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SUMMARY 
 

 
In Mozambique 97% of the small scale farmers grow cassava in 43% of the total 

cultivated land. In 2012 cassava production was estimated at 10.05 million tons. 

Cassava is the second most important staple food after maize. Consumption of 

cassava is estimated at 85 kg per person per year. In Mozambique the diet is 

poor in micronutrients and the prevalence of under-nutrition is estimated at 38%. 

Anaemia is a serious public health concern, affecting more than 40% of young 

children, pregnant and nursing mothers. Cassava mahewu a fermented non-

alcoholic beverage prepared using indigenous traditional technology. 

Fermentation is known to reduce the toxicity of cyanogenic glycosides in both 

leaves and cassava roots. It also results in higher levels of vitamins, especially 

the B group, essential amino acids, improves the digestibility of protein and 

increases the bioavailability of minerals. The aim of the present study was to 

investigate whether cassava, in the form of mahewu, can be fortified with iron. 

Bitter and sweet cassava roots and soil samples, were collected from small 

scale farmers in four Districts of Mozambique. The four Districts are located in 

intermediate and high production areas of cassava. The concentrations of iron 

and other minerals such as aluminum, calcium, copper, manganese, 

phosphorus, lead and zinc in cassava roots and soil, were determined using an 

inductively coupled-plasma optical emission spectrometer (ICP-OES), after 

microwave digestion. 

Sweet and bitter varieties of cassava from four Districts in Mozambique were 

fermented in a food laboratory, under controlled conditions (45°C for 24 hours) 

and the optimal stage for iron fortification was determined. Samples were 

collected at hour 0 and hour 24 for microbial analysis, acid concentration and 

total solids determination. Fortification with ferrous sulfate (FeSO4.7H2O) and 

ferrous fumarate (C4H2FeO4) were investigated. The total iron content of the 

fortified cassava mahewu was determined using Microwave Digestion 

Accelerated Reaction System (MARS) and ICP-OES, while the bioaccessibility 
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of iron in fortified cassava mahewu was assessed using the in vitro dialysability 

procedure.  

Results showed that the mineral content of soil from the four districts differed 

significantly (p ˂ 0.05).   There was also a significant difference (p ˂ 0.05) in the 

mineral concentration of the cassava roots from the four varieties, but no 

difference between sweet or bitter types. The concentration of minerals was 

found to be significantly higher in soil, than in roots. This difference was greatest 

for iron concentration, which was not detectable in the root samples, although 

soil concentration was up to 24.78 mg/kg. Although the reason for this was not 

determined, this lack of iron in the roots supported iron fortification of mahewu. 

A significant difference (p ˂ 0.05) in pH was observed between mahewu fortified 

with ferrous sulfate (4.5) and ferrous fumarate (4.3), with the latter being similar 

to the control. At the beginning of fermentation the acidity was 0.06% and at the 

end 0.30%. The total solids of fermented mahewu were 9.6%. The 

microorganisms responsible for fermentation were predominantly lactic acid 

bacteria (LAB) and yeast. The pH and acidity was different to that reported in the 

fermentation of maize mahewu. The fermenting microorganisms and total solids 

were similar to previous findings for maize mahewu.   

The total iron content of mahewu fortified with ferrous sulfate was significantly 

higher (p ˂ 0.05) than mahewu fortified with ferrous fumarate.  Both the amount 

and percentage of bioaccessible iron were higher in mahewu fortified with 

ferrous sulfate compared to mahewu fortified with ferrous fumarate. It was found 

that mahewu made using the bitter variety of cassava and fortified with ferrous 

sulfate provided a more bioaccessible source of iron. The stage of fortification 

was not found to affect the total iron content nor the iron bioaccessibility. 

It was concluded that cassava roots do not take up iron, even when soils are 

high in this metal. Thus the selection of varieties with better uptake of minerals 

and fertilization of soils is recommended, but may not increase concentration of 

essential minerals sufficiently to maintain health in vulnerable communities 

where cassava is the main staple.  This was the first study in which fermentation 

of traditional cassava mahewu was carried out under repeatable, controlled 
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conditions. It is recommended that fortification occurs at the end of the 

fermentation when done at household level. However, when flour is being milled 

in larger villages, it could be fortified prior to sale in informal markets. There is 

also the possibility of large scale commercial applications. 

It is concluded that bitter varieties of cassava will deliver more bioaccessible iron 

to the consumer. Ferrous sulfate is more suitable as iron fortification source for 

cassava mahewu than ferrous fumarate and also is more stable in mahewu. 

Fortification of cassava mahewu could contribute to the iron intake of vulnerable 

population. 

 In addition, although fortification at the end of fermentation would probably be 

ideal for rural communities, as it could be made available in sugar sprinkled into 

the traditional product, it was shown that fortification of flour used to make 

mahewu would result in significantly higher availability. It is recommended that 

iron fortification of mahewu is implemented both at subsistence and commercial 

level. This should form part of a communication strategy at community level by 

the state, in order to improve public health in vulnerable communities in 

Mozambique. 
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CHAPTER 1  

GENERAL INTRODUCTION 

 

1.1. Background 
 

Between 2005 and 2007, it was estimated that 38% of the population of 

Mozambique was undernourished. In 2008, 44% of children less than five years 

of age were found to be undernourshed.1 In particular, iron deficiency and its 

resultant anaemia cause severe public health problems. It is estimated that 45% 

of the population are iron deficient.1,2 Population groups most affected by iron 

deficiency anaemia are pre-school children, expectant woman and women of 

reproductive age.1  

It is considered that iron deficiency causes approximately half of the cases of 

anaemia diagnosed worldwide.1,3,4 Factors causing iron deficiency anaemia 

include the high cost of animal products; taboos about dietary intake of animal 

foods;5 high levels of hunger resulting in consumption of “empty” carbohydrates; 

internal parasites like intestinal worms or schistosomiasis; and menstruation.6,7 

Dietary iron deficiency, caused by low intake or bioavailability, can occur in both 

industrialized and developing countries.8 Often, consumers in developing 

countries, suffer from dietary iron deficiency due to consumption of plant 

derived foods, which contain iron inhibitors such as phytates.7 

Optimal dietary iron consumption is 18 mg/day.9 The most common intervention 

to address iron deficiency anaemia, is iron fortification of food.10 One of the 

objectives of iron fortification is to improve micronutrient status in vulnerable 

populations.10,11 The World Health Organization (WHO) and the Food and 

Agriculture Organization (FAO) of the United Nations, suggest iron fortification 

of staple foods, to prevent dietary iron deficiency and thus reduce anaemia in 

consumers.12 

Cassava is a carbohydrate staple cultivated mainly in African and Latin America 

countries.13 Either a tropical climate with precipitation >1000 mm,14 or a sub-
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tropical climate with rainfall <600 mm15 are suitable for cassava cultivation. The 

optimal temperature for cassava cultivation lies between 23°C and 35°C.16 In 

Mozambique the climate is tropical and humid, with annual rainfall of 1200 mm 

and an ambient temperature ranging between 23°C and 26°C, which explains 

why cassava is widely grown and consumed.17 More than 70% of global 

cassava cultivation occurs in Africa,13 with Nigeria ranking as the highest 

producer and Mozambique in  5th position.18 The edible part of cassava includes 

roots and leaves, which respectively comprise 50% and 6% of a matured 

cassava shrub.19 Cassava root is the most popular staple in Africa with 

consumption estimated at about 80 kg per person, per year.20 In Mozambique 

more than 90% of total cassava production is for human consumption.21     

The starch content of cassava roots is high, comprising more than 80% of the 

dry matter (DM), while approximately 4% is fibre.22 Protein levels are low, 

ranging between 1% and 3% DM.23 The concentration of vitamins and minerals 

in cassava roots are also low,22 with the exception of vitamin C (15 to 45 

mg/100g per edible portion), which is destroyed by cooking. 24,25 As they contain 

cyanogenic glycosides, cassava  roots are generally cooked or fermented  to 

reduce toxicity, so the Vitamin C is not available to most consumers. In 

Mozambique, mahewu is a popular traditional, non-alcoholic, fermented 

beverage prepared from cooked cassava roots.26 It has been reported that 

fermentation increases the nutrient density of carbohydrate staple foods.27  

1.2. Problem statement 

Micronutrient deficiencies are an important cause of ill health in communities 

living in Africa, including Mozambique.10,28  Dietary deficiencies of minerals, 

including  iron, have been identified as widespread public health problems.10,29 

In undernourished populations the per capita intake of dietary iron appears to 

be decreasing annually according to the WHO.30 Iron deficiency, can have 

negative economic, social and health consequences. Health consequences 

include chronic anemia; an increased risk of maternal and childhood morbidity 

and mortality; deficient physical and cognitive development in children; and 

reduced work productivity in adults.31,32 
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Cassava is the second highest staple food in Mozambique with 90% of cassava 

production, used for human consumption.  Mahewu is a popular fermented drink 

that is made at home from either fresh, cooked cassava root or cassava flour. 

However, it is unknown whether the level of bioavailable iron in this staple food 

contributes sufficient dietary iron to meet the needs of vulnerable populations in 

Mozambique.  Cassava products consumed in Mozambique are not currently 

fortified with iron as the food fortification programme is still being developed. If 

cassava mahewu could be fortified with iron that was bio-available, this would 

improve nutrient density as well as providing a dietary source of iron to prevent 

iron deficiency anaemia.  

1.3. Aim and objectives 

1.3.1. Aim 

The aim of this study was to investigate if cassava mahewu, could be fermented 

under controlled conditions and indicate the optimal stage at which it could be 

fortified to achieve bioavailable iron.  

1.3.2. Objectives 

 
1. To investigate whether the iron concentration in cassava roots was 

sufficient for the nutritional needs of consumers or needed to be 

increased in order to prevent iron deficiency anaemia. 

2. To determine whether the iron concentration in Mozambique soils, 

influences the concentration of iron in cassava roots grown in that soil. 

3. To compare the mineral concentration of sweet and bitter cassava 

varieties grown in different parts of Mozambique  

4. To ferment cassava mahewu under controlled conditions and standardize 

a method for cassava mahewu preparation. 

5. To identify the optimal stage for cassava mahewu fortification with iron. 
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6. To evaluate the bioaccessibility of iron in fortified cassava mahewu using 

an in vitro dialysability method. 

7. To compare the bioaccessability of ferrous fumarate and ferrous sulphate 

used to fortify cassava mahewu made of sweet or bitter root types, at the 

beginning or end of fermentation. 

1.4. Rationale 

The importance of this study was to gain insight into the concentration and 

bioaccessibility of iron in cassava mahewu before and after fortification, in order 

to reduce iron deficiency anemia in vulnerable populations. In addition, the 

functional microorganisms in mahewu would result in a bio-active food that 

includes digestible protein and vitamin B, thus reducing nutritional anaemia not 

necessarily linked to iron deficiencies. 

1.5. Study design 

The process flow for this study is depicted schematically in Figure 1.1 below.   

Stage Input Output

1
Mineral 

assessment 
of soils

Relationship between 
the mineral 

concentration of soil 
and the cassava roots 

growing in that soil

2

Mineral 
assessment of 
both sweet and 
bitter cassava

types

Relationship between 
mineral concentration in 

sweet and bitter 
cassava

3
Cassava root

mahewu
standardization and 
stage of fortification

Schematic 
representation of the 

preparation of cassava 
mahewu and indication 
of stage at which iron 

is added

Total iron content and % 
of bioaccessibility of 
iron in the fortified 
cassava mahewu
fortified cassava 

In vitro
bioaccessibility of 

in the fortified 
cassava mahewu

4

Figure 1.1: Schematic summary of the project
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This was a quantitative experimental study design that compared the mineral 

concentration of samples of soils and cassava root, as well as the differences 

between iron bioaccessibility in sweet and bitter varieties fortified with two 

different iron salts during standardized fermentation to produce mahewu. 

1.6. Thesis structure and outline 

Chapter 1 summarises the background and motivation for this investigation and 

lists the aims and objectives. 

Chapter 2 is a literature review of cassava, micronutrient deficiencies and 

anaemia as well as food fortification particularly food fortification with iron. The 

objective of the review was to understand the importance of cassava in the diet 

of African populations, in particular the rural vulnerable populations in 

Mozambique. This has been published as an overview of cassava in 

Mozambique. 

Chapter 3 indicates how extraction using microwave digestion and analysis with 

inductively coupled plasma optical emission spectroscopy could be used to 

compare the mineral concentration in cassava roots to that of the soil, and 

investigate whether this was influenced by the type of cassava. Samples of soil 

and cassava roots (both bitter and sweet types), were collected from four 

Districts of Mozambique considered as intermediate and high producers of 

cassava. This paper has been submitted for publication. It has also been 

submitted as an abstract to the International Spectroscopy Conference 2015. 

Chapter 4 describes the development of a standardized method, applicable at 

commercial or village level for fermentation of cassava roots to make cassava 

mahewu based on indigenous knowledge in Mozambique. The objective was 

not only to standardize the method but to also assess the optimal stage for iron 

fortification. This paper has also been submitted for publication. 

Chapter 5 compares the bioaccessibility of two types of iron compounds 

(ferrous sulfate and ferrous fumarate), used to fortify mahewu made from sweet 

or bitter types of cassava roots, using in vitro dyalisability. It also compares 
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whether bioavailability is increased or decreased by the stage at which the iron 

compound is added. This paper has been submitted for publication. 

Chapter 6 focuses on the overall discussion, conclusions, recommendations, 

perspectives and limitations of the study.  
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CHAPTER 2 
OVERVIEW OF PRODUCTION, CONSUMPTION AND NUTRITIONAL VALUE 

OF CASSAVA IN MOZAMBIQUE* 

 

2.1. Abstract 

Both soils and climate in Mozambique suit cassava cultivation and nine million 

tons fresh weight is produced annually, with a consumption of 85 kg per person 

per year. The roots are a staple carbohydrate and cooked leaves are served as 

a vegetable. Cassava is essential to food security, as it is a subsistence crop. 

Roots and leaves contain vitamin C and some minerals but are deficient in 

proteins and amino-acids. Although cassava is cultivated by about 63% of the 

population, cyanogenic glycosides and other anti-nutritional factors, threaten 

food safety.  Cassava root is known to be low in essential micronutrients and 

this may contribute to the high level of dietary anaemia in vulnerable 

populations in Mozambique. There are more than 100 varieties, but the more 

drought and insect resistant bitter types predominate. Traditional products made 

from cassava that rely on sun-drying, cooking or fermentation to reduce toxicity 

include “rale”, “xinguinha”, “karakata” “mahewu” and “oteka”. Cassava flour has 

replaced up to 20% of wheat flour in bread, for economic reasons. An overview 

of the distribution, consumption patterns and nutritional value of cassava in 

Mozambique could contribute to knowledge, as much of the existing data has 

not been published. Food safety and nutritional value could be improved by 

commercializing the production of traditional products and fortifying the easily 

grown staple carbohydrate. This could improve the health of vulnerable rural 

populations. 

 

Key words: Cassava consumption, cassava production, cyanogenic 

glycosides, mineral fortification, Mozambique, traditional foods. 

* This Chapter has been published (Appendix 7) 
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2.2. Introduction 

The cassava plant (Manihote esculenta Crantz) originated in Brazil and has 

been introduced globally in order to provide a staple carbohydrate, particularly 

in developing countries where the climate is not suitable for large scale 

production of wheat and maize.1-3 In Mozambique, about nine million tons fresh 

weight of cassava is produced annually.4 The roots are a staple carbohydrate 

and cooked leaves are served as a vegetable. The estimated consumption of 

cassava roots amounts to about 85 kg per person per year.5,6  It is essential for 

food security and is grown as a subsistence crop by about 63% of small scale 

farmers as well as on a large scale for commercial purposes.7 Although the 

roots and leaves contain vitamin C and minerals they are deficient in proteins 

and amino-acids.8-11   

Cyanogenic glycosides and other anti-nutritional factors in cassava, threaten 

food safety in a large proportion of rural communities in Mozambique, where 

drought and insect resistant bitter types predominate.12 Diseases linked to 

consumption of cassava include both acute and chronic cyanide poisoning, as 

well as Konzo, which is associated with under-nutrition, sulphur and iodine 

deficiency.13-17 Anaemia is a problem in vulnerable populations such as young 

children, nursing and pregnant women, the aged or and those suffering from 

malaria or HIV infections. Nearly half these cases of anaemia have been linked 

to chronic dietary iron deficiency.18-20  

Traditional products made from cassava rely on sun-drying, cooking or 

fermentation to reduce toxicity. These include “rale”, “xinguinha”, “karakata” 

“mahewu” and “oteka”. Approximately 20% of the wheat flour used to make 

bread in Mozambique, has been replaced with cassava flour.21-26   

2.3. Cassava (Manihote esculenta Crantz) 

The word ‘’cassava’’ comes from casaba, the name given by the Arawak 

Indians to the root. It is known as ‘’yuca’’ in Spanish, ‘’manioc’’ in French, 

‘’mandioca’’ in Portuguese; ‘’cassave’’ in Dutch and “maniok” in German.27  
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Cassava (Manihot esculenta Crantz) is native to Brazil,2 and during the 16th and 

17th centuries it was dispersed widely by the Portuguese to tropical and 

subtropical areas of Africa, Asia and the Caribbean (Fig 2.1).28  

 

             Figure 2.1: Global cassava distribution.28 

 

More than 50% of global cassava production takes place in Africa, 34% in Asia 

and 15% in Latin America.29  Between 500 million and 1 billion people consume 

cassava. In the tropics, it is the foodstuff most frequently consumed after rice 

and maize.30   

Cassava has become a staple food in many countries, due to its tolerance to 

drought, poor soil conditions and difficult crop environments.31 The main 

cassava producing countries in Africa include Nigeria, Democratic Republic of 

Congo, Ghana, Angola, Mozambique, Tanzania, Uganda, Malawi, Cameroon 

and Benin (Figure 2.2).32  
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Figure 2.2: Cassava production areas in Africa.10   

 

2.3.1. Cassava in Mozambique 

In Mozambique the total cultivated land is estimated at 5 632 781 ha and 96.4% 

of this land is used by small-scale farmers.33 Approximately 43% of the total 

cultivated area is used for cassava production by subsistence and small scale 

family farmers.33 The country is divided into 10 agro-ecological zones, which are 

based on altitude, climate (precipitation and temperature) and soil type.34 There 

are four agro ecological zones where cassava is mainly cultivated: R1, R2, R7, 

and R8 (Fig 2.3).  
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Figure 2.3: The 10 agro-ecological zones of Mozambique.35   

Cassava production improved between 2002 and 2008, when the average 

annual production, was estimated as six million tons. It rose further to nine 

million tons in 201018,36 Overall, between 2005 and 2012, the yield of cassava in 

hectogram per hectare increased from 43.155 to 131.804.37  By 2012, the 

annual production had escalated to 10.05 million tons.37 Cassava is mainly 

grown in the Southern Region of Inhambane Province (8.80%),  the Central 

Region of  Zambezia Province (26.76%) and  the Northern Region  of Cabo 

Delagado and Nampula Provinces with 18.68% and 29.27% respectively (Fig 

2.4). 33 
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Fig 2.4: Potential production area of cassava in Mozambique.38 

There are approximately 109 varieties of cassava that have been identified in 

31 districts across Mozambique, of which the five most common are listed in 

Table 2.1.  
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Table 2.1: Varieties of cassava cultivated in Mozambique by region.5 

Variety Region Type 

Munhaça Southern  Sweet 

Calamidade Northern (Nampula Province) Sweet 

Tomo e Cocorro Northern (Nampula Province) Bitter 

Inciricano Central (Zambezia Province) Bitter 

Bedo Central (Zambezia Province) Bitter 

 

Although there are many varieties, cassava is divided into two major types: 

sweet and bitter.5 The bitter type is highly toxic due to the presence of 

cyanogenic glycosides. However, this type predominates due to its high yield, 

multiple-year in–ground storage potential, as well as pest and drought 

tolerance5,23 Farmers appreciate the pest resistance, although the bitter 

cassava requires greater care in processing. The sweet type is low in 

cyanogenic glycoside content and is mostly consumed fresh or is processed by 

a smaller proportion of producers.22,23,39 Using marketed volumes, as an 

alternative for total cassava production, bitter cassava accounts for about 90% 

of national cassava production in Mozambique, with the sweet varieties making 

up the rest .40 Cassava is the main source of food security in rural areas of 

Mozambique for the following reasons:6 

(i) it adapts to poor soil;  

(ii) it does not demand expensive planting implements, irrigation or 

fertilizers;  

(iii)  it resists droughts and locust damage; 

(iv)  in comparison to other crops it has a relatively high yield at a low cost; 
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(v) it can be harvested as and when needed, with delays to harvesting for 

periods of 6 to 48 months without major changes to the composition and 

quality; and 

(vi)  it can be planted at any time during the year. 

