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1 Introduction and Preliminaries

Throughout this article, N denotes the set of positive integers. Let E be a real Banach space.
A subset K is called proximinal if for each x ∈ E, there exists an element k ∈ K such that
d(x, k) = inf{‖x − y‖ : y ∈ K} = d(x, K). It is known that weakly compact convex subsets of
a Banach space and closed convex subsets of a uniformly convex Banach space are proximinal.
We denote the family of nonempty proximinal bounded subsets of K by P(K). It is well known
that if K is proximinal subset of E, then K is closed. Consistent with [6], let CB(K) be the
class of all nonempty bounded and closed subsets of K. Let H be a Hausdorff metric induced
by the metric d of E, that is,

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

1



for every A, B ∈ CB(E). A point x ∈ K is called a fixed point of a multivlaued mapping
T : K → CB(K) if x ∈ Tx. A set of all fixed points of T is denoted by F (T ). A multivalued
mapping T : K → CB(K) is said to be: (a) nonexpansive if H(Tx, Ty) ≤ ‖x − y‖ for all
x, y ∈ K; (b) quasi-nonexpansive mapping if H(Tx, p) ≤ ‖x − p‖ for all x ∈ K and p ∈ F (T ).
It is known that every nonexpansive multivalued map T with F (T ) �= ∅ is quasi nonexpansive
but the converse is not true. The study of fixed points for multivalued mappings using the
Hausdorff metric was initiated by Markin [5] (see also [6]). Multivalued fixed point theory
has applications in control theory, convex optimization, differential inclusion, and economics
(see [2] and references cited therein). The theory of multivalued mappings is harder than the
corresponding theory of single-valued mappings. Different iterative processes have been used to
approximate the fixed points of multivalued mappings. Among these iterative processes, Sastry
and Babu [9] considered the following.

Let K be a nonempty convex subset of E, T : K → P(K) a multivalued mapping with
p ∈ Tp.

(i) The sequences of Mann iterates is defined by x1 ∈ K,

xn+1 = (1 − an)xn + anyn, (1.1)

where yn ∈ Txn is such that ‖yn − p‖ = d(p, Txn) and {an} is a sequence of numbers in (0, 1)
satisfying limn→∞ an = 0 and

∑∞
n=1 an = ∞.

(ii) Ishikawa iterative process is defined by starting with x1 ∈ K and defining
⎧⎨
⎩

yn = (1 − bn)xn + bnzn,

xn+1 = (1 − an)xn + anun,
(1.2)

where zn ∈ Txn, un ∈ Tyn are such that ‖zn − p‖ = d(p, Txn) and ‖un − p‖ = d(p, Tyn), and
{an}, {bn} are real sequences of numbers with 0 ≤ an, bn < 1 satisfying limn→∞ bn = 0 and∑

anbn = ∞.

Panyanak [8] generalized the results proved by Sastry and Babu [9].

The following lemma due to Nadler [6] is very useful.

Lemma 1.1 Let A, B ∈ CB(E) and a ∈ A. If η > 0, then there exists b ∈ B such that
d(a, b) ≤ H(A, B) + η.

Based on the above lemma, Song and Wang [14] modified the iterative process due to
Panyanak [8] and improved the results presented there. They used (1.2) but with an ∈
[0, 1]; bn ∈ [0, 1] with limn→∞ bn = 0 and

∑∞
n=1 anbn = ∞; zn ∈ Txn, un ∈ Tyn with

‖zn − un‖ ≤ H(Txn, Tyn) + ηn and ‖zn+1 − un‖ ≤ H(Txn+1, Tyn) + ηn, where ηn ∈ (0,∞)
such that limn→∞ ηn = 0.

