmarking Amazon EC2: The wacky world of cloud performance,

 viewed 27 October 2014, http://www.datadoghq.com/wp-

 content/uploads/2013/07/top_5_aws_ec2_performance_problems_ebook.pdf

Wild, S 2013, Hot warning system for tracking fires, Mail and Guardian, viewed 26

 September 2014, http://mg.co.za/article/2013-09-06-00-hot-warning-system-for-

 tracking fires

Working on Fire 2012, Fire in South Africa, viewed 3 November 2014,

 http://www.workingonfire.org/index.php/about-wof/fire-in-sa

Wild, S, 2013, Hot warning system for tracking fires, Mail and Guardian, viewed 26

 September 2014, http://mg.co.za/article/2013-09-06-00-hot-warning-system-for-

 tracking fires

Working on Fire 2012, Fire in South Africa, viewed 3 November 2014,

 http://www.workingonfire.org/index.php/about-wof/fire-in-sa

Other References

Aiyagari, S, Arrott, M, Atwell, M, Brome, J, Conway, A, Godfrey, R, Greig, R, Hintjens, P,

 O'hara, J, Radestock, M, Richardson, A, Ritchie, M, Sadjadi, S, Schloming, R, Shaw,

 S, Sustrik, M, Trieloff, C, van der Riet, K & Vinoski, S 2008. Advanced Message

 Queuing Protocol Specification, Version 0.9.1, OASIS

Jensen, JR 2004, Introductory Digital Image Processing, 3rd edition. Prentice Hall

Karimi, HA 2014, Big Data: Techniques and Technologies in Geoinformatics. CRC Press

Kraak, MJ & Ormeling, F 2011, Cartography: Visualization of Spatial Data, 3rd edn.

 Pearson Education Limited, London

Kwan, MP, Lee, J, 2003, Geovisualization of Human Activity Patterns Using 3D GIS: A Time-

 Geographic Approach, Spatially Integrated Social Science: Examples and Best

 Practice, Oxford University Press

McCullough, AR 2011, Sensor Web Processing on the Grid, Phd Thesis, Newcastle

 University, England, Handle: http://hdl.handle.net/10443/1321

Mell, P & Grance, T 2011, The NIST Definition of Cloud Computing, Special Publication

 pp.800-146

Michaelis, CD & Ames, DP 2007, Evaluation of the OGC Web Processing Service for use in

 a client-side GIS, OSGEO Journal, vol. 1, pp. 1-8

Murillo, CAO 2011, Parallelization of Web Processing Services on Cloud Computing: A

 case study of Geostatistical Methods, Masters Dissertation, Universidade Nova de

http://hdl.handle.net/10443/1321

115

 Lisboa, Handle: http://hdl.handle.net/10362/8294

NASA Land Processes Distributed Active Archive Centre (LP DAAC) 2013, SRTM Version

 3. USGS/Earth Resources Observation and Science (EROS) Centre, Sioux

 Falls, South Dakota

Open Geospatial Consortium (OGC) 2007, OpenGIS® Web processing Service Version

 1.0.0. OGC 05-007r7, viewed 20 August 2014,

 http://www.opengeospatial.org/standards/wps

Russom, P 2011, Best Practices Report : 4th Quarter. Big Data Analytics

South African National Biodiversity Institute 2006, Vegetation Map 2006, viewed 20 August

 2014, http://www.bgis.sanbi.org/vegmap/project.asp

South African National Biodiversity Institute 2009, National Land Cover 2009, viewed 20

 August 2014, http://www.bgis.sanbi.org/land cover/project.asp

WorldPop, 2013, WorldPop Population Map, viewed 20 August 2013,

 http://www.worldpop.org.uk/data/summary/?contselect=Africa&countselect=South+

 Africa&typeselect=Population

Conferences Presented

Hankel, L 2013, Exploiting Cloud Computing and Web Processing Services for the

 Processing and Visualisation of Big Geospatial Data, First Postgraduate Research

 Seminar by the Department of Geography, Geoinformatics and Meteorology,

 University of Pretoria, 10-11 October 2013, Pretoria, South Africa

Hankel, L, McFerren, G, Coetzee, S 2014, Distributed Geoprocessing of Streaming Data for

 a 3D Context Aware Visualisation Solution of a Wildfire Scenario, The 11th

 International Symposium on Location Based Services, 26-28 November 2014,

 Vienna, Austria

http://hdl.handle.net/10362/8294
http://www.opengeospatial.org/standards/wps
http://www.bgis.sanbi.org/landcover/project.asp