The FAO/FAOSTAT,41 reported that approximately 94% of total cassava in 

Mozambique is utilized for human consumption, 4% for animal feed, and the 

remaining 2% for industrial use. Cassava alone provides the largest source of 

calories in Mozambique. However, consumption has gradually decreased due 

to an increase in urbanization, change in life style and preference for prepared 

and convenience foods. Over the past 45 years, cassava’s contribution to food 

consumption has decreased from 46% of national calorie availability in the early 

1960’s to 30% in the late 2000’s.41 In Mozambique, cassava is consumed fresh, 

boiled, baked (Nsima, bread, and pastry products), dry, dry roasted or semi-

processed. The leaves are also consumed as a vegetable in most parts of the 

country.5 Most households located in the cassava growing zones, eat the 

leaves as well as the roots.8 Currently, Nampula Province is experimenting with 

production of packaged cassava leaf powder and frozen cassava leaves. Fresh 

cassava is favored in the central and southern parts of Mozambique, where it 

composes 10% of total cassava consumed. About 20% of cassava is consumed 

in the form of rale (roasted cassava), by households of southern Mozambique. 

Inhambane Province is the center of rale production.42 Cassava flour, made 

from milled, dried cassava chips at farm level, comprises 90% of the total 

cassava consumption and is consumed by both rural and urban households.43  

Mozambican farmers market about 11% of their total cassava production, while 

the rest is consumed locally.42 The northern farmers sell a greater proportion 

(13%) of their cassava crop compared to only 3 to 4%, marketed by central and 

southern farmers. Farmers in northern Mozambique account for 85% of national 

cassava production and over 90% of marketed volumes.42 Cassava roots are 

composed mainly of carbohydrates. Seventy percent of the cassava root 

consists of moisture; 24% is starch and fibe, 1% is protein, while mineral and 

other components comprise 3%.44 Table 2.2 illustrates the nutrient composition 

of cassava.  
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Table 2.2: Proximate nutrient composition of cassava roots and leaves.45-49  

 Unit Raw cassava Cassava roots Cassava leaves 

Proximate composition 100 (g)     

Food energy kcal 160 110 - 149 91 

Food energy kj 667 526 - 611 209 - 251 

Moisture g 59.68 45.9 – 85.3 64.8 – 88.6 

Dry weight g 40.32 29.8 – 39.3 19 – 28.3 

Protein g 1.36 0.3 – 3.5 1.0 – 10.0 

Lipid g 0.28 0.03 – 0.5 0.2 – 2.9 

Total carbohydrate  g 39.06 25.3 – 35.7 7 – 18.3 

Dietary fiber g 1.8 0.1 – 3.7 0.5 – 10.0 

Ash g 0.62 0.4 – 1.7 0.7 – 4.5 

Vitamins     

Thiamin mg 0.087 0.03 – 0.28 0.06 – 0.31 

Riboflavin mg 0.048 0.03 – 0.06 0.021 – 0.74 

Niacin mg 0.854 0.6 - 1.09 1.3 – 2.8 

Ascorbic acid mgç 20.6 14.9 - 50 60 - 370 

Vitamin A  µg - 5.0 – 35.0 8300 – 11800e 

Minerals     

Calcium mg 16 19 - 176 34 - 708 

Total phosphorus mg 27 6 - 152 27 - 211 

Ca/P  0.6 1.6 – 5.48 2.5 

Iron mg 0.27 0.3 – 14.0 0.4 – 8.3 

Potassium  % - 0.25 – 0.72 0.35 – 1.23 

Magnesium % - 0.03 – 0.08 0.12 – 0.42 

Copper ppm - 2.00 – 6.00 3.00 – 12.0 

Zinc ppm - 14.00 – 41.00 71.00 – 249.0 

Sodium ppm - 76.00 – 213.00 51.0 – 177.0 

Manganese ppm - 3.00 – 10.00 72.0 – 252.0 
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The protein content of cassava root is low.9 Cassava leaves are richer in protein 

than the roots, with the leaves additionally containing essential amino acids.10 

Cassava leaves are considered a good source of protein, minerals, and 

vitamins B1, B2 and C and carotenoids.8,11,50 

2.3.2. Cyanogen in cassava 

The roots and leaves of cassava possess potential toxicity due to the presence 

of natural nitrile (-CN) compounds known as cyanogenic glycosides or 

cyanogens, which are in the form of linamarin (alphahydroxyisobutyrº3onitrile-

beta-D-glucopyranoside) (93%) and lotaustralin (methyl-linamarin) (7%).51 

These are beta-glycosides of acetone cyanohydrins and ethyl-methyl 

cyanohydrins, respectively.51 

Cassava cultivars with less than 100 mg/kg cyanogenic glycosides (fresh 

weight) are referred to as sweet, while cultivars with 100-500 mg/kg cyanogen 

glycosides (fresh weight) are referred to as bitter.52 The total concentration of 

cyanogenic glycosides depends on the cultivar, environmental conditions, 

cultural practices and plant age.53 The range of cyanogen concentration in 

cassava falls between 15 and 400 mg HCN/kg fresh weight.54 To avoid acute 

toxicity in humans, the maximum level of cyanide in cassava allowed is less 

than 10 mg equivalent/kg dry matter, according to the Food and Agriculture 

Organization (FAO) and the World Health Organization (WHO).55  It is estimated 

that the level of cyanide from cassava, consumed per person in Mozambique, is 

14 to 70 times higher, based on bodyweight12, than this safety limit.55  

Cyanide or hydrocyanic acid in cassava can be produced through an enzymatic 

reaction, which occurs when plant cells are damaged, grated or sliced or when 

degradative enzymes come into contact with each other.53,56,57 Linamarin is 

converted into hydrogen cyanide (HCN) by the enzyme linamarinase. This may 

generate the equivalent of 0.2-100 mg of HCN per gram of fresh cassava 

following cellular lysis.58 Hydrogen cyanide is extremely toxic to a wide 

spectrum of organisms, including humans, due to its ability to link with metals 

(Fe2+, Mn3+ and Cu2+), which are functional groups of many enzymes, inhibiting 
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processes like the reduction of oxygen in the cytochrome respiration chain, 

electron transport in photosynthesis and the activity of catalase or oxidase.59   

The primary effect of cyanide poisoning in humans is the impairment of 

oxidative phosphorylation, whereby oxygen is utilized for the production of 

essential cellular energy sources in the form of adenosine triphosphate (ATP). 

The necessary part of this process is the transfer of electrons from nicotinamide 

adenine dinucleotide (NADH) supplied during the Krebs Cycle, via a series of 

electron carriers. These are catalyzed by the cytochrome oxidase enzyme 

system in the mitochondria, and the impairment arises from the inhibition by 

cyanide of cytochrome oxidase a3.60,61 This in turn arises from the high binding 

affinity of cyanide to the ferric ion found in the heme moiety of the oxidized form 

of this enzyme. The chemical combination results in loss of the structural 

integrity and hence effectiveness of the enzyme; as a result tissue utilization of 

oxygen is inhibited with rapid impairment of vital functions. Other metabolic 

processes continue and the rate of glycolysis is increased markedly, however, 

the pyruvate so produced can no longer be utilized via the impaired Krebs 

Cycle, as it is reduced to lactate, resulting in metabolic acidosis. It has been 

shown that cyanide significantly decreases brain ATP and increases brain 

lactate levels.62  

It can also result in pulmonary arteriolar and/or coronary artery vasoconstriction, 

decreased cardiac output and in extreme cases cardiac shock. Pulmonary 

oedema has also been observed in chronic cyanide poisoning, although it is 

thought that this may be more related to left ventricular failure than capillary 

endothelial damage or neurogenic causes.63  

Chronic poisoning following long-term consumption of cassava roots with high 

cyanogenic glycoside content has been reported in countries, including 

Mozambique, where cassava is a staple food.14-16,64-66 Cyanide  resulting from 

cassava consumption is found in rural populations also suffering from severe 

undernourishment,  marasmus and kwashiorkor.64 In Mozambique, acute 

poisoning from cassava consumption has been reported in the Nampula 

Province.13 Chronic intoxication from cassava can manifest as tropical 

neuropathy67, glucose intolerance, konzo,15-17 goitre and cretinism.68 
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In Mozambique, konzo is the most frequently reported disease, caused by   

cassava poisoning.  The first case of konzo in the country was reported in 

1981.14 Population groups found to be most vulnerable were women of child 

bearing age and children up to two years of age.16  All cases reported in the 

country have been related to consumption of bitter cassava which was poorly 

processed, collected during a famine period and civil war or a diet deficient in 

sulfur amino acids.14-17 Patients with konzo have been found to have a high 

level of thiocyanate in their urine.14,16,17 Thiocyanate remains in the body as a 

result of the detoxification of cyanide. It is stored in the stomach and patients 

with konzo are also at risk of developing stomach cancer.69,70 

Processing cassava by peeling, soaking, cooking, drying and fermentation 

reduces or eliminates the cyanogenic glycosides. For sweet cassava, cooking is 

sufficient to eliminate all toxicity. Processing cassava is also necessary for 

improving palatability and as a means of preservation.71-75  

2.3.3. Cassava fermentation 

Fermentation is the most common method of processing cassava foodstuffs in 

Africa.76 More than 90% of cassava for human consumption is processed using 

fermentation.77 Examples of fermented cassava foods worldwide are: gari, fufu 

and lafun (Nigeria); kumkum, myiodo and atangana bread (Cameroon); 

agbelima and akyeke (Ghana); foofoo (Congo); tapioca and puba (Brazil) and 

rale and karakata (Mozambique).22,25,78-81 

One of the methods for effective fermentation of cassava products is by a lactic 

acid fermentation process.82 The method of fermentation varies from one 

location to another and is fermented using two processes, solid or sub-

merged.83 The solid fermentation process is characterized by the growth and/or 

cultivation of microorganisms under controlled conditions in the absence of free 

water for the production of the desired products.83-86  

The typical microorganisms which grow during solid-state fermentation are 

yeasts and fungi. Aeration and agitation is used to remove carbon dioxide and 

for temperature control. Due to the small amount of water present, the biomass 
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levels are lower and the heat generated per mass tends to be much greater 

than in submerged state fermentation.87 

Submerged fermentation uses a dissolved or solid substrate, suspended in a 

large amount of water to form slurry.84  Bacterial and yeast cells are thus evenly 

distributed throughout the medium, but due to the high water content, bacterial 

cells are predominant and the process requires high oxygen concentrations.87  

Both spontaneous fermentation and starter culture fermentation can be used. 

However, spontaneous fermentation is neither predictable nor controllable, 

although it is typically utilised at household level, while starter culture is 

implemented during small scale or industrialized processing.88,89 

The microbial populations isolated during cassava fermentation, are mainly 

lactic acid bacteria (LAB) although yeast and moulds have also been identified. 

Lactic acid bacteria involved in cassava fermentation include: Leuconostoc 

spp., Bacillus spp., Corynebacterium spp.90,91 Lactobacillus plantarum, L. 

perolans, L. brevis.92 L. fermentum 93,94,95 L. casei, and L. delbrueckii.81  

 During fermentation of cassava roots, LAB are responsible for digestion of 

starch to lactic acid, resulting in a drop in the pH.76,78,96  This results in the 

typical characteristics of fermented foods such as smell, flavor, visual 

appearance, and consistency. Fermentation of cassava by LAB results in the 

removal of cyanogenic glycosides and development of antimicrobial substances 

and bacteriocins.97-99 

Fermentation by LAB can improve the nutritional value through production of 

essential amino acids and vitamins, including vitamin B, folate and cobalamin 

as well as bio-active substances.100,101 During fermentation the LAB facilitate 

the breakdown of numerous complex substances forming simple and easily 

digestible compounds.102,103 Fermentation of cassava can also raise the 

bioavailability of minerals like calcium, iron and zinc.104-106 

Yeasts such as Saccharomyces cerevisiae, Candida spp, C. krusei, C. 

tropicalis, Pichia saitoi, P. anomala and Zygosaccharomyces bailii , have been 

reported as fermenting cassava products.91,97,107,108 Yeast fermentation of 
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cassava roots is known to improve  nutritional content and  organoleptic 

properties as well as decreasing the levels of cyanide.97,107,108 

Moulds act on cellulose processing, which results in the hydrolysis of cassava 

roots. Species of moulds like Penicillum sclerotiorum, P. citrinum, P nodulum, 

Geotrichum candidum and Basidiomyces spp., have been found to play a role in 

cassava fermentation.107 

Microorganisms such as bacteria, yeasts and fungi,109,110 found in  fermented 

foods and beverages, including cassava; have health promoting benefits and 

biological importance. This includes the production of antioxidants and omega-3 

polyunsaturated fatty acids, therapeutic value and immunological effects.111-113 

2.4. Mahewu 

Mahewu is a non-alcoholic fermented beverage made from carbohydrate staple 

foods in Africa and some Arabian Gulf countries.114 In South Africa it is 

commonly made from maize and consumed by indigenous people. It is 

recognized by several names according to the ethnicity and language of the 

consumers. In Zulu it is known as “amahewu”, in Xhosa it is “amarehwu”, in 

Swazi, “maphulo”, in Pedi “matogo”, in Sotho “machleu”, while in Venda it  is 

called “maphulo”.88,115-117  

Maize mahewu is consumed by people of all ages and in African countries is 

often consumed as a part of social ceremonies.118 It plays an important role in 

infant feeding and is used to wean children, normally being introduced to 

children between 4 and 48 months of age.119 Due to its elevated nutritional 

density mahewu is the preferred drink during the working day and is consumed 

by farmers, schoolchildren, miners and manufacturing workers. Social 

development organizations have also used it in nutritional programs.118  

Although mahewu is classified according to the raw material used in the 

manufacturing process (cassava, sorghum, rice and sweet potato); the most 

common is made from maize gruel, which is mixed with water, then fermented 

sorghum, millet malt or wheat flour is added to initiate fermentation.120-122 

Alternatively mahewu can be made by crushing left over maize porridge into 
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slurry followed by fermentation.123 The major solid substrate in aqueous 

suspension is between 8 and 10% with about 0.4-0.5% lactic acid, 

corresponding to an average pH of 3.5.116,124 

The fermentation of mahewu occurs naturally, although starter culture can be 

used to rapidly initiate the process of fermentation.120,121  Natural fermentation is 

neither predictable nor controllable, when prepared at household level, while 

starter culture is more reliable and can be used in small scale or industrialized 

processing.88,89,125 Fermentation of mahewu at family level is carried out at room 

temperature over a period of two or three days.120-122  

Commercial production of maize mahewu has been carried out in African 

countries such as Botswana, South Africa and Zimbabwe.88,121,124-126 At 

commercial level maize mahewu has been enriched with proteins, minerals and 

vitamins to improve the nutritional value.127,128 Also the flavour is improved by 

adding different fruits at later stages of fermentation.89,125 Commercially maize 

mahewu exists as a powdered formula, which is mixed with water at the time of 

consumption and becomes a ready to eat product.121 

The microorganisms responsible for fermentation of mahewu are LAB and 

yeast; which are also responsible for organoleptic properties and 

acidity.102,126,129 The lactic acid bacteria are reported to be the predominant 

micro-flora.89,130 Species of lactic acid bacteria reported to ferment mahewu 

include: Lactococcus lactis subsp. lactis, Lactobacillus bulgaricus, L. 

delbrueckii, L. brevis, and Streptococcus lactis.89,130,131 

It has been reported previously, that the LAB in fermented mahewu raise the 

protein concentration and bioavailability of amino acids.132 Mahewu, like other 

non-alcoholic fermented foods such as yoghurt, has been reported as functional 

food, which can sustain health.117,133-135 Bactericidal and bacteriostatic 

substances have also been reported in maize mahewu.123,136  
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2.5. Micronutrients and anaemia 

2.5.1. Micronutrients 

Micronutrients are vitamins and minerals required in very low amounts, which 

should be continually consumed, as part of a balanced diet, to ensure cellular 

growth and metabolism.137 Micronutrient deficiencies develop when a variety of 

foods are absent or when the diet depends on staple food alone, as is the case 

of cereal or tuber-based foods including cassava;28 or where individuals do not 

have enough to eat.138 The number of people affected by micronutrient 

deficiency globally is estimated to exceed 2 billion. The three most important 

deficiencies are iron, vitamin A and iodine. Combined, these affect at least one 

third of the total population of the world most of whom live in developing 

countries.139,140 It is estimated that in Africa, 46% of the total population is 

anaemic, 43% have insufficient iodine intake and 49% of preschool children are 

vitamin A deficient.141,142 In Mozambique, the diet is extremely poor in 

micronutrients; the prevalence of under-nutrition in 2005-2007 reached 38%.18 

Throughout the country, 43% of children younger than five year of age are 

moderately under-nourished, 20% chronically under-nourished and 8% acutely 

under-nourished.19 

The World Bank estimated that the total once a year cost of micronutrient 

deficiencies in the world was around 3.03% of the gross national products 

(GNP) in 2010.143  The peak expenditure was in unindustrialized countries, with 

5 % of the GNP of these countries. In Mozambique, the cost is estimated at 

4.76% of the GNP.143  

2.5.2. Anaemia  

Anaemia is defined as a substantial decrease in hemoglobin concentration, 

hematocrit or the number of red blood cells in circulation, at a level under that 

which is considered standard for age, gender, biological state, and altitude, 

without considering the cause of deficiency.142 Approximately one-third of the 

global population are anaemic.144 Assessments in high-risk people propose that 

overall anaemia occurrence may be between 50% and 80%, with as many as 

10% to 20% having moderate to severe anaemia.145 In 2010 it was reported that 
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anaemia was responsible for 8.8% of the entire disease burden from all 

disorders.  In the same period, South Asia had 37.5% of total anaemia cases in 

the world; sub-Saharan Africa 23.9%; whereas in the rest of the developed 

world the prevalence of anaemia was lower than 25%.146  

The global prevalence of anaemia by population groups according to WHO is:  

i. Preschool children (0 - 5 years) (47.4%), 

ii. School age children (5 – 15 years) (25.4%) 

iii. Pregnant woman (41.8%), 

iv. Non pregnant woman (15 – 50 years) (30.2%), 

v. Men (15 – 60 years) (12.5%),   

vi. Elderly (both sexes >60 years) (23.9%) and  

vii. Total population (24.8%).147 

From the above it can be seen that preschool children and pregnant women are 

the populations most as risk for anaemia. Anaemia can arise from both 

nutritional and non-nutritional factors. Non-nutritional factors include diseases, 

parasites and genetic propensity. 