It is to be noted that Song and Wang [14] needed the condition Tp = {p} in order to prove
their Theorem 1. Actually, Panyanak [8] proved some results using Ishikawa type iterative
process without this condition. Song and Wang [14] showed that without this condition his
process was not well-defined. They reconstructed the process using the condition Tp = {p}
which made it well-defined. Such a condition was also used by Jung [3]. Later, Shazad and
Zegeye [12] got rid of this condition by using PT (x) = {y ∈ Tx : ‖x − y‖ = d(x, Tx)} for a
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multivalued mapping T : K → P(K). They proved a couple of strong convergence results using
Ishikawa type iterative process.

Khan and Yildirim [4] used the following iterative process using the method of direct con-
struction of Cauchy sequence and without using the condition Tp = {p} for any p ∈ F (T ):

⎧
⎪⎪⎨
⎪⎪⎩

x1 ∈ K,

xn+1 = (1 − λ) vn + λun,

yn = (1 − η)xn + ηvn, n ∈ N,

where vn ∈ PT (xn), un ∈ PT (yn) and 0 < λ, η < 1.
Let us now construct the following iterative process for a multivalued mapping T : K →

P(K) with the help of PT defined above.
Let K be a nonempty convex subset of E, αn, βn, γn ∈ [0, 1]. Start with choosing x1 ∈ K

and u1 ∈ PT (x1) and let
z1 = (1 − γ1)x1 + γ1u1.

Choose w1 ∈ PT (z1) such that

y1 = (1 − β1)u1 + β1w1.

Choose v1 ∈ PT (y1) such that
x2 = (1 − α1)v1 + α1w1.

Now choose u2 ∈ PT (x2) such that

z2 = (1 − γ2)x2 + γ2u2.

Choose w2 ∈ PT (z2) such that

y2 = (1 − β2)u2 + β2w2.

Choose v2 ∈ PT (y2) such that
x3 = (1 − α2)v2 + α2w2.

Next, choose u3 ∈ PT (x3) such that

z3 = (1 − γ3)x3 + γ3u3.

Choose w3 ∈ PT (z3) such that

y3 = (1 − β3)u3 + β3w3.

Choose v3 ∈ PT (y3) such that
x4 = (1 − α3)v3 + α3w3.

Inductively, we obtain

xn+1 = (1 − αn)vn + αnwn,

yn = (1 − βn)un + βnwn, (1.3)

zn = (1 − γn)xn + γnun,

where un ∈ PT (xn), vn ∈ PT (yn), wn ∈ PT (zn). Its single-valued version was used by Abbas
and Nazir [1].
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In this paper, we use the following simplified version of (1.3):

xn+1 = (1 − α)vn + αwn,

yn = (1 − β)un + βwn, (1.4)

zn = (1 − γ)xn + γun,

where α, β, γ ∈ [0, 1], un ∈ PT (xn), vn ∈ PT (yn) and wn ∈ PT (zn).
Note that we are using α, β and γ only for the sake of simplicity and αn, βn and γn could

be used equally well under suitable conditions. This scheme is independent of both Mann
and Ishikawa iterative processes neither reduce to the other. Moreover, it is faster than all of
Picard, Mann and Ishikawa iterative processes in case of contractions [1]. Thus our results are
independent but better (in the sense of speed of convergence of our iterative process) and more
general (in view of more general class of mappings) than corresponding results of Shazad and
Zegeye [12], Khan and Yildirim [4] and Song and Cho [13] and the results generalized therein.

At this stage, we recall the following. A Banach space E is said to satisfy Opial’s condition [7]
if for any sequence {xn} in E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y �= x. Examples of Banach spaces satisfying Opial’s condition are Hilbert
spaces and all lp spaces (1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p �= 2 fails to
satisfy this condition. A multivalued mapping T : K → CB(K) is called demiclosed at y ∈ K

if for any sequence {xn} in K weakly convergent to x and yn ∈ Txn strongly convergent to y,

we have y ∈ Tx.

Now we state some useful lemmas.

Lemma 1.2 ([13]) Let T : K → P(K) be a multivalued mapping and PT (x) = {y ∈ Tx :
‖x − y‖ = d(x, Tx)}. Then the following are equivalent :

(1) x ∈ F (T );
(2) PT (x) = {x};
(3) x ∈ F (PT ).

Moreover, F (T ) = F (PT ).

Lemma 1.3 ([10]) Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1 for
all n ∈ N. Suppose that {xn} and {yn} are two sequences of E such that lim supn→∞ ‖xn‖ ≤
r, lim supn→∞ ‖yn‖ ≤ r and limn→∞ ‖tnxn + (1 − tn)yn‖ = r hold for some r ≥ 0. Then
limn→∞ ‖xn − yn‖ = 0.

2 Main Results

Lemma 2.1 Let E be a normed space and K be a nonempty closed convex subset of E. Let
T : K → P(K) be a multivalued mapping such that F (T ) �= ∅ and PT be a quasi-nonexpansive
mapping. Let {xn} be the sequence as defined in (1.4). Then limn→∞ ‖xn − p‖ exists for all
p ∈ F (T ) and limn→∞ d(xn, PT (xn)) = 0.

Proof To prove that limn→∞ ‖xn − p‖ exists, we consider

‖xn+1 − p‖ = ‖(1 − α)vn + αwn − p‖

4



≤ (1 − α) ‖vn − p‖ + α ‖wn − p‖
≤ (1 − α)H(PT (yn), PT (p)) + αH(PT (zn), PT (p))

≤ (1 − α) ‖yn − p‖ + α‖zn − p‖.
Next

‖yn − p‖ = ‖(1 − β)un + βwn − p‖
≤ (1 − β) ‖un − p‖ + β ‖wn − p‖
≤ (1 − β)H(PT (xn), PT (p)) + βH(PT (zn), PT (p))

≤ (1 − β) ‖xn − p‖ + β‖zn − p‖.
And

‖zn − p‖ = ‖(1 − γ)xn + γun − p‖
≤ (1 − γ) ‖xn − p‖ + γ ‖un − p‖
≤ (1 − γ) ‖xn − p‖ + γH(PT (xn), PT (p))

≤ (1 − γ) ‖xn − p‖ + γ ‖xn − p‖
= ‖xn − p‖. (2.1)

Thus

‖yn − p‖ ≤ ‖xn − p‖ (2.2)

and hence ‖xn+1 − p‖ ≤ ‖xn−p‖. This implies that limn→∞ ‖xn − p‖ exists for each p ∈ F (T ).
Suppose that

lim
n→∞ ‖xn − p‖ = c, (2.3)

where c ≥ 0.

We now prove that
lim

n→∞ d(xn, Txn) = 0.

The case when c = 0 is obvious. We thus assume that c > 0. Inasmuch as d(xn, Txn) ≤
‖xn − un‖, it suffices to prove that limn→∞ ‖xn − un‖ = 0.

Now
‖un − p‖ ≤ H(PT (xn), PT (p)) ≤ ‖xn − p‖

implies that
lim sup

n→∞
‖un − p‖ ≤ c. (2.4)

From (2.1) and (2.2) , we obtain

lim sup
n→∞

‖zn − p‖ ≤ c, (2.5)

and
lim sup

n→∞
‖yn − p‖ ≤ c. (2.6)

Noting that

‖vn − p‖ ≤ H(PT (yn), PT (p)) ≤ ‖yn − p‖ ≤ ‖xn − p‖,
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we have
lim sup

n→∞
‖vn − p‖ ≤ c. (2.7)

Similarly,
lim sup

n→∞
‖wn − p‖ ≤ c. (2.8)

Moreover,

lim
n→∞ ‖xn+1 − p‖ = lim

n→∞ ‖(1 − α)vn + αwn − p‖
= lim

n→∞ ‖(1 − α)(vn − p) + α(wn − p)‖ = c. (2.9)

From (2.7)–(2.9) and Lemma 1.3, we have

lim
n→∞ ‖vn − wn‖ = 0.