 The most prevalent reasons include iron deficiency which is responsible for 

50% of cases of anaemia,142 hookworm, sickle cell disorders, thalassemias, 

schistosomiasis, and malaria.146 Non-nutritional causes include infection, 

chronic diseases, and pernicious anaemia.148 

(i) Nutritional anaemia 

Nutritional anaemia is defined as an illness in which the hemoglobin content of 

the blood is lower than normal, as a consequence of an insufficiency of one or 

more essential nutrients, regardless of the cause of such insufficiency.149 

Insufficient consumption of micronutrients including vitamin A and B12, folate, 

riboflavin, and copper can raise the risk of iron deficiency anaemia.147 There is a 

close relationship between anaemia and under-nutrition.150 This relationship is 
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explained by the fact that people with deficient calorie intake are more likely to 

be lacking in micronutrients, particularly iron.151,152 According to the WHO, the 

most important nutritional deficiency linked to anaemia is iron.142,153,154 Iron 

deficiency is also ranked as the 15th most important cause of preventable death 

and incapacity.155  Nutritional iron deficiency mainly results in iron deficiency 

anaemia.156 It is a consequence of a wide diversity of factors, but most of them 

co-occur.147 Reduced absorption of iron from food with a high phytate and 

phenolic content during times when high iron content is required (growth and 

pregnancy) are considered the main risk aspects.147 On the other hand the 

absence of knowledge of nutritional requirements and nutritive density of 

different foodstuffs also contributes.157 

Secondary causes of iron deficiency anaemia include substantial blood loss as 

consequence of menstruation or parasite infections such as hookworm, ascaris 

and schistomiasis;158 tuberculosis and HIV.159-161  

Globally, in approximately 41% of females and 27% of preschool children with 

anaemia, the disease is caused by iron deficiency.155  Iron deficiency anaemia 

increases the risk of maternal morbidity and death and it affects the 

development and health of infants. In preschool children, it impairs motor 

development and growth, reduces school performance, reduces immune 

function and increases susceptibility to infections. In adults it decreases 

responsiveness and activity; increases body tension and fatigue and decrease 

the physical capacity for work performance.155,158,162 

(ii) Anaemia due to chronic disease  

Anaemia due to chronic disease is ranked second after that caused by iron 

deficiency and arises in patients with severe or chronic immune 

stimulation.163,164 This illness has also been called “anaemia of inflammation”. 
163 Illnesses frequently related with anaemia of chronic disease are severe. The 

consequences can include  continuous infections caused by viruses (including 

HIV) bacteria, parasites and fungi;165-167 neoplasia, including hematologic and 

solid tumors;167-170autoimmune diseases like rheumatoid arthritis, systemic 

lupus erythematosus, connective-tissue diseases, like vasculitis, sarcoidosis 
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and inflammatory bowel disease;167,171-173 chronic rejection after solid-organ 

transplantation174-176 and chronic kidney disease and inflammation. 177-179 

Anaemia of chronic diseases is frequently immune determined. Cytokines and 

cells of the reticule endothelial system cause irregularities in iron homeostasis, 

synthesis of erythroid precursor cells, production of erythropoietin and reduction 

in the life span of red cells; all of which result in the pathogenesis of anaemia.180 

Erythropoiesis is weakened by certain chronic diseases, including the intrusion 

of tumor cells or microbes into bone marrow, HIV infection, hepatitis C and 

malaria.181,182 Other risk factors which exacerbate anaemia linked to chronic 

diseases include blood loss events, vitamin shortages (e.g. cobalamin and folic 

acid), hypersplenism, autoimmune hemolysis, renal weakness, as well as radio-

activity and chemotherapeutic mediations.183,184 

(iii) Anaemia due to infection 

Infections are considered to be the most common reason of anaemia in 

developing countries, predominantly in susceptible groups (expectant mothers 

and preschool-aged children).185 In unindustrialized nations these include 

malaria and parasitic infections.186 Anaemia is one of the secondary diseases 

present in individuals infected with HIV and has been associated with a quick 

disease evolution and death.187,188  

In Africa it is suggested that almost 50% of children with malaria have severe 

anaemia.189 In Sub-Saharan Africa, it is estimated that between 200,000 and 

500,000 expectant mothers develop severe anaemia as a result of malaria.145 

Plasmodium falciparum infection during gestation is the major cause of up to 

10,000 maternal anaemia-related deaths in Sub-Saharan Africa per annum.190 

Helminthes such as flukes, hookworm and whipworm cause continuing blood 

loss, and subsequently iron loss, which results in the development of 

anaemia.191-193 

In Sub-Saharan African countries about 6.9 million women of childbearing age 

are infected with hookworm.193 It has been observed that 51% of anaemic 

children unindustrialized countries are iron deficient. If hookworm could be 
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reduced by 25%, it would decrease iron deficiency anaemia by 35% and reduce 

anaemia by 75%.194,195 

 (iv) Pernicious anaemia 

Pernicious anaemia is described as a common sign of cobalamin (Vitamin B12) 

deficiency. It is due to the absence of intrinsic factor (IF), a glycoprotein 

secreted by gastric parietal cells which is responsible for vitamin B12 

captivation at the end of the ileum.196 The reasons for the absence of IF include 

degeneration of the gastric mucosa, autoimmunity in contrast to the gastric 

parietal cells that secrete IF, and/or autoimmunity contrary to IF itself.196-198 

Other causes of vitamin B12 deficiencies include poor dietary intake, mainly due 

to diets composed of vegetarian origin, because vitamin B12 is only found in 

food of animal origin or food fortified with this vitamin.199-201 Deficiency of 

vitamin B12 is frequently observed in developing countries; because pregnant 

woman and breastfeeding mothers are mostly deprived of food of animal origin 

which results in lack of vitamin B12 in their children.202,203 In these countries 

approximately 40% of women of childbearing age are vitamin B12 deficient.200 

The occurrence of vitamin B12 differs according to the age group. In the age 

group of 20 to 39 years the prevalence is estimated to be less to or equal to 3%; 

40 to 59 years approximately 4% and ≥ 70 years it is estimated at about 6%204. 

The prevalence of vitamin B12 deficiency increases with age.205,206The 

deficiency of vitamin B12 in infants is related to lower mental acquittal.196 

Cognitive disorders in children with a deficiency of vitamin B12 such and 

include:  slower response time in neuropsychological trials of perception, 

memory and cognitive, academic problems including inferior school 

performance, attention difficulties and aberrant performance as well as neural 

tube defect.207  

(v) Genetic propensity 

Sickle cell anaemia is due to a genetic change in hemoglobin and red cell 

structure; which results in lifelong hemolytic anaemia. Annually nearly 300,000 

infants in Africa are born with hemoglobin sickness and more than 200,000 with 

sickle-cell anaemia.208,209  
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2.5.3. Anaemia as a public health concern 

The classification of anaemia as a public health concern, is based on 

occurrence of hemoglobin values under the population-specific hemoglobin 

onset.142  Ranking as a public health concern depends on prevalence (Table 

2.3.) 

Table 2.3: Ranking of anaemia as public health concern.142 

Prevalence of anaemia (%) Type of public health concern 

≤ 4.9 No public health concern 

5.0 – 19.9 Minor public health concern 

20.0 – 39.9 Moderate public health concern 

≥ 40.0 Severe public health concern 

 

Taking into account all population groups, anaemia is a public health concern in 

every country in the world. Anaemia in expectant mothers is a reasonable to 

severe public health concern in more than 80% of the countries studied.147 In 

Mozambique anaemia is a severe public health concern; more than 40% of 

preschool children, expectant mothers and non-pregnant women are 

anaemic.147 According to the National Demographic and Health survey report, 

approximately 69% of children younger than five years of age are anaemic; with 

about 26% being minor anaemic, 39% moderately anaemic and 4% severely 

anaemic.19 

Various schemes and interventions have been suggested to deal with 

micronutrient deficiencies and anaemia. However, these vary according to the 

region and country as well as between specific population groups.210 The main 

ones include supplementation or fortification of food stuffs, addition of balancing 

foods, dietetic diversification, promoting food with highly absorbable vitamins 

and minerals, together with nutrition training and control of parasitic 

infections.147,210  
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Supplementation consists of providing a high dose of micronutrients in a pill, 

capsule, suspension or tablet.42,211 Food based plans are important factors in a 

long term global scheme for control of micronutrient deficiencies and anaemia. 

They include a variety of procedures with the aim of increasing micronutrient 

status by increasing the production and intake of micronutrient rich food as well 

as the increase in bioaccessibility of micronutrients. Another method includes 

promotion of food fortification.42  

2.6. Iron and iron fortification of food 

2.6.1. Iron 

Iron is an important element in body functions of metabolic progression such as 

oxygen transference, deoxyribonucleic acid (DNA) synthesis, and as an 

electron vehicle.212,213 In the human body iron exists as heme and non-heme 

substances which include hemoglobin and myoglobin; transferrin and ferritin.213 

The portion of iron captured as a proportion of consumed food is estimated to 

be low (only 15% to 35%) and depends on the situation and category of iron.212 

Various factors have been found to influence iron absorption throughout the 

gastrointestinal tract. The low pH of the gastric acid in the proximal duodenum 

increases the solubility and absorption of iron.214 Also, ascorbic acid and citrate 

act as chelators, which solubilize the iron in the duodenum and increase iron 

absorption.215 

As briefly mentioned earlier, anti-nutritional substances in food such as 

phytates, polyphenols and calcium are inhibitors of iron absorption. These 

substances are mostly found in a diet of plant origin.216 Heme iron, which is 

found in food of animal origin, is highly bioavailable; which means that the anti-

nutritional factors have no or very little influence, While non-heme iron from 

plant based foods is severely affected by anti-nutritional substances accounting 

for Its poor bioavailability.216 Thus, the bioavailability of iron varies considerably, 

according to its dietary source. 

Iron needs vary according to age (Table 2.4).217 Iron losses occur during 

various metabolic actions such as peeling of cells from skin and mucosal shells, 
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including the liner of the gastrointestinal area;218 menstruation219 and increase 

of body mass during neonatal and infantile growth.220 These iron losses are 

normally substituted through food consumption.221  

Table 2.4: Iron needs of individuals in terms of absorbed irona according to age 
and sex. 221

    

Age/sex mg/dayb 

4 – 12 months 0.96 

13 -24 months 0.61 

2 – 5 years 0.70 

6 – 11 years 1.17 

12 – 16 years (girls) 2.02 

12 – 16 years (boys) 1.82 

Adult men 1.4 

Pregnant womenc   

First trimester 0.8 

Second trimester 6.3 

Lactating  women 1.31 

Menstruating women 2.38 

Postmenopausal women 0.96 

aAbsorbed iron is the fraction that passes from the gastrointestinal tract into the body for further use. bCalculated on the 
basis of median weight for age. cRequirements during pregnancy depend on the woman’s iron status prior to pregnancy. 
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2.6.2. Food fortification with iron 

Food fortification is the addition of one or more nutrients to food. The main 

objective of food fortification is to increase essential nutrients in the diet and 

thereby improve nutritional status of a given population. The reasoning behind 

food fortification is to prevent micronutrient deficiency in order to avoid the 

occurrence of disorders that lead to death or disability and socioeconomic 

disadvantages.222,223  

Fortification of food is reported to be one of the most useful, cost effective and 

durable procedures to prevent and control micronutrient deficiency.  Reports 

indicate that fortification of food with iron and iodine is successful.224-226 Food 

fortification is classified as mass fortification or universal, targeted, household or 

community fortification.209  

In universal fortification, specific micronutrients are added to foods; which are 

consumed by the majority of the population in a specific country. Targeted 

fortification is addition of specific micronutrients to foods which are consumed 

by high risk population group. Community and household fortification refer to 

the addition of micronutrients to food regularly consumed at family level.209,227  

Application of powder to fortify  Fortification of food for children immediately 

before eating, with  a powder containing an assortment of minerals including 

iron and vitamins, has shown good results at household level.228-230 The use of 

this multi-nutrient powder has been described to have various benefits: packets 

can contain several micronutrients (vitamins and minerals), packets are not 

heavy and can easily be carried, kept and circulated, multi-nutrient powder is 

inexpensive, it does not interfere with normal dietary habits of the community, 

and the possibility for nutrient overload is low.229  

Constraints on iron fortification of food include: undesired properties due to iron 

reacting with other substances in the food eaten,231 poor solubility,232 and 

concern about the safety of iron food fortification in malarial regions.233 As yet 

no negative effects have been reported after iron fortification, in a non-malarial 

iron deficiency region.233 In areas where genetic disorders such as thalassemia 

and hemochromatosis occur, fortification of food with iron is not practical due to 
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the possible occurrence of iron overload.234  Iron deficiency and malaria are 

endemic in the whole of Mozambique and a study carried out on the use of 

nutritional iron prophylaxis in pregnant mothers, did not report negative 

effects.20  

Foodstuffs and condiments have also been fortified with iron in many developed 

countries.235-237 This method of fortification has been found to decrease the 

occurrence of iron deficiency.237-239  In contract, fortification of food with 

essential micronutrients has only recently been introduced in developing 

countries.240 In South-East Asian countries, consumption of iron fortified foods 

has been found to increase the level of iron and reduce the occurrence of iron 

deficiency anaemia.241 In West Africa a multi-sectorial programme for fortifying 

foodstuffs with micronutrients, including iron is well established; with more than 

80% of families consuming fortified food.242 Due to the success noted in the 

multi-sectorial food fortification program of West Africa; international 

organizations have declared this program a model for the implementation of 

public-private food fortification partnership programs in other African countries 

including Mozambique.240  

2.6.3. Iron compounds for food fortification 

Iron sources suggested for fortification of food include ferrous sulfate, ferrous 

fumarate, ferric pyrophosphate, and electrolytic iron powder.209 These iron 

sources are categorized according to their solubility: water soluble; poorly 

soluble in water yet soluble in diluted hydrochloric acid; and, insoluble in water 

and poorly soluble in diluted hydrochloric acid.243-245 Table 2.5 illustrates the 

iron sources proposed for food fortification with their respective bioavailability.   

The amounts of iron suggested per iron source in Table 2.5, are based on 

wheat flour fortification, as it is the oldest staple food that has been fortified. It is 

also based on organoleptic properties acceptable after fortification.246 However, 

according to the WHO, each country should estimate the amount of iron 

required for fortification, which would provide the iron that is lacking in the most 

commonly consumed traditional foods.223  
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Table 2.5: Iron sources usually used to fortify foods. 236,243-245
  

Compound Fe (%) RBVa RBV (man) 

Water-soluble iron salts: 

Ferrous sulphate heptahydrate, dried 20.33 100 100 

Ferrous gluconate  12 97 89 

Ferric ammonium citrate  18 107 - 

Water-soluble iron chelates:  

Sodium iron EDTA  13 - 200 

Ferrous bisglycinate  19 - 200 

Poorly water water-soluble iron salts (soluble in dilute hydrochloric acid): 

Ferrous fumarate  33 95 100 

Ferric saccharate  10 92 74 

Ferrous citrate  24 76 74 

Ferric citrate  17 73 31 

Insoluble in water (poorly soluble in dilute hydrochloric acid): 

Ferric pyrophosphate  24 45-58 21-74 

Carbonyl iron  98 27-66 5-20 

Reduced iron  97 12-54 12-148 

aRelative bioavailability with respect to ferrous sulphate (100), RBV: relative bioavailability 
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Fortification with ferrous fumarate, rather than ferrous sulfate is reported to 

cause fewer undesired side effects.247 Encapsulated forms of both ferrous 

sulfate and ferrous fumarate are not associated with oxidation of lipid during 

storage of the fortified food.248 Neither of these electrolytic iron powders affects 

the organoleptic properties of fortified food.243 Food vehicles that contain a high 

content of inhibitors such as phytates, are normally fortified with 

ethylenediaminetetraacetate (EDTA) a constituent of NaFeEDTA; because this 

iron source is reported to increase the uptake of both intrinsic iron in the food as 

well as fortified iron. Also, NaFeEDTA prevents lipid oxidation during the 

storage period.249 

2.6.4. Iron overload 

Iron overload is defined as an excess total body iron. It is a condition that 

manifests as a result of both hereditary and environmental factors. 

Hemochromatosis is a hereditary disorder found in people from Northern 

European descent.250 Iron overload can be related to hereditary iron anaemias 

and blood transfusion dependent illnesses, include thalassemia and other blood 

conditions. These conditions are common in individuals who reside in the 

Mediterranean region, Southwest and Southeast Asia and India.251 In sub-

Saharan Africa iron overload appears to be related to intake of beverages 

prepared in iron-rich pots or due to genetic origin.252,253  With the toxic effects of 

iron overload in mind, it would be important to evaluate the level and 

bioavailability of iron in a particular foodstuff, prior to fortification. 

Iron overload related to food fortification has not yet been reported.254,255 

However, accumulation of iron has been reported in individuals who have taken 

oral iron medication for prolonged periods.256 Intake of fortified food by 

individuals with genetic or other acquired conditions where impaired iron 

absorption is present may result in increased levels of iron. Fortunately 

however, the increase in the body iron load in the majority of these individuals is 

reported to be small.257 

Iron that is taken in parenterally, or as oral medications has resulted in 

unwanted side-effects related to immunity and infections.255 In countries where 
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malaria is not endemic, the link between iron fortification and infections or 

disease development has not been established.258 A weak relationship between 

oral iron supplementation and the effect on immunity and infection has been 

reported in some endemic malarial regions.258,259 

2.7. Summary 

The following were the main features found during the review of the literature 

that led to the formulation of research questions pertinent to this study.  

In Mozambique both soil and climate are suitable for cassava cultivation and it 

is widely grown, yet data related to the mineral content of soil where cassava is 

cultivated is scarce. It is also likely that the mineral content of soil in 

Mozambique varies according to geographic location34 however, it is not known 

if the levels of minerals in the soil are related to the levels in cassava roots 

grown in that soil. Cassava is an important, widely consumed staple energy 

food in Mozambique due to its high content of starch, which makes it an ideal 

candidate for fortification, yet it appears the roots are low in minerals, especially 

iron and the bioavailability has not yet been tested.  

The main cause of micronutrient deficiency is deficient micronutrient intake from 

the diet. Iron deficiency is the most common micronutrient deficiency.140,153,154 

Iron deficiency and resulting anaemia are major public health concerns.19,147 

Fortification of food with micronutrients has only recently been implemented in 

developing countries.240 Due to the high levels of anaemia, particularly in 

mothers and pre-school children in Mozambique, it is likely that iron fortification 

could at least assist in alleviating the 40% of anaemia cases resulting from 

dietary deficiencies. Cassava is a widely consumed staple in Mozambique and 

therefore a possible candidate, in terms of what WHO recommends, for iron 

fortification. 

Yet, as seen from the literature, it is not only iron deficiency that causes 

anaemia; other micronutrients like B vitamins and even protein, contribute to 

prevention. Fermented staples are known to have higher nutrient 

density105,106,108 and the popularity of mahewu made from cassava as a base for 

iron fortification, to alleviate dietary anemia, has not been explored previously. It 
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has been established that fermentation decreases the toxic properties of 

cassava root,82,83,86 which would add the advantage of increasing food safety as 

well as dietary anaemia if the fortification is feasible. From the literature survey, 

however, it also appears that no previous work has been published on the 

bioavailability of iron added to mahewu. The following chapters describe how 

each of these problem statements and research questions deduced from an in 

depth literature review, have been answered. 

2.8. Limitations and possible constraints 

Mozambique lacks infrastructure and it is difficult to access cassava plantations 

in remote rural areas to sample soils and roots.  There are also financial 

constraints to examining large numbers of samples. There may therefore be 

limitations associated with sample size during this study.  

 

In addition, there is very little information on the parameters of mahewu 

fermentation and standardization for cassava and no information on iron 

fortification of cassava. Therefore empirical research will have to be done to 

standardize mahewu fermentation and determine the optimal time for 

fortification as well as bioavailability after addition of iron. 
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CHAPTER 3 

MINERAL CONTENT OF SWEET AND BITTER VARIETIES OF 
CASSAVA ROOTS AND SOIL FROM FOUR DISTRICTS OF 

MOZAMBIQUE 

 

3.1. Abstract 

Dietary anemia and malnutrition are considered to be serious public health 

problems in Mozambique, especially in young children and women of child-

bearing age. Cassava is a main staple and it is known that the roots, although 

high in starch, are deficient in minerals, including iron. However, it is not known 

if the mineral content in the roots is related to the amount of mineral in the soils 

of Mozambique. The aim of this study was to assess whether the mineral 

content of cassava roots was influenced by soil composition or the variety or 

type of cassava. The concentrations of aluminum, calcium, copper, iron, 

manganese, phosphorus, lead and zinc in cassava roots and soil, collected in 

four districts of Mozambique, were determined using an Inductively Coupled-

Plasma Optical Emission Spectrometer (ICP-OES), after microwave digestion. 

The mineral content of soils from the four districts were found to differ 

significantly (p ˂ 0.05). There was also a significant difference (p ˂ 0.05) in the 

mineral concentration of cassava roots between varieties, but no difference 

between sweet and bitter types. The mineral concentration was found to be 

significantly higher in soil, than in the roots. This was greatest for Fe, where the 

concentration in root samples was not detectable, although soil concentration 

was as high as 24.78 mg/kg.  It was concluded that in Mozambique the levels of 

minerals in soil did not influence the level in cassava roots.  It is therefore 

unlikely that using fertilizers in soils would increase the concentration of 

essential minerals to meet the nutritional needs of communities where cassava 

is the main staple. Consequently it is recommended that fortification of cassava 

roots should be investigated as a means of improving the level of essential 

minerals, especially iron, in the diet of vulnerable populations in Mozambique.   
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Key words: cassava, mineral concentration, Mozambique, soil type. 

3.2. Introduction 

In Mozambique, agriculture is the key sector for social and economic growth.1 

Approximately 80% of the rural population depend on agriculture for survival.2 

Small-holder farmers cultivate 95% of the total land area, which is estimated to 

be 5 632 781 ha.3 Mozambique is ranked 5th with regards to cassava production 

in Africa.4 Cassava is cultivated in an area spanning approximately 43% of the 

total cultivated land, with small-holder farmers producing 94% of total cassava 

without addition of any fertilizer.3 However, the cultivation of cassava with 

addition of fertilizers to the soil has been practiced elsewhere in the world.5,6  

The optimal temperature for cassava cultivation ranges from 25 to 35°C.7 In 

Mozambique the climate is tropical and humid; the annual ambient temperature 

varies between 23 and 26˚C for the coastal zones of southern and northern 

Mozambique with a mean annual rainfall of approximately 1200 mm.8 The 

country is divided into ten agro-ecological zones, based on altitude, rainfall, 

temperature, humidity index and soil type.9 Although cassava is cultivated in all 

ten agro-ecological zones, only four are considered intermediate to high 

cassava production areas while the others are low or marginal.9  

Cassava is mainly cultivated in the following provinces: Nampula (29.27%), 

Zambezia (26.76%) and Inhambane (8.80%).3 Often it is cultivated in 

combination with other crops such as maize, peanuts and legumes.10 The 

majority of cassava produced (> 90%) is used for human consumption.11,12 It 

contributes to food security, particularly in rural communities13 and it is also 

considered a famine reserve crop in areas where drought occurs.10 In 2012 the 

production of cassava was estimated at 10.05 million tons.14 

Cassava varieties are divided into two types, bitter and sweet.13 The bitter type 

has high cyanogenic glycoside content.15 It is more common in Mozambique 

than the sweet type, since it is pest and drought tolerant and produces higher 

yields.16,17 Although the peel of cassava roots contains calcium, copper, iron 

and zinc,18 it is generally removed prior to processing or cooking for human 

consumption. The concentration of minerals differs between the peel and 
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roots19 and depends on the physiology and mechanism of accumulation of the 

plant.20,21 There is data on the mineral content of cassava cultivated in various 

parts of the world (Table 3.1), however, limited data exists for Mozambique.  

Table 3.1: Mineral content of cassava roots. 

Mineral Content Reference and  country or part of the world  

 

Calcium 

15 -35 mg/100g 28, Humid tropics of West Africa,  29 North Thailand 

16 mg/100g 30 United States (National Nutrient Database for Standard References) 

0.076%* 29 North Thailand 

 

Copper 

0.1 mg/100g 30 United States (National Nutrient Database for Standard References) 

5.8 mg/kg 29 North Thailand 

 

Iron 

8 - 24 mg/kg 31 Mozambique (Mozambique Agricultural Research Institute) 

0.27 mg/100g 30 United States (National Nutrient Database for Standard References) 

17.1 mg/kg 29 North Thailand 

 

Magnesium 

21 mg/100g 30 United States (National Nutrient Database for Standard References) 

0.105%* 30 United States (National Nutrient Database for Standard References) 

 

Manganese 

0.384 mg/100g 30 United States (National Nutrient Database for Standard References) 

1.4 mg/kg 29 North Thailand 

 

Phosphorus 

27 mg/100g 30 United States (National Nutrient Database for Standard References) 

0.165%* 29 North Thailand 

 

Potassium 

271 mg/100g 30 United States (National Nutrient Database for Standard References) 

1.172 mg/kg 29 North Thailand 

 

Sodium 

14 mg/100g 30 United States (National Nutrient Database for Standard References) 

129.2 mg/kg 29 North Thailand 

 

Zinc 

8 - 19 mg/kg 31 Mozambique (Mozambique Agricultural Research Institute) 

0.34 mg/100g 30 United States (National Nutrient Database for Standard References) 

7.5 mg/kg 29 North Thailand 

*percentage in dry matter 



71 
 

The mineral content of soil is known to influence the mineral content of certain 

crops,22 but there is no information on whether soil composition influences 

mineral concentrations in cassava roots. Minerals such as calcium (Ca), copper 

(Cu), Iron (Fe) and zinc (Zn) are important micronutrients in human nutrition and 

health,23,24 whereas aluminum (Al), manganese (Mn) and lead (Pb) can be 

toxic.25-27 The aim of the present study was to assess whether the 

concentrations of these minerals in cassava roots, was influenced by the 

mineral concentrations in soils from four different areas of Mozambique, or by 

the variety and type of cassava. This information would provide an indication as 

to whether fertilization or fortification would be required to increase the 

nutritional value of cassava roots intended for human consumption.  

3.3. Materials and methods 

3.3.1 Study area 

Samples of soil and cassava roots were collected from four districts of 

Mozambique (Figure 3.1). 

The districts are located in the agro-ecological zones R2, R5, R7 and R8, which 

coincide with the intermediate and highest production areas of cassava.9 The 

agro-ecological zones R2, R5 and R8 together produce 60%, whereas R7 

produces 20% of total cassava in Mozambique. Agro-ecological characteristics 

for R2, R5 and R8 zones include an altitude between 0 and 200 m, rainfall 

ranging between 800 and 1400 mm and temperature between 24 to 26°C. In 

the R7 zone the altitude ranges between 200 and 500 m, the temperature 

ranges from 20 to 25 °C and rainfall is from 1000 to 1200 mm.9 
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Figure 3.1: Map of Mozambique, indicating the four districts in which the samples were collected. 

3.3.2. Sample collection  

Cassava cultivation has been described in Chapter 2. Only mature plants were 

used for sampling and all cassava samples were collected from small-holder 

farmers. Samples of cassava root and adjacent soil (five per district) were 

collected using the non-probability judgement method.32 The perspective of 

judgement includes the variety (the most cultivated), type (bitter or sweet) and 

region/area of cultivation (high and intermediate). Five samples per variety of 

bitter cassava roots (Tomo and Incirricano) were collected from Rapale and Alto 

Molocue districts in the Northern region. A further five samples per variety of 

sweet cassava roots (Calamidade and Munhaça) were collected from the 

Meconta Central and Zavala Southern regions. In each area where roots were 

sampled, three points were chosen randomly around the plants sampled and 

soil samples were taken at a depth of 20 cm (Figures 1 and 2, Appendix 9), and 
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then mixed together in equal ratios, to compose a representative sample. All 

samples were kept in plastic bags and identified by number, location, variety 

and type. Cassava root samples were hand peeled using metal free 

instruments, washed and stored at 4°C until determination of mineral 

concentration.  

3.3.3. Sample digestion 

Each sample was digested in triplicate. Soil (0.250 g) was weighed in a 

digestion vessel. Three milliliters of ultrapure nitric acid (65%, Merck, 

Darmstadt, Germany) and 2 mL hydrofluoric acid (40%, Sigma Aldrich, 

Johannesburg, South Africa) were added to the sample. The vessels were 

capped and then subjected to digestion using the Microwave Digestion 

Accelerated Reaction System – MARS (CEM Microwave Technology Ltd, 

Buckingham, UK). The instrument was set to KA Soil-X Press method at 75% of 

1200 W, control temperature of 180°C, ramping and holding time of 10 min and 

cooling down time of 15 min. After digestion, vessels were opened using the 

capping station, and 2 mL boric acid (70%, Sigma Aldrich) was added. Vessels 

were re-capped and re-digested. The sample was transferred to a 50 mL 

volumetric flask and deionized water (<18.2 MΩ cm) was added to the full 

capacity level of the volumetric flask. 

Grated fresh cassava root was processed in an oven at 210°C for 3 h. Then the 

grated cassava root, in triplicate for each sample, was weighed (0.750 g) into a 

digestion vessel and 4 mL nitric acid (65%) and 2 mL hydrogen peroxide (30%, 

Merck, Darmstadt, Germany) added. The vessels were capped and triplicate 

samples were subjected to digestion, as described above. Each sample was 

analytically transferred to a 25 mL volumetric flask and deionized water (<18.2 

MΩ cm) was added to the full capacity level of the volumetric flask.  

3.3.4. Chemical analysis 

All digested samples were analyzed in triplicate for mineral concentration, using 

a SPECTRO ARCOS model (Spectro Analytical Instruments, Kleve, Germany) 

inductively coupled plasma-optical emission spectrometer (ICP–OES). Multi-

element standard solutions were prepared by dilution of stock standard 
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solutions (1000 mg/L, Merck, Darmstadt, Germany) to the desired 

concentration. The ranges of the calibration standards were selected to match 

expected concentrations for the elements Al, Ca, Cu, Fe, Mn, P, Pb and Zn in 

the samples. Operating conditions for the ICP-OES are listed in Table 3.2. 

Table 3.2: ICP-OES operating conditions for SPECTRO ARCOS.  

Method Parameters 

RF power (w) 1400 

Coolant  flow rate (L/min) 12.00 

Nebulizer flow rate (L/min) 1.00 

Auxiliary flow rate (L/min) 1.00 

Pump speed (rpm) 30 

Rinse time (s) 30 

Replicate read time (s) 15 

Element Emission line (nm) 

AI 394.401 

Ca 317.933 

Cu 219.958 

Fe 238.204 

Pb 283.305 

Mn 257.611 

P 214.914 
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3.3.5. Statistical analysis 

Samples were analyzed in triplicate using STATA version 12 (Copyright 1985 -

2011 StataCorp LP, statistics/data analysis, Lakeway Drive, MP-Parallel 

Edition, College Station, Texas 77845 USA). The normality of the data was 

assessed using the Shapiro-Wilk method. One-way ANOVA® was performed to 

test the variance and Bonferroni was used to compare means.  

3.4. Results and discussion 

3.4.1 Mineral concentration in soils 

Table 3.3 presents the concentrations of minerals determined in the soil 

samples. It is evident from Table 3.3 that the mineral concentration of the soil 

samples between the districts differed significantly (p ˂ 0.05).  The 

concentration of Al in the soil samples, ranged from 1.21 to 2.6 mg/kg, Maria 

and Yost33 reported a 0.18 to 0.38 cmolc/kg for Al in soils in Mozambique. The 

concentrations determined were much lower than those reported by Burt el al.34 

in the USA, which ranged from 0.5 to 142 g/kg, with a median of 46 g/kg. 

Cassava tolerates relatively high levels of Al in the soil, with saturation 

estimated at less than 75% in soils suitable for cultivation.35-38 Thus, based on 

the previous reports, the concentration of Al found in the present study would 

not impact negatively on cassava cultivation. 

Calcium is an essential micronutrient for maintaining bone health and strength. 

Ca concentration in soil samples of Alto Molocue district was lower than the 

detection limit of the instrument (0.004 µg/g).  In the other three districts, Ca 

was found in a much higher concentration (Table 3.3).  

 

A previous survey of soil fertility in Mozambique (Nampula Province) showed 

that the level of extractable Ca ranged between 2.33 and 4.34 cmolc/kg.33  For 

optimal growth cassava requires 0.25 to 1.0 me/100 g of Ca; based on this 

finding, except in Alto Molocue district, the soil tested provided enough Ca for 

cassava cultivation. 
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Table 3.3: Mineral concentration (mg/kg) of soil in four districts of Mozambique where cassava roots were sampled. 

Mineral content mg/kg (n =15) 

Soil (district) Al▲ Ca Cu▲ Fe▲ Mn▲ P▲ Pb Zn 

Rapale♦ 1.83 ± 0.09 2.76 ± 0.10 0.005 ± 0.000  2.6 5 ± 0.10 0.11 ± 0.00 LDL(0.05)● 0.02 ± 0.00 0.01 ± 0.00 

Alto Molocue♦ 1.21 ± 0.03 LDL (0.004)● 0.026± 0.003 24.8 ± 0.66 0.49 ± 0.02 0.30 ± 0.02 0.04 ± 0.00 0.01 ± 0.00 

Meconta♦ 2.60 ±0.09 2.70 ± 0.08 0.010 ± 0.001 6.45 ± 0.10 0.2 4 ± 0.01 0.05 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 

Zavala♦ 2.54 ± 0.13 2.54 ± 0.05 0.006 ± 0.000 9.22 ± 0.16 0.16 ± 0.01 LDL (0.05)● 0.04 ± 0.00 0.02 ± 0.00 

Range 1.21 - 2.6 2.54 - 2.76 0.005 – 0.026 2.55 – 24.8 0.11 - 0.49 0.05 - 0.30 0.02 – 0.04 0.01 – 0.02 

Mean 1.60 2.67 0.012 10.78 0.25 0.17 0.03 0.01 

SD 0.66 0.12 0.010 9.72 0.17 0.18 0.00 0.00 

 ▲Values in the same column with the superscript after the element are significantly different (p ˂ 0.05)  
♦Values at the same row with the superscript after the soil (district) are significantly different (p ˂ 0.05) 
LDL – Limit of detection of instrument (mg/kg) 
●Values of limit of detection of instrument 

 



77 
 

The concentration of Cu in the soil samples ranged between 0.005 mg/kg and 

0.026 mg/kg, with soil from Alto Molocue, showing more than double the 

concentration of the other three districts. The mean concentration of Cu (0.012 

mg/kg) in the soil samples was found to be much lower than the mean 

concentration (1.25 mg/kg), previously found in unpolluted Nigerian soil where 

cassava was cultivated. 39 

Soil samples from the four districts tested, were significantly different (p ˂ 0.05) 

in Fe concentration. The concentration of Fe in the soils was found to be higher 

than those of other minerals tested. These results are similar to those of Nubé 

and Voortman40, who reported Fe as the most abundant mineral in the soil.   

The Fe concentration range was also higher than the range of 0.28 to 0.48 

mg/kg, reported by Maria and Yost33 in soils from Mozambique. It was also 

higher than that found in Zambian soil (median 0.8 mg/kg), in areas where 

cassava was cultivated.41  

A significant difference (p ˂ 0.05) in Mn concentration was found between soil 

samples from the different districts assessed. The concentration of Mn in the 

soil samples tested in the present study was lower than the 3 mg/kg considered 

normal for soil, by Davies42.  

Soil from Rapale and Zavala districts, contained P concentrations which were 

below the detection limit of the instrument. This probably indicates a deficiency 

in P the soils of Rapale and Zavala districts. This is supported by finding of 

previous researchers, who reported P deficiency in the soils of Mozambique.33 

However, in Alto Molocue and Menconta district, the concentration of P differed 

significantly (p ˂ 0.05).   

It was found that Pb concentration in the soils sampled, differed significantly (p 

˂ 0.05).The mean concentration (0.03 mg/kg) was considerably lower than that 

found in Zambian soils (11 mg/kg) where cassava was cultivated.41 This is a 

positive finding, as Pb is a toxic element and its presence in soil can affect the 

health of communities.25-27 

The mean concentration of Zn (0.01 mg/kg) in soils analysed, was found to be 

very low and its range was narrow (0.01-0.02 mg/kg). This low concentration 
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was in agreement with Cakmak43, who reported Zn as the most prevalent 

mineral deficiency in soils globally. According to rather extensive surveys the 

levels of Zn in the soils range from 10 to 300 ppp.44 The mean Zn concentration 

in the soils sampled, was also lower than that described for soil used to 

cultivated cassava (median = 15 mg/kg) in Zambia.41   

3.4.2. Mineral concentration in cassava roots 

The concentration of minerals in the roots of four varieties of cassava analyzed 

is presented in Table 3.4. Al concentration differed significantly (p ˂ 0.05) 

between the Tomo and Incirricano varieties (Table 3.4).  However, the mean 

concentration of Al (0.04x10-3 mg/100 g) in the roots of cassava varieties 

analysed was low in comparison to published values.43 This may indicate that 

cassava does not absorb Al from the soil. It was also noted that the 

concentration of Al in the root samples did not differ significantly between the 

types of cassava, better or sweet.  

A significant difference (p ˂ 0.05) in Ca concentration between the root samples 

of four varieties of cassava was observed. The mean concentration of Ca 

(9.29x10-3 mg/100 g) in the roots sampled was lower than that found in 

previous studies: 1.05 mg/100 g,45 120 mg/100 g46 and 70 mg/100 g.47 

However, results indicated that there was considerable variability between 

different varieties, which was not related to whether that variety was a bitter or 

sweet type (range 19.5 to 188.90 mg/100 g). This may be related to the 

bioavailability of Ca. 

The concentration of Cu in the root samples was found to be significantly 

different (p ˂ 0.05) but this was not correlated with whether the variety was 

bitter or sweet. The mean concentration of Cu (0.1x10-3 mg/100 g) was lower 

than that reported by other authors: Oluyemi et al.45 0.034 mg/kg; Adeniji et al.47 

range 0.46 to 1.09 mg/100 g.  In contrast, Ayodeji46 could not detect Cu, in 

samples of cassava root from Nigeria. Copper, like iron, is an essential micro-

nutrient and the low levels in a staple food are important as they will affect the 

nutrition of a large proportion of the population. 
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Table 3.4: Mineral concentration (mg/100 g) of cassava root varieties cultivated in four of districts Mozambique. 

Mineral content (mg/100 g) x10-3 n =15 

Cassava variety Al Ca▲ Cu Fe Mn▲ P▲ Pb Zn 

Tomo BT (Rapale) 0.08 ± 0.00 139.5 ± 1.9 0.20 ± 0.00 LDL (0.052) ● 1.10 ± 0.10 135.2 ± 2.4 LDL (0.084) ● 0.70 ± 0.00 

Incirricano BT (Alto Molocue) 0.03 ± 0.00 23.90 ± 1.30 0.10 ± 0.00 LDL (0.052) ● 0.30 ± 0.00 42.30 ± 1.90 LDL (0.084) ● 0.20 ± 0.00 

Calamidade SW (Meconta) 0.04 ± 0.00 188.9 ± 2.6 0.20 ± 0.00 LDL (0.052) ● 1.40± 0.00 127.10 ± 2.6 LDL (0.084) ● 0.60 ± 0.00 

Munhaça SW (Zavala)  0.02 ±0.00 19.50 ± 0.70 0.10 ± 0.00 LDL (0.052) ● 0.30 ± 0.00 49.30 ± 2.20 LDL (0.084) ● 0.20 ± 0.00 

Range 0.02 – 0.08  19.50 – 188.9 0.10 - 0.20 LDL (0.052) ● 0.30 – 1.14 42.30 -135.2 LDL (0.084) ● 0.20 – 0.70 

Mean 0.04 9.29 0.10 LDL (0.052) ● 0.80 88.50 LDL (0.084) ● 0.40 

SD 0.03 8.49 0.10 LDL (0.052) ● 0.60 49.50 LDL(0.084) ● 0.20 

▲Values in the same column with the superscript after the element are significantly different (p ˂ 0.05)  
 BT-Bitter,  
SW-Sweet, 
 LDL- Limit detection of instrument, 
●Value of limit of detection of instrument in µg/g 
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The concentration of Fe in root samples from all four varieties of cassava was 

lower than the detection limit of the instrument.  Extremely low concentrations of 

Fe in cassava root, has been reported previously and is ascribed to its 

unavailability to crops.48 Although the Fe concentration in roots sampled during 

the current study was low, there was great variability reported in the literature, 

for instance, 0.53 mg/100 g,45 10 mg/100 g,46 11.73 mg/100 g47 and 40.51 

ppm.39 It was also found during a previous study in Nampula Province 

Mozambique, that the concentration of Fe in cassava roots was 8 to 24 mg/kg.31 

The concentration of Mn in cassava root was found to be significantly different 

(p ˂ 0.05) between the varieties of cassava root sampled. However, these 

differences did not correlate with whether the root came from a sweet or bitter 

type (Table 3.4). The mean concentration of Mn (0.80x10-3 mg/100 g), was low 

compared to that of other studies:  0.05 mg/kg45 and 2.45 to 2.82 mg/100 g.47 

Ayodeji46 did not report the presence of Mn in cassava root.  

It was further found that the concentration of P in the roots was significantly 

different (p ˂ 0.05) between the four varieties of cassava.  The mean 

concentration of P in bitter and sweet types appeared to be significantly 

different; however, the range was similar. The concentration range for P 

(42.30x10-3 to 132.20x10-3 mg/100 g) was lower than that reported in previous 

studies. For instance,   Ayodeji46 reported a range from 50 to 70 mg/100 g and 

Adeniji et al. 47 a range from 60 to 120 mg/100 g.  

Although no Pb was detected in the roots sampled (the concentration was 

below the detection limit of the instrument), a previous study reported a 

concentration of 0.7 mg/kg,41 while another found 159.3 mg/kg.39  Other studies 

have also reported Pb in cassava roots to be 113.6 mg/kg in Nigeria39 and 1.8 

mg/kg in Zambia.41 The significance for human health is that this reflects no risk 

of Pb poisoning for those consuming cassava as a staple. 

Different root samples showed a significant difference (p ˂ 0.05) in Zn 

concentration. The mean concentration of Zn (0.40x10-3 mg/100 g) and range 

(0.20x10-3 to 0.70x10-3 mg/100 g) was different to earlier studies, where 

concentrations found were: 0.082 mg/100 g45; range between 210 and 260 
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mg/100 g;46;  4.80 mg/kg;41 and range 9 to 19 mg/kg.31 The results indicated 

that there was also a significant difference (p ˂ 0.05), in Zn concentrations 

between different types of cassava (bitter or sweet).  

According to the findings of this study and the findings reported in earlier 

studies, the mineral concentration in cassava roots varies. The differences may 

be due to differences in geographic localization and cultivar.31,38 According to 

Howeler49, cassava roots absorb low levels of minerals such as Fe, Mn, Cu and 

Zn, moderate amounts of Ca and large amounts of P.49 The later statement 

probably explains the difference in mineral concentration for cassava from the 

different locations and soil types shown in Tables 3.3 and 3.4. As it is difficult to 

compare concentrations where different units are used, mineral concentration of 

soil and cassava root samples, are compared in Table 3.5, using two units 

(mg/kg and mg/100g). 

 

Table 3.5: Mineral concentration of soil compared to that of the roots. 

 
Mean concentration in soil Mean concentration in roots  

Minerals mg/kg (mg/100 g) x 10-3 mg/kg (mg/100 g) x 10-3 Ratio (Soil/root) 

Al 1.60 160 0.004 0.04 4000 

Ca 2.67 267 0.093 9.29 28.7 

Cu 0.012 12.0 0.010 0.10 120 

Fe 10.8 108 LDL LDL NA 

Mn 0.25 25.0 0.008 0.80 31.3 

P  0.17 17.0 0.089 88.5 0.19 

Pb 0.03 3.00 LDL LDL NA 

Zn 0.01 1.00 0.040 0.40 2.5 

LDL: low detection limit of the instrument 
 NA: not applicable. 

Yokel and Florence50 have indicated that Al toxicity in humans could be caused 

by consumption of food staples high in Al, such as soya. According to the WHO, 
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approximately 1 mg/kg of body weight per week is considered the limit that can 

safely be consumed.51 The chemical form of Al determines its toxicity (Personal 

communication, Prof H Rȍllin). The bioavailability of Al consumed as food staple 

has been reported to be around 0.1 to 0.3%.52 Neurodegenerative disorders, 

metabolic bone disease, dyslipemia and even genotoxic activity have been 

associated with Al toxicity.53 Consuming cassava roots in Mozambique, is 

unlikely to result in Al toxicity, as this mineral was found to be 4000 times lower 

in the roots than in the soil and it is probable that cassava roots do not bio-

accumulate Al.  

The concentration of Ca was found to be more than 25 times lower than the 

concentration in the soil. In Alto Molocue district Ca concentration in the soil, 

was lower than the limit of detection of the instrument. Calcium is an essential 

microelement in human nutrition and only available to the body through food 

consumption. It is particularly important in bone composition.54 Although the 

requirement for Ca varies according to age, the range is between 1000 and 

1500 mg/day.55 As cassava roots are a main staple for the population of 

Mozambique, the very low levels found in the roots are a cause for concern. 

The concentration of Cu in cassava roots was also found to be extremely low. 

Copper is an essential micronutrient as it forms part of several enzymes in 

diverse biochemical processes including respiration, ant-oxidative defense and 

iron metabolism.56 The low levels of Cu in cassava roots would therefore 

indicate a possibility of Cu deficiency arising in rural communities where 

cassava is the main staple. 

It is evident from Table 3.3, 3.4 and 3.5 that the Fe concentration in soils is far 

higher than in the roots. This finding indicates that either the roots of did not 

take up Fe, or the Fe in the soil was not bioavailable. It has been suggested that 

the uptake of minerals by plants is inversely proportional to the concentration in 

soil,57-59 which may partly explain the low uptake of Fe in the  cassava roots 

samples (Table 3.4). 

The presence of minerals such as Fe, in soil does not ensure that these 

minerals will be taken up, by plants growing in that soil. The uptake of minerals 
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by plants is influenced by soil texture, pH, Eh, cation exchange capacity, 

organic matter, the presence of other metals and microbial transformations.41 In 

addition, it has previously been reported that Cu, Mn, P and Zn inhibit Fe uptake 

by cassava.40 Interactions and antagonism between minerals or other 

substances in the soil, humidity, pH and temperature have also been found to 

influence mineral uptake from soil.40 

 It is important to note that Fe is an essential trace element in human nutrition. 

The body of a well-nourished adult contains around 3 to 4 g of Fe.60 The lack of 

Fe in cassava roots indicates that rural populations in Mozambique, consuming 

cassava as a main staple, are at risk of Fe deficiency and resultant dietary 

anaemia. Iron deficiency in human populations is mainly caused by a low 

concentration of Fe in the main foodstuffs consumed.61 In Mozambique, Fe 

deficiency and its related anaemia are considered to be a serious public health 

concern, affecting almost 40% of the population.62 People most at risk of diet 

related Fe deficiencies are preschool children and woman of reproductive age.63 

A woman of reproductive age needs to consume 18 mg/day of Fe.64 Those 

children born to mothers suffering from Fe deficiency, show deficient cognitive 

development and lower intelligence.60 Pregnant woman with Fe deficiency are 

at risk of untimely delivery, children with low birth mass and prolonged, difficult 

parturition.65  

Manganese concentration was found to be more than 30 times lower in cassava 

roots than in the adjoining soil. Consumption of food deficient in Mn has led to 

signs of deficiency.66 This can manifest as Mseleni’s disease,67 skin diseases 

and bone abnormalities.68 A well-nourished human body contains between 200 

to 400 µmol of Mn.69 Manganese acts as an enzyme activator and forms part of 

pyruvate descarboxilase and manganese-superoxidase enzymes,70 when linked 

to argenine, it also regulates pH in the human body.71  

There was little difference in P concentration between cassava roots and soil. It 

was found to be only 0.19 times lower in roots, than soil (Table 3.5). However, 

the concentration of P, detected in the cassava root samples in this study, is 

lower than the norm of 21 mg/100g.30 Phosphorus is an essential macronutrient 
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required for bone and teeth composition. The daily P dietary requirement varies 

according to age and sex. Between the age of 19 and 30 the approximate 

normal requirement is 580-700 mg for both men and woman.72 This low level of 

P in a staple food could be significant in vulnerable rural communities in 

Mozambique, where there is little access to foods of animal origin which are rich 

in P, such as milk.73 

The fact that Pb was not found in the root samples of cassava, could be 

considered beneficial, since foods containing Pb, can have negative 

implications for human health.74,75 Health concerns related to bioaccumulation 

of Pb, include mental impairment in children,76 colic, anaemia and renal 

disorders.77  

 Although Zn is considered an essential element in food, it was also found to be 

deficient in the cassava roots analysed. The main functions of Zn within human 

cells are catalytic, structural and regulatory.78 A nutritional deficiency could 

result in skin disease, diarrhea and sore throats,79 as well as poor growth, 

mental disorders and epileptic convulsions.80 

Based on the results it was evident that roots of cassava grown in Mozambique 

are deficient in a number of micronutrients that could affect the health of 

vulnerable rural communities. Generally when minerals are found to be deficient 

in crops used for human consumption, they are added to the soil in 

fertilizers.40,81,82 However, the availability of minerals depends on 

physicochemical and biological aspects which influence uptake.83 The uptake of 

Fe from the soil is extremely complex and increasing Fe content of crops 

through enrichment of soil is not easily realized.84 Unlike Fe, the addition of Zn 

to soil can improve the Zn concentration in crops.43,85,86  The levels of Cu and 

Mn can be improved in food crops by the application of fertilizers containing 

these minerals.87,88 Previous studies have reported an increase in mineral 

concentrations in soil and cassava, in certain areas of Nigeria when fertilization 

of soil was implemented89  Currently cassava in Mozambique is grown without 

any soil fertilization, however in rural and subsistence areas fertilizer would be 

very expensive and probably not affordable. Fertilization would in any case not 
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necessarily improve the Fe concentration in roots. In Mozambique it was found 

that even in areas where the soil had a high Fe concentration, it was not 

bioaccumulated in the cassava roots tested. 

3.5. Conclusions  

The most important finding was the low levels of essential micronutrients: Ca, 

Cu, Mn, P and particularly Fe in cassava roots, as it is a main staple food in 

Mozambique.  This was probably most important in the case of Fe, where it has 

already been recognized that dietary anaemia is a serious public health problem 

affecting almost half of the population, mainly young children and expectant 

mothers. The concentration of these minerals in cassava root, both in the 

samples analysed and in the literature, would not be sufficient for good nutrition, 

particularly in young children and women of reproductive age.  

The concentration of minerals in the soil, between the four districts, as well as 

between the roots of the four varieties of cassava, was significantly different.  In 

all cases, the concentration in roots was lower than that found in the adjacent 

soil samples. However, this was not linked to whether the variety was of a 

sweet or bitter type. Thus the type of cassava root did not play a role in the 

concentration of minerals, although the variety did. This means that varieties 

with better uptake of micronutrients could be selected to improve nutrition of 

rural consumers.  Strategies to increase mineral concentration in cassava roots 

through fertilization of soil could be possible, as in Mozambique cassava 

cultivation is done without the application of fertilizers, but may not be affordable 

due to poor road infrastructure and long distances to rural areas. However, the 

very large difference in concentration between soil and roots indicates that 

uptake of minerals from soil may be a problem, especially with regards to Fe, 

which is very low in the roots, even in areas with high Fe concentration in soils. 

It is recommended that the best solution to the low level of essential minerals, 

particularly iron, in a major staple food in Mozambique, would be fortification of 

cassava products traditionally consumed by those vulnerable populations 

affected by iron deficiency.  
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3.6. Limitations 

The pH of soils plays an important function during the chemical processes 

taking place between plants and soils. The forms on which the minerals and 

other nutrients from the soil are available to the plant depend on the soil pH.  

Data related to pH of the soil was not collected during the field work. This 

together with limited published information about soils in Mozambique limited 

the discussion of the results in the present study.  
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CHAPTER 4 

CONTROLLED FERMENTATION OF TRADITIONAL CASSAVA 
MAHEWU IN MOZAMBIQUE TO DETERMINE THE STAGE FOR 

IRON FORTIFICATION 

 
 

4.1. Abstract 

In rural areas throughout Mozambique, non-alcoholic fermented cassava 

(mahewu), is prepared at subsistence level using indigenous technology. 

Fermentation is known to inactivate cyanogenic glycosides, which are highest in 

cassava roots of the bitter type; and is also known to improve nutritional value. 

Up to 40% of anaemia cases diagnosed in women and children in Mozambique 

are probably due to dietary iron deficiency. The WHO and FAO recognize 

fortification of staple foods as an effective method to remedy dietary 

deficiencies of iron. Analysis of cassava roots in Mozambique showed a very 

low level of iron, regardless of soil composition. The objective was to 

standardize mahewu fermentation, to enable iron fortification of sweet and bitter 

cassava and investigate if the type of cassava fermented, or the iron compound 

used for fortification affected the final product. Sweet and bitter varieties of 

cassava from four districts in Mozambique were therefore fermented under 

controlled conditions (45°C for 24 h) and the optimal stage for fortification with 

ferrous sulfate (FeSO4.7H2O) or ferrous fumarate (C4H2FeO4) compared. The 

mean pH at the endpoint was 4.5, with 0.29% titratable acidity and a solid 

extract of 9.65%. Mesophilic aerobic bacteria, lactic acid bacteria (LAB) and 

yeast growth were not significantly different in mahewu fortified with either of the 

iron compounds. There was no significant difference between bitter or sweet 

varieties. It is recommended that fortification occurs at the end of traditional 

fermentation when done at household level. However, where flour is being 

milled in larger villages, it could be fortified prior to sale in informal markets. 

There is also the possibility of large-scale commercial applications. 
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Mozambique. 

4.2. Introduction 

Mahewu is a non-alcoholic fermented beverage consumed traditionally in 

several African and Arabian Gulf nations.1 It is usually made by fermenting 

maize or sorghum using millet malt or a wheat flour starter culture.1,2 

Spontaneous fermentation is due to lactic acid bacteria (LAB) and yeast,.2 

Maize mahewu has been produced commercially in Botswana, South Africa and 

Zimbabwe.3-5 Commercially, maize mahewu has also been enriched with, 

minerals and vitamins to improve the nutritional value.6 Studies have reported 

that the LAB in maize mahewu raises the protein concentration and 

bioavailability of amino acids as well as improving levels of the B group of 

vitamins.7 Mahewu, like other non-alcoholic fermented foods such as yoghurt, 

has probiotic properties that can sustain health.8,9 

In Mozambique, maize is scarce and expensive, as very little is grown locally, 

so mahewu is made from staples like cassava, sweet potatoes or rice. 

However, home-grown cassava is mainly used in rural areas as the other two 

staples are also expensive.10 Unfortunately cassava contains cyanogenic 

glycosides and anti-nutritional substances.11 Processing techniques, including 

fermentation, can reduce these to a safe level, or eliminate them entirely.12 

Fermentation promotes the bioavailability of minerals such as calcium, iron and 

zinc.1 No published information on cassava mahewu could be found, but it is 

likely that, as for maize, fermentation would increase the protein concentration 

and the bioavailability of amino acids and minerals. As fortification of maize 

mahewu has proved effective, it is possible that cassava mahewu could also be 

successfully fortified with iron.  

Excessive iron in the diet  is known to be toxic, however previous research 

found that the concentration of iron in cassava roots was much lower than the 

minimum daily requirement for dietary iron (See Chapter  2 and 3). Ferrous 

sulfate (FeSO4.7H2O) and ferrous fumarate (C4H2FeO4) have been used for iron 

fortification of several food staples including maize flour in countries such as 
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Brazil, Mexico and Venezuela.13 Ferrous sulfate is a water soluble iron source, 

which can cause sensory changes in the fortified food. It is recommended for 

the fortification of foods with a short shelf life. Ferrous fumarate is poorly soluble 

in water with fewer sensory effects in the fortified food.14 The absorption of iron 

from the fortified food depends on various factors such as iron status of the 

consumer and the presence of enhancers or not.15 When maize flour is fortified 

with iron without the addition of enhancers the absorption of ferrous sulfate and 

ferrous fumarate has been reported to be similar.16 However, the absorption of 

ferrous sulfate was found to be higher than that of ferrous fumarate in young 

children and infants diagnosed with iron deficiency.16 Iron fortification of food 

with ferrous sulfate has been shown to significantly increase serum ferritin and 

hemoglobin levels and decrease anaemia in women of reproductive age and 

pregnant women.17 According to the WHO, the iron compounds recommended 

for fortification of wheat and maize include ferrous sulfate, ferrous fumarate, and 

sodium iron EDTA (NaFeEDTA).18 However, during the current study, only 

ferrous fumarate and ferrous sulfate were commercially obtainable as they 

appeared to the compounds most generally used for fortification of staple 

carbohydrates. 

It has been estimated that about 40% of anaemia cases are due to a deficiency 

of iron in the diet.19 It was shown that cassava roots from four districts of 

Mozambique were very low in iron, even when grown in iron rich soils (See 

Chapter 3) and this may be a contributory factor. It is well recognized by WHO 

that iron fortification is valuable for vulnerable populations suffering from dietary 

anaemia.  

The objectives of this study were to investigate and standardize the 

fermentation of cassava mahewu with a view to comparing the effect of 

fortification before or after fermentation, the effect of cyanogenic glycosides 

(sweet or bitter types) and the type of iron compound to be used.  
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4.3. Materials and methods 

4.3.1. Cassava  

Cassava roots were collected in May 2013 from small-scale farmers in four 

districts of Mozambique. Five samples of each variety were collected from each 

district. Sweet cassava roots (varieties Calamidade and Munhaca) were 

collected from Meconta and Zavala Districts located in Nampula and 

Inhambane Provinces, respectively. Bitter cassava roots (varieties Tomo and 

Incirricano) were collected from Rapale and Alto Molocue Districts situated in 

Nampula and Zambézia Provinces, respectively.  

4.3.2. Cassava flour preparation 

Cassava roots were peeled, washed with tap water, grated and sun-dried 

before preparing the flour (Figure 3 and 4, Appendix 9), as done traditionally in 

villages in Mozambique.  This dried cassava root, was pounded with a pestle 

and mortar and then sieved to prepare the flour used for cassava mahewu 

(Figure 5 and 6, Appendix 9). All instruments and containers used for flour 

preparation were made from plastic or wood to prevent contamination with 

metals.  

4.3.3. Mahewu preparation 

Flour from each of the bitter cassava varieties, was mixed together in equal 

portions, to prepare a representative sample of bitter cassava and the same 

procedure was followed for sweet cassava flour. 

Cassava flour was fermented in the laboratory under controlled conditions, 

following the method described by Mutasa and Ayebo3 and Bvochora et al.4 for 

maize mahewu, with minor modifications. A 20 g portion of cassava flour was 

mixed with 49 mL of distilled water, and then added to 150 mL of boiling water. 

The mixture was boiled on a magnetic stirrer/hotplat, (FMH Electronics, STR-

MH, F1093-0207, 230V ± 1050 HZ 500 watt, Durban, South Africa) for 10 min to 

gelatinize the starch (Figure 7, Appendix 9). It was then set aside to cool to 

25°C. This porridge was transferred to a 250 mL glass Erlenmeyer flask and 
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1.25 g of starter culture (freeze-dried cassava mahewu previously prepared in 

the traditional manner), was added and mixed thoroughly.  

A pilot study showed that the end-point of approximately pH 4.5 was 

consistently reached after 24 hours at 45oC and thereafter the pH stabilized. 

Thus the broth was fermented in a Labcon Standard Incubator, (Forced 

Circulation incubator, FSIM, with temperature range +5°C to 90°C, Maraisburg, 

South Africa) at 45°C for 24 h (Figure 8, Appendix 9). During the fermentation 

period, changes of pH, titratable acidity (acid concentration) and total solids 

were measured at hour 0 and hour 24. At the same time (hour 0 and hour 24) 

samples were collected for microbial analysis (aerobic mesophylic bacteria, 

LAB and yeast). The schematic flow of cassava mahewu preparation is 

presented in Figure 4.1. 

Cassava Roots

Cassava roots washed with tap water

Cassava roots grated with plastic grater

Grated cassava roots were sun dried on a plastic surface 

Sun dried cassava roots were powdered using wood pestle and mortar

Powdered cassava roots sieved using a plastic sieve

Cassava flour

Cassava flour (20 g) + 49 mL distilled water

Boiled water 150 mL

Cooking (10 min)

Cooling 25°C

Cooked porridge + starter 
culture (1.25 g) + iron 

fortification

Cooked porridge + 
starter culture (1.25 

g)

Analysis (pH, 
titratable acidity 
and microbial)

Analysis (pH, 
titratable acidity 
and microbial)Fermentation 45°C Fermentation 45°C

Cassava mahewu fortified 
with iron at the beginning 

of fermentation 

Analysis (pH, 
titratable acidity 
and microbial)

Fermented cooked 
porridge

Cassava mahewu
fortified with iron at the 

end of fermentation 

Iron fortification

Analysis (pH, 
titratable acidity 
and microbial)  

Figure 4.1: Schematic presentation of the preparation of cassava mahewu and indication of the stage at which iron is 

added.  
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4.3.4. pH changes, titratable acidity and total solids 

The pH of mahewu was measured just after the addition of starter culture, at 

hour 0 and repeated at hour 24, the end of the fermentation period. The 

titratable acidity was determined by titrating 9.00 mL of the sample with 0.100 M 

NaOH and phenolphthalein as indicator. The concentration of acid was 

expressed as a percentage of lactic acid, according to the formula: 

mL of 0.1 M NaOH x normality of NaOH x Mol wt of acid 

% lactic acid = 

mL of sample x 10 

Total solids were determined using a freeze drying technique. Prior to freeze 

drying, the freeze drier cups were washed, dried and placed in a desiccator 

overnight. The mass of freeze drier cups were measured, mahewu was 

transferred and they were reweighed. The mahewu in the cups was freeze dried 

using a freeze drier (Air and Vaccum thechnologies, Intruvac 13 KL, V150120, 

final pressure 0.03 bar, Durban, South Africa) over 5 days, then reweighed. The 

following formula was used to express the results on a dry weight basis: 

                  Mass of dry sample 

% Total solids = 

Mass of sample before freeze drying x 100 

 

4.3.5. Microbial analysis 

Fermented mahewu was serially diluted and 1 mL aliquots were plated onto 

Nutrient Agar (NA), Malt extract Agar (MEA) and de Man, Rogosa & Sharpe 

(MRS) Agar (Merck, Germany). The NA plates were incubated at 37°C for 24 h, 

to assess if mesophylic aerobic bacteria were present. The MRS agar plates 

were incubated at 37°C for 48 h under anaerobic conditions, to assess the 

growth of LAB. The MEA plates were incubated at 25°C for 5 days to assess if 

yeast was present. At the end of the incubation period, colony counts were 

performed (Figure 9, Appendix 9). 
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4.3.6. Iron fortification of mahewu 

Cassava mahewu was fortified with two different iron sources, ferrous sulfate 

(FeSO4.7H2O) and ferrous fumarate (C4H2FeO4) at two different stages: at the 

beginning (hour 0 when the starter culture was added) and at the end of 

fermentation (hour 24). Different stages of fortification were investigated to 

determine when cassava mahewu should be fortified, either at home or as a 

commercial product, see Figure 4.1.  

 
The amount of iron compound added to cassava mahewu (68 mg/100 g) was 

based on the average of the prescribed range of iron used to fortify maize meal 

(2.9 - 5.7 mg/100 g).20 The “overage”, which is the extra amount of the fortificant 

added to the flour to compensate for storage and processing losses, was 

calculated as 1.2 mg. 20  

Ferrous sulfate (6.8 g) or ferrous fumarate (3.8 g) was dissolved in 100 mL of 

distilled water and 1 mL of the solution added to the mahewu. For fortification at 

the end of the fermentation process (24 h), 6.2 g of ferrous sulfate or 3.45 g 

ferrous fumarate, was dissolved in 100 mL distilled water and 1 mL of the 

solution added to the mahewu (Figure 10, Appendix 9). 

Samples taken to compare the effects of adding iron at the beginning or end of 

fermentation were in each case taken following the addition of iron compound. 

That is to say sampling at 0 hours followed addition of iron and sampling at 24 

hours, was also done after iron fortification, for each iron compound (Figure 

4.1). 

4.3.7 Data Analysis 

Mahewu was prepared in duplicate for each variety of cassava (bitter or sweet). 

Samples for each repeat of the bitter or sweet variety of cassava were taken in 

duplicate for pH and titratable acidity. During microbial analysis serially diluted 

(10-1 to 10-6) samples of each repeat were plated in duplicate on each medium 

(NA, MRS and MEA). All data was analyzed using STATA version 12 with ONE 

way analysis of variance (ANOVA) at 95% confidence level.   
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4.4. Results and discussion 

Traditionally, mahewu takes approximately 48 h to ferment at room 

temperature. During the pilot phase of this investigation, standardization 

experiments were performed at different temperatures and it was found that 

increasing the temperature resulted in mahewu with a similar appearance in a 

shorter time. This shorter time and higher temperature would be more suitable 

for commercialization of cassava mahewu. Having specific controlled 

temperature-time parameters for standardized fermentation also would result in 

improved food safety and quality of mahewu, as it has been reported that 

uncontrolled temperatures could be responsible for the inhibition of LAB and 

growth of adverse microorganisms.21  

Table 4.1 shows the variation in pH, titratable acidity and total solids during 

fermentation of sweet and bitter cassava. Mahewu was fortified using two 

different sources of iron, added either before or after fermentation. During the 

fermentation process, as the pH decreased, the acidity increased and the 

microorganisms proliferated. When mahewu made from bitter and sweet 

cassava were compared, there was no significant difference in pH changes and 

titratable acidity at the 95% confidence level. There was also no significant 

difference in pH changes and titratable acidity between mahewu fortified at the 

beginning of fermentation or fortified after 24 h (p ≥ 0.05).   
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                       Table 4.1: Comparison of pH changes, titratable acidity and total solids using two iron compounds. 

    FeSO4.7H2O Fortification C4H2FeO4 Fortification Control 

Hours parameters BTBa SWBb BTEc SWEd BTBa SWBb BTEc SWEd BTe SWf 

0 

*pH 6.05 ± 0.02 5.87 ± 0.30 6.18 ± 0.06 5.82 ± 0.05 5.99 ± 0.06 6.22 ± 0.18 6.10 ± 0.12 6.28 ± 0.13 6.13 ± 0.06 6.13 ± 0.00 

*Acidity 

(%) 
0.07 ± 0.01 0.08 ± 0.01 0.06 ± 0.00 0.05 ± 0.02 0.06 ± 0.01 0.05 ± 0.00 0.05 ± 0.03 0.06 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 

24 

*pH 4.50 ± 0.01 4.53 ± 0.01 4.58 ± 0.06 4.51 ± 0.13 4.46 ± 0.21 4.42 ± 0.24 4.5 ± 0.04 4.51 ± 0.13 4.57 ±0.01 4.57 ± 0.01 

*Acidity 

(%) 
0.33 ± 0.05 0.35 ± 0.04 0.27 ± 0.00 0.29 ± 0.00 0.26 ± 0.02 0.29 ± 0.04 0.24 ± 0.01 0.27 ± 0.04 0.25 ± 0.00 0.30 ± 0.17 

*Total solids (%) 9.71 10.2 8.90 9.95 9.56 9.55 9.52 9.76 9.82 9.51 

aBitter variety fortified at the beginning 
 bSweet variety fortified at the beginning 
 cBitter variety fortified at the end  
 dSweet variety fortified at the end 
 eBitter variety 
 fSweet variety 
*Values with no significant difference p ≥ 0.05. 

 

 

 



106 
 

Table 4.2: Microbial counts (Log10 CFU/mL) of iron fortified cassava mahewu at 0 h and 24 h fermentation. 

  

  FeSO4.7H2O Fortification  C4H2FeO4 Fortification  Controle 

Hour BTBa BTEb SWBc SWEd BTBa BTEb SWBd SWEe BTe SWf 

Aerobic 

mesophylic 

bacteria 

0 5.68 ± 0.02 5.70 ± 0.01 5.71 ± 0.06 5.56 ± 0.04 4.95 ± 0.11 4.80 ± 0.14 4.55 ± 0.01 4.80 ± 0.10 4.01 ± 0.00 4.10 ± 0.12 

24 7.96 ± 0.10 7.67 ± 0.22 7.69 ± 0.15 7.15 ± 0.15 7.83* ± 0.04 7.57** ± 0.07 7.57 ± 0.60 7.45 ± 0.21 7.12* ± 0.02 7.59** ± 0.01 

Lactic acid 

bacteria 

0 3.86 ± 0.42 4.06 ± 0.00 4.21 ± 0.44 3.88 ± 1.05 3.95 ± 0.17 3.8 ± 0.01 3.56 ± 0.70 3.30 ± 0.01 3.59 ± 0.65 3.84 ± 0.04 

24 7.72 ± 0.26 7.31 ± 0.01 7.11 ± 0.25 7.53 ± 0.10 7.52 ± 0.25 7.51 ± 0.03 7.51 ± 0.02 7.50 ± 0.12 7.22 ± 0.05 7.17 ± 0.08 

Yeast 
0 3.41 ± 0.00 2.93 ± 0.32 3.28 ± 0.87 3.48 ± 0.49  3.86 ± 0.88 3.18 ± 0.80 3.52 ± 0.32 3.40 ± 0.54 3.86 ± 0.21 3.76 ± 0.00 

24 6.84 ± 0.46 6.83 ± 0.30 7.04 ± 0.19 6.71 ± 0.72 7.43 ± 0.06 7.46 ± 0.32 7.51 ± 0.01 7.25 ± 0.45 5.91 ±0.51 6.82 ± 0.16 

aBitter variety fortified at the beginning 
bBitter variety fortified at the end 
 cSweet variety fortified at the beginning 
  dSweet variety fortified at the end 
eBitter variety 
 fSweet variety. 
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 The mean pH, with or without fortification, at the start of the fermentation 

process, was 6.08 (range 5.87-6.28) and at the end it was 4.52 (range 4.50-

4.58). The average total solids in mahewu made from both bitter and sweet 

cassava, with and without iron fortification, was 9.65% (range 8.90-10.2%). The 

mean acidity at the beginning of fermentation was 0.07% (range 0.05-0.09%) 

and after 24 h 0.29% (range 0.24-0.35%).   

Table 4.2 presents comparisons of microbial counts in mahewu from sweet or 

bitter cassava, with two different iron compounds used for fortification, at hour 0 

and hour 24 as mean Log10 CFU/mL ± standard deviation. There was a 

significant increase in microbial counts of aerobic mesophylic bacteria, LAB and 

yeasts from 0 to 24 h (p ≥ 0.05). The microorganisms mainly involved in 

fermentation were LAB and yeast. It can be seen that there was no significant 

differences in the microbial counts (p ≥ 0.05) in mahewu made from bitter or 

sweet cassava. However,  yeast counts after fermentation appeared to be 

slightly higher in the mahewu fortified with FeSO4.7H2O  or C4H2FeO4, 

compared with controls, in both sweet and bitter cassava (p ≥ 0.05) (Table 4.2). 

The relatively higher counts of yeast may have been because it used the iron 

sources for metabolism and growth. According to Pan et al.22 yeast has the 

capacity to accumulate iron.  This also agrees with earlier studies reporting iron 

as an essential mineral for yeast metabolism,23 although LAB are able to grow 

well in an environment without iron.24  

This increase in LAB and yeast during fermentation from hour 0 to hour 24 

suggests that these microbes were mainly responsible for the fermentation of 

cassava mahewu.  

The significance and participation of LAB and yeast in the fermentation of 

traditional foods, including cassava, have been described in previous studies.5 

The association of LAB and yeast as fermentation agents, found in cassava 

mahewu (Table 4.2), also agreed with what was previously reported for maize 

mahewu.4,25 It is suggested that LAB and yeast facilitate the breakdown of 

numerous complex compounds, making them into simple and easily digestible 

substances that improve nutrient quality.26  



108 
 

The participation and roles of yeast in traditional fermented drinks have been 

described.27 Yeast has also been related to fermentation of other cassava 

products such as agbelima28 and fufu.29 The presence of LAB and yeast in 

cassava mahewu probably also influences the organoleptic properties and 

enzymatic quality of traditional cassava mahewu. A previous work reported the 

involvement of LAB and yeast in development of typical characteristics including 

smell, taste, visual appearance, and consistency of fermented cassava foods.27  

Although ferrous sulfate is more soluble in water,16  both ferrous sulfate and 

ferrous fumarate appear to be good sources of iron for cassava mahewu 

fortification,  although the World Health Organization suggests ferrous sulfate as 

the primary choice for this application.30  

During cassava mahewu fermentation, as the LAB multiplied, the pH declined 

and acidity increased, probably due to the fermentation of sugar to form lactic 

acid. This favoured the growth of yeast, which proliferates at a lower pH. This 

finding is in agreement with that of Silva and Yang31 who reported that pH is a 

key factor in the growth of microorganisms and the biosynthesis ratio of lactic 

acid. Cassava flour had been reported as being a good substrate for lactic acid 

production through fermentation.32  

Table 4.3 shows the parameters of a standardization procedure for the 

preparation of iron fortified traditional cassava mahewu in Mozambique. The 

mean pH of fortified cassava mahewu found in this study, was 4.5 and the 

acidity was 0.29%.  The mean solid content of standardized cassava mahewu 

fermented in this study, was found to be 9.65%. 

The parameters found for cassava mahewu in the present study differed from 

those observed for South African indigenous maize mahewu, which has been 

reported as having a pH between 2.74 and 3.5, and acidity between 0.4 and 

0.5% when produced under laboratory conditions by different 

researchers.3,4,20,33  Several studies have reported that the best indigenous 

maize mahewu contained a solid substrate of 8 to 10%,3,4 which was in 

agreement with the solid substrate found in the present study. 
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Table 4.3: Parameters for standardized preparation of iron fortified traditional 

cassava mahewu in Mozambique. 

Mahewu fortified with FeSO4.7H2O Mahewu fortified with C4H2FeO4  

Amount of cassava flour 20 g 20 g 

Total amount of water 200 mL 200 mL 

amount of starter culture 1.25 g 1.25 g 

Fermentation temperature 45°C 45°C 

Cooking time 10 minutes 10 minutes 

Iron added at beginning 6.8 mg 3.8 mg 

Iron added at end 6.2 mg 3.45 mg 

pH before fermentation 5.98 6.15 

pH after fermentation 4.53 4.47 

% lactic acid before fermentation 0.065 0.055 

% lactic acid after fermentation 0.31 0.27 

Total solids (%) 9.7 9.6 

 

It can be seen from the literature reviewed above that parameters for maize 

mahewu vary. The difference between the present study on cassava mahewu 

and the literature on maize mahewu possibly lies in the quality and quantity of 

microorganisms in the starter culture not being identical, as present results 

using a standardized method were repeatable.  

Cassava also has different types and proportions of carbohydrates to maize and 

these may not ferment in the same manner, resulting in a different pH and 

acidity to maize mahewu.  Based on the above discrepancies found with maize 

mahewu, it was clear that there was a need for controlled conditions and 

established reproducible portions of ingredients, in order to obtain standardized 

parameters for the fermentation of cassava mahewu prior to fortification with 

iron (Table 4.3). 

From the results of this study it is suggested that the end of fermentation is the 

best stage for iron fortification when traditional mahewu is prepared at home 
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from cassava roots, particularly in rural communities who would not buy 

cassava flour. Traditionally, home fermented cassava mahewu is sweetened by 

adding sugar, just prior to consumption and fortification could occur at that 

point. Home fortification using sachets containing several minerals and vitamins 

in powder form, which could be spread over or mixed into semi-solid foods have 

been reported to address micronutrient deficiencies, including iron deficiency, in 

young vulnerable children.34 In contrast, the best stage for iron fortification of 

cassava mahewu made commercially would be at the beginning of the 

fermentation process. Cassava flour could be fortified during the milling 

process.   

Mass fortification of flour has been reported to have favorable results for foods 

consumed by the public. Targeted fortification is used to raise the intake of a 

specific micronutrient for a particular group of people at risk.30 Cassava is 

produced and consumed throughout Mozambique and mass fortification would 

work for urban communities, who would probably buy fortified cassava flour or 

commercially produced fortified cassava mahewu. However, in rural areas 

where mahewu is made from home grown cassava roots, a targeted approach 

would be better. It is suggested, that a flavoured, fortified sugar could be 

supplied for use with traditional cassava mahewu. Distributions to people that 

are known to have iron deficiencies, particularly young children and women of 

childbearing age could be through NGOs involved in rural clinics and schools. 

4.5. Conclusions 

Cassava mahewu, fortified with iron, was prepared using a standardized 

method which could be used for both traditional and commercial production, 

with iron fortification. Commercial application of the method could have a 

positive impact on the socioeconomics of Mozambique as well as improving the 

nutritional status of vulnerable communities.  

The fermentation of cassava mahewu may also increase bioavailability of iron 

after fortification. Previous studies on cassava fermentation have reported an 

increase of the bioavailability of minerals such as calcium, iron and zinc.35 

Cassava mahewu is known to contain an organic acid (lactic acid), which could 
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also potentially increase iron uptake.  According to Teucher et al.36 fermented 

foods with high levels of organic acids are appropriate vehicles for iron 

fortification. This needs more investigation and will be tested in Chapter 5. 

As a majority of the population in Mozambique consume cassava, iron fortified 

cassava mahewu could significantly improve food security and nutrition 

throughout the country. It is also very important that there was no statistical 

difference in mahewu produced from sweet or bitter cassava, as the bitter type 

is more easily grown at subsistence level, because it is more pest and drought 

resistant than the sweet type.37 Irrespective of the stage at which the cassava 

mahewu is fortified with iron it would be beneficial to vulnerable rural 

populations in Mozambique, most of who consume this traditional beverage and 

also suffer from iron deficiency anaemia. 

4.6. Limitations 

The fermentation of cassava mahewu could also reduce or eliminate 

cyanogenic glycosides and other anti-nutritional substances found in cassava 

roots, due to increased acidity.12 In the present study the cyanogenic glycoside 

content of fortified and unfortified cassava mahewu was not determined, as it 

was beyond the scope of the current investigation. The importance of 

fermentation of cassava to decrease the level of cyanogenic to safe levels for 

human consumption was based in previous studies on fermentation of cassava 

based food.  

The microbial assessment on this study was done at a level that allowed only 

for the identification and quantification through counting Log10 CFU/mL of 

mesophylicaerobic bacteria, LAB and yeast. No attempt was made to identify 

individual species, as the primary objective was to evaluate whether there was 

a significant difference between sweet and bitter roots and two kinds of iron 

compounds, when mahewu was fermented and fortified. 
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CHAPTER 5 

IN VITRO BIOACCESSIBILITY OF IRON FORTIFIED CASSAVA 
MAHEWU: A NON-ALCOHOLIC FERMENTED BEVERAGE IN 

MOZAMBIQUE 
 
 

5.1. Abstract 

Fortification of the popular non-alcoholic beverage cassava mahewu, with iron 

could help alleviate the chronic dietary anaemia present in nearly half the 

population of Mozambique. Cassava roots from four areas in Mozambique were 

found to be consistently low in iron, despite high levels in soil. Therefore iron 

fortification of mahewu, a widely consumed fermented drink, was 

recommended. However, this iron must be bioavailable to the consumer. 

Inductively Coupled Plasma-Optical Emission Spectrometer and in vitro 

dialysability were used to assess total iron content and bioaccessibility in 

mahewu made from sweet and bitter varieties of cassava. Mahewu was fortified 

with either ferrous sulfate or ferrous fumarate at the beginning or end of 

fermentation. The proportion and concentration of bioaccessible iron was 

significantly higher (p<0.05) in  mahewu  made from  bitter varieties of cassava, 

fortified with ferrous sulfate, although ferrous fumarate was  more bioavailable 

in mahewu made from sweet varieties.  The stage of fortification was found to 

affect neither the total iron concentration nor iron bioaccessibility.  It was 

concluded that ferrous sulfate was the preferred iron source for fortification of 

mahewu made from bitter cassava varieties. At household level it was 

recommended that fortification takes place after fermentation, at the stage when 

sugar is traditionally added to mahewu. However, commercially, cassava flour 

could be fortified prior to fermentation. 

Key words: Bioaccessibility, Cassava mahewu, Ferrous fumarate, Ferrous 

sulfate, Iron fortification.   
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5.2. Introduction 

The prevalence of under-nutrition in Mozambique is approximately 38%, of 

which 43% of children younger than 5 years are moderately, 20% chronic and 

8% acutely undernourished.1 In Mozambique dietary anaemia resulting from 

iron deficiency is recognized as a public health concern, with an occurrence of 

approximately 40%.2 The prevalence of anaemia in children younger than five 

years of age was estimated as 69%; of which 26% were mildly, 39% moderately 

and 4% severely anaemic.1 

Cassava is an important staple food in Mozambique. It is widely cultivated 

across the country, mainly by small-scale farmers.3 Approximately 94% of 

cassava production is consumed by humans, with 4% made available for animal 

feed and industrial use.4 While cassava is an excellent source of carbohydrates, 

it contains low levels of protein and micro nutients.5 As shown in Chapter 3, 

cassava roots from four areas in Mozambique were found to be consistently low 

in iron, despite high levels in soil.  

It has been strongly suggested that communities dependent on plant-derived 

foods for their major dietary intake, should consider iron fortification.6 The 

recommendation for fortification of cassava mahewu has been supported by 

reports that populations consuming cassava as their basic energy source are at 

risk of deficient iron intake.7  To date cassava mahewu has not been fortified in 

Mozambique. Safe fortification and consumption of cassava could alleviate the 

iron deficiency of vulnerable populations such as pregnant and nursing mothers 

and young children.8  Taking into account the results of analysis of cassava 

roots from different parts of Mozambique (see Chapter 3) iron fortification of 

frequently consumed cassava products was recommended. 

Cassava is consumed in various forms: stiff porridge (karakata) and roasted 

cassava or rale;9 bread and other baked products;10 cooked cassava mixed with 

vegetable and peanuts (xiguinha) and mahewu.8 Cassava mahewu is a non-

alcoholic fermented traditional beverage frequently consumed in Mozambique 

and is made using both bitter and sweet cassava. Chapter 4 has described a 

standard method for fermentation of mahewu and shown that fortification with 
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either ferric sulfate or ferric fumarate, was successful both at the beginning or 

end of fermentation. At village level, just before consumption, sugar is added to 

the beverage in order to sweeten it and this offers an opportunity for fortification 

with iron. Maize mahewu, which has a similar fermentation process to cassava 

mahewu, is fortified with minerals at industrial level.11 This suggests that 

fortification of cassava flour to be used for mahewu, could also be done prior to 

fermentation. However, literature on iron fortification emphasizes that the 

bioavailability (bioaccessibility) of iron in a particular product, is an essential 

component in deciding which iron compound should be used.12 

The aim of this study was thus to assess the bioaccessibility and total iron 

content of mahewu made from sweet and bitter varieties of cassava and fortified 

with either ferrous fumarate or ferrous sulfate.  

5.3. Materials and methods 

The collection of cassava roots, flour and mahewu preparation and the 

fortification of were performed as described in Chapter 4 (4.3.1, 4.3.2, 4.3.3 and 

4.3.4).  

5.3.1. Mahewu iron fortification  

Cassava mahewu was fortified with two different iron sources, ferrous sulfate 

(FeSO4.7H2O) and ferrous fumarate (C4H2FeO4) at two different stages; the 

beginning (hour 0 when the starter culture was added) and end of fermentation 

(hour 24). The selection of different stages of fortification was to determine 

whether cassava mahewu should be fortified at home or at commercial level. 

The amount of iron added to cassava mahewu (68 mg/100 g) was based on the 

average of the prescribed range of iron used to fortify maize meal (2.9 mg/100 g 

to 5.7 mg/100 g.13 The “overage”, which is the additional amount of the 

fortificant added to the flour, to compensate for storage and processing losses, 

was calculated as 1.2 mg.13 The ferrous sulfate (6.8 g) or ferrous fumarate (3.8 

g) was diluted in 100 mL of distilled water then 1 mL of the solution added to the 

mahewu for the fortification at the beginning of fermentation (0 h).  For 

fortification at the end of the fermentation process (24 h), 6.2 g of ferrous sulfate 



 

120 
 

or 3.45 g of ferrous fumarate, was dissolved in 100 mL distilled water and 1 mL 

of the solution added to the mahewu. 

5.3.2. Iron content and in vitro bioaccessibility 

Iron content of the cassava flour and fortified mahewu was analyzed using an 

Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) 

(Spectro Arcos, Spectro Analytical Instruments, Kleve, Germany).  In vitro 

bioaccessibility of iron from fortified cassava mahewu was determined using the 

dialysis method described by Luten et al.14 Digestive enzymes used were 

pepsin (P-7000), pancreatin (P-1750), and bile extract (B-8631) that were 

procured from Sigma (Johannesburg, South Africa). Dialysis tubing used was 

Spectra/Por 7 (Ø = 20.4 mm) with a molecular weight cut-off (MWCO) of 10 kDa 

(G.I.C. Scientific, Johannesburg, South Africa) (Figure 11, Appendix 9). The iron 

content of the dialysate was assessed using the ICP-OES.  Working multi-

element standard solutions were prepared by dilution of the stock standard 

solutions (1000 mg/l, Merck, Germany) to the desired concentration. The 

ranges of the calibration standards were selected to match expected 

concentrations of iron in the samples analyzed by ICP-OES (Figure 12, 

Appendix 9).  

5.3.3. Statistical analysis  

Samples of cassava mahewu were homogenized independently and duplicated 

at the gastric stage. At the intestinal stage the duplicated homogenized samples 

were replicated to a final five repetitions. All data was analyzed using STATA 

version 12 with one way and/or multifactor analysis of variance (ANOVA) at 

95% confidence level. 

5.4. Results and discussion  

A significant (p<0.05) difference was found in acidity and pH at the beginning 

and end of fermentation of cassava mahewu (Table 5.1). These findings were 

supported by previous studies on maize mahewu fermentation.15 The changes 

were ascribed to fermentation by lactic acid bacteria (LAB) and yeast, which 

converts the starch into sugars to produce lactic acid, leading to a decrease in 
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pH.16 Both the decrease in pH and increase in acidity of cassava mahewu have 

been considered as factors that could affect the safety or quality of cassava 

mahewu. The reduction in pH has been reported to be the result of antimicrobial 

action in fermented food.17 Also, the product of fermentation, lactic acid, has 

been shown to have antimicrobial activity.18 Although the pH and acidity of 

mahewu changed during fermentation, the total solid content and end pH 

remained more or less the same, whether fortified with iron at beginning or end 

of fermentation, using either bitter or sweet varieties.  

Table 5.1: Chemical characteristics of cassava mahewu before and after 

fortification with iron. 

Independent variables   Acidity (%) pH Total solids (%) 

 

Stage of fortification 

Beginning  0.06a 6.0b * 

End  0.30b 4.4a 9.6a 

 

Type of cassava 

Bitter  0.30a 4.4a 9.5a 

Sweet 0.30a 4.4a 9.6a 

 

Iron source 

Ferrous sulfate  0.30a 4.5b 9.5a 

Ferrous fumarate  0.31a 4.3a 9.6a 

Control 0.31a 4.3 a 9.4a 

a, b – Values within the same independent variable with different superscripts differ significantly (p ≤ 0.05). 

*Main effects ANOVA did not include the % of total solids, as this was not measured at the beginning of fermentation. 

 

Traditionally cassava mahewu is considered to be safe for consumption if 

consumed within two days after fermentation if kept at room temperature. 

Pasteurized maize mahewu (pH ~3.5) has been reported to be safe for 

consumption up to 21 days after production if stored at 4°C.19 
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It has been seen from Chapter 3 that iron concentrations in cassava roots used 

to make mahewu were below the limit of detection of the instrument.  This 

finding implies that the cassava roots contained little or no intrinsic iron; which is 

in agreement with earlier reports for this plant.20   

Table 5.2 shows the influence of stage of fortification, type of cassava (bitter or 

sweet) and iron source (Ferrous sulfate or ferrous fumarate) on the proportion 

and amount of bioaccessible iron. The total iron content of the different mahewu 

fermentations made from bitter or sweet cassava, fortified with ferrous sulfate or 

ferrous fumarate, was similar at both stages of fortification (beginning or end) of 

fermentation for each iron source (ferrous sulfate or ferrous fumarate). Ferrous 

sulfate showed a significantly higher % bioaccessibility in bitter cassava than 

ferrous fumarate. However the proportional bioaccessibility of ferrous fumerate 

was higher in sweet cassava than bitter cassava at the end of fermentation.  

The total iron content of mahewu fortified with ferrous sulfate or fumarate was 

below 68 mg/100 g, the initial concentration of added iron (Table 5.2). This 

finding is in agreement with Ikpeme-Emmanuel et al. 21who fortified  cassava 

meals (gari and fufu) with 20 mg/100 g of ferrous sulfate (FeSO4), iron (III) 

sulfate (Fe2(SO4)3) and ferric alum ( NH4Fe(SO4)2·12 H2O-FA). These were 

shown after fortification to have an iron content for gari of 10.70 mg/100 g 

(FeSO4), 8.80 mg/100 g (Fe2(SO4)3) and 12.40 mg/100 g (FA); and for fufu of 

13.40 mg/100 g (FeSO4), 14.76 mg/100 g (Fe2(SO4)3) and 13.85 mg/100 g 

(FA).21 This decrease in iron content may be ascribed to changes in the 

oxidation state of iron or loses of iron during the fortification stage or during the 

processing procedure. 

Mineral bioaccessibility is expressed as the amount (mg/100 g, db) of 

bioaccessible (dialysable) iron in the sample and the percentage (%) 

bioacessibility iron in the dialysate relative to respective total iron content.  A 

significant (p<0.05) difference was observed in the percentage bioaccessible 

iron in mahewu fortified with either ferrous sulfate or ferrous fumarate). A higher 

percentage of iron was bioaccessible in mahewu fortified with ferrous sulfate. 

The difference in bioaccessibility of ferrous sulfate and ferrous fumarate is well 

known22 and the present results confirm the latter findings.  
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The difference in total iron content between mahewu made from bitter or sweet 

varieties of cassava fortified with ferrous sulfate or ferrous fumarate, may be 

due to the difference in nutritional and ant-nutritional substances found between 

the varieties.23 This difference could also be partially due to the solubilities of 

ferrous sulfate and ferrous fumarate in water.  In the present study fortification 

was carried out using aqueous solutions of sulfate and fumarate; which seems 

to have had an influence on the amount of iron added to the mahewu. Ferrous 

sulfate is reported to be more soluble in water than ferrous fumarate.24 This may 

also have to be due to the fermentation process as it is known to cause 

changes in physicochemical and functional characteristics of cassava.25  

Table 5.3 shows the effect of variety, iron source and stage of fortification on 

the recommended RDA and absolute requirements of vulnerable communities. 

The percentage of bioaccessible iron when cassava mahewu was fortified with 

ferrous sulfate was significantly (p<0.05) higher if made from the bitter variety, 

whereas the percentage of bioaccessible iron after ferrous fumarate fortification 

was significantly (p<0.05) higher when made from the sweet variety. Ferrous 

sulfate fortification of mahewu made from the bitter variety of cassava was 

found to be more bioaccessible than the other preparations (Table 5.2 and 

Table 5.3). The stage of fortification (beginning or ending) did not affect the iron 

content nor the amount or percentage of bioaccessible iron, in the edible 

portion.  . 
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Table 5.2: The effect of iron fortification, stage of fortification and cassava variety on the total iron content, iron bioaccessibility and 

amount of bioaccessible iron. 

Fortificant Cassava type Stage of fortification 
Total Iron content 

(mg/100 g, db) 
Iron bioaccessibility (%) 

Amount of bioaccessible iron (mg/100 

g, db) 

 

 

Ferrous sulfate 

 

Bitter 

Beginning of fermentation 10.0c ± 0.0 26.3e ± 1.8 2.63d ± 0.2 

End fermentation 11.4c ± 0.7 21.4d ±1.8 2.43d ± 0.2 

 

Sweet 

Beginning of fermentation 18.2d ± 1.5 4.9a ± 0.4 0.88c ± 0.04 

End fermentation 17.9d ± 2.6 5.2a ± 0.4 0.94c ± 0.04 

 

 

Ferrous fumarate 

 

Bitter 

Beginning of fermentation 8.1bc ± 2 7.8b ±1.1 0.63b ± 0.1 

End fermentation 6.1ab ± 2.4 4.4a ± 1.7 0.26a ± 0.2 

 

Sweet 

Beginning of fermentation 4.0a ± 1.2 12.7c ± 1.1 0.50b ± 04 

End of fermentation 4.5a ± 2.3 10.5c ± 2.7 0.47b ± 0.3 

 
a, b, c, d – Values within the same column with different superscripts differ significantly (p ≤ 0.05), db – dry bases 
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Table 5.3: The effect of cassava variety, iron source and stage of fortification on level and percentage of bioaccessible iron per 200 

g of cassava mahewu. 

                                            Independent variables           Total iron content 

     (mg/ 200 g edible portion) 

         Amount of bioaccessible iron 

             (mg/200 g edible portion) % bioaccessible iron 

 

Stage of fortification 

Beginning of fermentation (0 hr) 1.9a 0.17a 11.7a 

End of fermentation (24 hr) 1.9a 0.20a 9.4a 

 

Type of cassava 

Bitter  1.6a 0.25b 13.2b 

Sweet  2.1a 0.13a 8.3a 

 

Iron Source  

Ferrous sulfate 2.9b 0.30b 12.6a 

Ferrous fumarate 1.1a 0.09a 8.8a 

 
a, b, c – Values within the same independent variable with different superscripts differ significantly (p ≤ 0.05) 



 

126 
 

Although, the fortification of cassava mahewu could be done either at the 

beginning or at the end of the fermentation process, it is proposed that the 

fortification at the end of fermentation would be better for mahewu production at 

household level. The use of sugar based sachets containing micronutrients, 

which could be added to semi-solid foods has been reported previously.26 At 

household level in Mozambique, sugar is usually added to mahewu after 

fermentation ends and just before it is consumed so it would probably be very 

easy to motivate rural communities to use fortified sugar. 

At the commercial level, fortification at the beginning is recommended as 

cassava flour could be fortified and used for mahewu preparation or to make 

other cassava foods. Cassava flour has previously been fortified with iron in 

Brazil, where a reduction in the prevalence of anaemia in school children 

consuming food products from the fortified cassava flour was reported.27 

During the present study, the size of an edible portion of fortified cassava 

mahewu was taken as 200 g. (the mass of approximately a cup full of this non- 

alcoholic fermented drink, which has the consistency of yoghurt).  Based on 

recommended daily allowances of iron for women and children below five years 

of age,28 the percentage contribution of iron has beens calculated and is 

displayed in Table 5.4.   

These results indicate that fortification of cassava mahewu could be helpful in 

increasing the daily dietary intake of iron.  The amount of iron in 200 g of 

fortified cassava mahewu would be sufficient to provide between 15 and 45% of 

the recommended daily allowance, with the major benefit in children younger 

than five years of age (Table 5.4). In a previous study it was found that 100 g of 

processed cassava used in food could contribute to between 6 and 14% of RDA 

iron.29 It should be noted that the contribution of cassava meals to iron RDA 

varies according to the method of processing as well as the population 

consuming the product. It is feasible that a higher level of fortification may be 

considered for particular segments of the population. 
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Table 5.4: The possible contribution that bitter and sweet cassava mahewu fortified with ferrous sulfate and ferrous fumarate can 

make towards the iron RDA and absolute requirements of vulnerable populations. 

 

Independent variables 

% of iron RDA for women 
% of iron RDA for children  

younger  5 Yr 

% of highest absolute iron  

requirement for women 

% of highest absolute iron 

requirement for children 

younger 5 Yr 

 

Type of cassava 

Bitter  9.5a 15.5a 9.3a 39.0b 

Sweet  11.7a 19.1a 19.2a 18.9a 

 

Iron Source  

Ferrous sulfate 15.2b 24.8b 22.5b 45.6b 

Ferrous fumarate 6.0a 9.8a 6.1a 12.3a 

a,b – Values within the same dependent variable with different superscripts differ significantly (p≤0.05) 

Highest RDA28 and absolute30 iron requirements for women and children were selected. 

Recommendations for women; RDA – 18 mg/day and absolute requirements – 1.46 mg/day.   

Recommendations for children <5; RDA – 11 mg/day and absolute requirements – 0.72 mg/day. 
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The difference in the percentage contribution that mahewu could make from 

bitter and sweet cassava to the iron RDA for children younger than five years 

was not significant (Table 5.4).  In children younger than five years, the 

percentage contribution mahewu can make towards the absolute iron 

requirements is higher than that made from sweet cassava.  It was estimated 

that mahewu fortified with ferrous sulfate provides approximately 2.5 times the 

RDA of iron to women and children compared to ferrous fumarate, which means 

it contributes almost 4 times more to the absolute iron requirement. 

5.5. Conclusions 

It is concluded that the nutritional value of cassava roots, where iron was so low 

it could not be detected, could be significantly improved by fortification of 

mahewu, meeting up to 45% of the daily requirements of  children less than 5 

years of age. Bitter varieties fortified with ferrous sulfate, delivered the highest 

amount of bioaccessible iron in mahewu.  

Of importance is that bitter varieties of cassava are more highly cultivated and 

offer many advantages to the communities which include resistance to pests 

and drought as well as a higher yield when compared to the sweet varieties.3  At 

household level, sugar fortified with ferrous sulfate could be used to fortify 

home-made mahewu after fermentation. At commercial level it is recommended 

that mass fortification of cassava flour from bitter varieties using ferrous sulfate 

is instituted. It is further recommended that  studies be carried out to determine 

whether cooking, followed by  fermentation to produce mahewu, reduces the  

cyanogenic glycosides found in bitter varieties, to a safe level.  

5.6. Limitations  

The study did not include factors which could affect the uptake of iron by 

consumers of cassava. The effects of phytic acid and tannic acid in inhibiting 

the uptake of iron are well known, but were not measured in this study. Ascorbic 

acid is recognised as to promote iron uptake. It is present in raw cassava roots, 

but is destroyed by cooking – a necessary stage in the preparation of mahewu. 

Addition of ascorbic acid during or after fermentation may have altered the 

bioavailability of the iron, but this was beyond the scope of the study, although it 
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would be a good topic for further investigation of the iron fortification of cassava 

products. 

The in vitro digestion in the present study was carried out at pH 2, which is 

assumed to be that of the adult stomach. It may have been useful if the study 

had been repeated at pH 4 which is that of an infant stomach, as iron uptake 

has been reported to differ. However, bio-accessibility studies are expensive 

and funds were not available to investigate the extra number of samples 

needed to compare this. 

The study did not take into account zinc fortification, although the results on 

assessment of zinc in cassava roots also revealed that the concentration was 

very low and it is an essential micronutrient. However the findings of the present 

study open opportunities for further research on fortification of indigenous 

cassava products and addition of micro-nutrients other than iron.  
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 
 
 

6.1. Overview 

The main motivation for this study was the high level of dietary iron deficiency 

and related anaemia, in vulnerable populations in Mozambique. Cassava is the 

main staple for nearly half of the total population and is grown in peri urban 

backyards or harvested as part of mixed cropping by small-scale farmers. The 

plant is drought and insect resistant and can remain edible for a very long time if 

kept underground. It is easily harvested, processed and consumed at 

household level. As such it contributes to household food security throughout 

Mozambique and is the main staple food of the poor, while middle income 

families can also afford other staples such as maize, rice or wheat breads.  

However, it contains toxic cyanogenic glycosides and this makes certain 

cassava products a threat to food safety as it has previously been consumed 

raw in times of conflict. Fortunately many of the traditional products made from 

this root are sun-died, fermented and/or cooked, all of which decrease the 

levels of these toxins.  Mahewu, a fermented non-alcoholic beverage is 

traditionally consumed by young children, not only in Mozambique, but 

elsewhere in Africa and it has the advantage of being made from cassava root 

that is peeled, sun-dried, cooked and fermented. It has the additional advantage 

common to many other fermented foods of increasing the levels of B vitamins 

and amino acids in a carbohydrate staple.  Mahewu made from maize has 

already been successfully fortified with iron therefore, cassava mahewu met 

many of the criteria needed for a staple food to be fortified. Cassava mahewu is 

already made in homesteads, so it is both affordable and accessible, as the root 

is grown in the backyards of the very population that are most at risk of 

malnutrition.  

The main research question was therefore: “Could we standardize the 

fermentation of traditional mahewu and find out which iron compound could be 

used at which stage of fermentation?  This question could not stand alone. Iron 
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in excess could be toxic. Although literature review indicated a low level of iron 

in cassava roots, it was unknown whether this was the case throughout 

Mozambique and whether  soil with a high iron content could result in cassava 

roots with a similar iron concentration. It was also important to find out whether 

the iron fortification of mahewu would yield sufficient bioaccessible iron to meet 

the recommended daily dietary needs in the populations most affected, which 

are pregnant women and children under the age of five years. 

 

Soils and cassava roots growing in those soils were sampled in four of the 

regions in Mozambique where cassava was mainly produced. The mineral 

levels were assessed using an ICP-OES and it was found that in all cases, the 

levels in cassava roots were too low to be detected, irrespective of the levels in 

the soils. The next problem was to standardize the fermentation of mahewu and 

for this; the method used for fermenting maize mahewu was adapted and found 

to work. During the pilot study it was found that the key to reproducibility was 

the use of a standard, freeze-dried starter culture made from traditional 

fermented mahewu and containing mainly LAB and yeast. 

 

Once the method of fermentation was standardized it was possible to 

investigate whether the acidity, pH and total solids would be adversely affected 

by iron fortification. Although no standardized blinded tasting trials were done, 

the opinion of locals tasting the fortified mahewu was that it tasted the same as 

the products they were used to consuming. Although the literature listed four 

possible iron compounds for fortification, only two could be accessed in South 

Africa, iron sulfate and iron fumarate. As these are also commonly used for 

fortifying commercially processed foods, they were used for the study. Iron 

sulfate proved to be the most bioaccessible, particularly in bitter cassava roots. 

This was an advantage as the majority of cassava produced in Mozambique is 

of the bitter type: it is more droughts and pest resistant than sweet cassava and 

grows more profusely. The mahewu made from bitter cassava roots and fortified 

with iron sulfate was found to have sufficient bioaccessble iron to meet between 

15 and 45% of the RDA for women of childbearing age in communities where 

dietary anaemia has been previously found to be about 40%. 
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6.2. Discussion 

The decision to study whether cassava could be fortified with iron was initiated 

after a previous study had reported the risk of inadequate intake of iron, zinc 

and vitamin A in children who consumed cassava.1   It was known that anaemia 

was a major public health problem in Mozambique and that there was an 

important link between iron deficiency and anaemia linked to undernutrition.2,3 

This finding was useful to frame the context of the problem of anaemia, 

undernutrition iron deficiency, all of which were known to be present in 

Mozambique. Other countries, notably South Africa, had already successfully 

combatted under-nutrition through the implementation of programs where 

commonly consumed staple foods were fortified with iron.4-6 As a result of iron 

fortification cases of iron deficiency and anaemia had been found to decrease 

significantly.6-8 Another study had also reported a successful program for 

fortification of food with micronutrients in other African countries.9 Although 

cassava root was known to be low in iron, a study reported the fertility of agro-

ecological zones of Mozambique10 Burns et al.11 also mentioned variation in the 

chemical composition of cassava cultivated in some regions of Mozambique. 

This provided the impetus for examining whether soil played a role in increasing 

iron concentration in cassava roots, if it did, iron fortification could be dangerous 

as perhaps too much iron would then be present in the diets of vulnerable 

populations in some parts of Mozambique. However, this was shown not to be a 

risk as despite high levels or iron in soils in some areas, the concentration in 

cassava roots was very low indeed. The outcome agreed with earlier studies.11-

13 The challenge to developing a standardized method for fermenting cassava 

mahewu, so that it could be fortified, was solved by amending the existing 

method for fermenting maize mahewu.14,15  

6.3. Conclusions and recommendations 

It was concluded that the research questions asked at the beginning of this 

study had all been met. In fact, they had also been welcomed in Mozambique, 

where at the end of the project a workshop was held demonstrating how iron 

fortified, flavored sugar could be added to cassava mahewu to feed preschool 

children at school and it is likely that this project will be adopted by a local NGO. 
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Negotiations to fortify cassava flour at commercial level are ongoing. Programs 

for mass fortification of food with vitamins and minerals, similar to those in place 

in South Africa, have recently been introduced in Mozambique and it is likely 

that the current research will result in the inclusion of cassava flour in this 

initiative. 

 

Recommendations for further research include studies on the level of 

cyanogenic glycosides in cassava mahewu, the effects of the addition of other 

minerals such as zinc, and the addition of Vitamin C during or after fermentation 

to improve bioaccessibility.  

6.4. Strengths and limitations 

A strong point of this study was the fact that it was the first time that the mineral 

concentration in both soil and roots of cassava was related to the under-

nutrition of communities consuming cassava root as a main staple.  This was 

also the first time cassava mahewu was prepared under controlled conditions a 

standard method established for producing this indigenous traditional non-

alcoholic beverage. It is also offers a practical way of fortifying cassava mahewu 

with iron at both household and commercial level. From this it not only 

increases nutritional density of a staple food at subsistence level, but opens up 

economic opportunities for the entire country though commercialization. By 

facilitating fortification at both household and commercial level, the effect on the 

population is broadened and the iron fortification could have a positive effect on 

the level of dietary anaemia throughout the population of Mozambique. The 

research thus has long term health and socioeconomic benefits. 

One of the limitations in the study was that there was very little information on 

soil structure and composition in Mozambique. Although mineral concentrations 

were done on soils in different areas, a comprehensive evaluation of soil type 

and composition was beyond the scope of this research. It was not possible to 

do in depth soil analysis in a food laboratory, in order to explore further the 

reasons why cassava roots did not take up iron, even in iron-rich soils. 
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A further weakness of this study was that it focused only on the very low iron 

concentration in cassava roots and specific fortification of mahewu with iron, as 

well as subsequent assessment of bioassessibility.  Although it also provided 

information on the low concentration of zinc in soil and cassava roots, it did not 

explore the possibility of Zn fortification or bioaccessibility. This is a weakness 

because consuming more soluble iron has been reported to impair the 

absorption of zinc.16,17 However other studies have reported that in fortified food 

the interaction between iron and zinc does not occur.18 It could have been 

interesting to investigate possible interactions between iron and zinc, but 

unfortunately it was beyond the scope of this study. 

Another weakness was present in the bioaccessibility assessment, where the 

addition of ascorbic acid, which is well known an enhancer of iron absorption, 

was not investigated. The inclusion of ascorbic acid would have allowed a 

comparison of the bioaccessibility of iron with and without enhancer. Another 

weakness, as mentioned in Chapter 5, was related to choosing a pH of 4 during 

the gastric stage without repeating the experiment at pH 2.  

Even with the limitations mentioned above  which were mainly  related to limited 

financial resources, this study offered sufficient information to enable the 

decision makers to start a program to fortify cassava mahewu and other 

cassava products with iron.  

6.5. General recommendations 

During the investigation it was noticed that information on soil types and 

composition in Mozambique was lacking, especially in peer reviewed journals. It 

is recommended that agricultural institutes and research centers should publish 

this information if they have it. If not they should plan field research on soil types 

as this could have a major long term effect on cropping and food security. At the 

very least, it would bring Mozambique into line with other countries where a 

great deal of information is available on soil types and composition in different 

areas.  

A program of mass iron fortification of food in Mozambique has already started 

with the fortification of cooking oil. It is recommended that cassava should be 
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included in this program. In rural communities cassava is milled by small 

enterprises and there is a need to involve this economic class in the program  

so that  iron fortification could be implemented  at the milling point and serve as 

a source of iron for consumers who buy this flour.   

 

The fortification of cassava flour would also benefit urban communities as in 

Mozambique cassava flour is incorporated as 15 to 20% of wheat flour used for 

making bread. Home fortification of cassava mahewu could be done via 

provision of small sachets of sugar containing ferrous sulfate. This could be 

added to ready to eat mahewu or home fermented mahewu. It is proposed that 

provision of iron in sugar sachets could be done by NGO’s working at rural 

communities in the field of nutrition and/or nutritional security.    

 

A recommendation that is already being undertaken in Zavala district of 

Inhambane Province district is the use of fortified cassava mahewu in school 

feeding and during maternity classes as a source of income, which will also 

improve the health of school-going children and expectant mothers. The 

mahewu will not only be fortified, but also be flavored with fresh fruits such as 

bananas, mangos, orange and pineapples, directly after fermentation. In this 

province fruit is easily obtainable so it becomes a feasible small scale enterprise 

for unemployed women.   

6.6. Directions for the future 

The findings of this study were shared (Appendix 5) during the Faculty Day 

ceremony at the Faculty of Health Sciences of University of Pretoria in August 

2014 as a Poster presentation. In addition it was presented at a workshop as 

feedback to the communities involved in cassava production in the Zavala 

district of Inhambane Province in Mozambique, one of the places where the 

samples were collected. More about the research will be shared (Appendix 7) in 

the articles submitted to peer reviewed journals. The author of this study intends 

to do further original and collaborative research on the role of fortified cassava   

to promote health in rural communities. Research will be focused on the 

nutritional density of cassava mahewu, investigation of the levels of cyanogenic 

glycosides and anti-nutritional factors. Investigation of fortification of cassava 
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mahewu with other essential micronutrients including zinc and vitamin A, will 

also be undertaken.  
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