Together with this and

lim inf
n→∞ ‖xn+1 − p‖ ≤ lim inf

n→∞ (‖vn − p‖ + α ‖vn − wn‖),
we obtain

c ≤ lim inf
n→∞ ‖vn − p‖. (2.10)

Using (2.7), we have
lim

n→∞ ‖vn − p‖ = c.

In a way similar to above, it follows that

lim
n→∞ ‖zn − p‖ = c. (2.11)

That is,

lim
n→∞ ‖zn − p‖ = ‖(1 − γ)xn + γun − p‖

= ‖(1 − γ)(xn − p) + γ(un − p)‖ = c. (2.12)

Hence, from (2.4) , (2.12) and Lemma 1.3, we have

lim
n→∞ ‖xn − un‖ = 0, (2.13)

which yields limn→∞ d(xn, PT xn) = 0 as desired. �
We are now all set to go for our first strong convergence theorem.

Theorem 2.2 Let E be a real Banach space and K be a nonempty compact convex subset of E.

Let T : K → P(K) be a multivalued mapping such that F (T ) �= ∅ and PT be quasi-nonexpansive
mapping. Let {xn} be the sequence as defined in (1.4). Then {xn} converges strongly to a fixed
point of T.

Proof We have proved in Lemma 2.1 that limn→∞ ‖xn − p‖ exists for all p ∈ F (T ). Now from
the compactness of K, there exists a subsequence {xnk

} of {xn} such that limk→∞ ‖xnk
− q‖ = 0

for some q ∈ K. Then

d(q, PT (q) ≤ d(xnk
, q) + d(xnk

, PT (xnk
) + H(PT (xnk

), PT (q))

≤ ‖xnk
− q‖ + ‖xnk

− unk
‖ + ‖ xnk

− q‖ → 0 as n → ∞,
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because by Lemma 2.1, we have limn→∞ ‖xnk
− unk

‖ = 0. That is, d(q, PT (q)) = 0. Hence, q is
a fixed point of PT . Since the set of fixed points of PT is the same as that of T by Lemma 1.2,
therefore {xn} converges strongly to a fixed point of T. �

Here is an example in support of the above theorem.

Example 2.3 Let (R, ‖ · ‖) be a normed space with usual norm and K = [0, 1]. Define
T : K → P(K) as

Tx =
[
0,

2x + 1
4

]
.

Obviously, K is a compact convex subset of R. Note that FT = [0, 1
2 ] �= ∅. Let α = β = γ = 1

2 .

Observe that PT (x) = {x} when x ∈ [0, 1
2 ]. In case x /∈ [0, 1

2 ],

PT (x) =
{

y ∈ Tx : |y − x| = d

(
x,

[
0,

2x + 1
4

])}

=
{

y ∈ Tx : |y − x| =
∣∣∣∣x − 2x + 1

4

∣∣∣∣ =
∣∣∣∣
2x − 1

4

∣∣∣∣
}

=
{

y ∈ Tx : |y − x| =
2x − 1

4

}

=
{

y =
2x + 1

4

}
.

We next prove that PT (x) is quasi-nonexpansive for all x ∈ K. The case of [0, 1
2 ] is trivial.

Thus we take x ∈ [1
2
, 1].

H(PT (x), PT (p)) = H

(
2x + 1

4
, p

)
=

∣∣∣∣
2x + 1

4
− p

∣∣∣∣ ≤ |x − p|

for all x ∈ [12 , 1]. Finally, we generate a sequence {xn} as defined in (1.4) and show that it
converges strongly to a fixed point of T.

Choose x1 = 1 ∈ K = [0, 1] . Then PT (x1) = 2x1+1
4 = 2(1)+1

4 = { 1
2 + 1

4} and u1 ∈ PT (x1) =
{1

2 + 1
4}. That is, u1 = 1

2 + 1
4 . Then

z1 = (1 − γ)x1 + γu1 =
1
2

+
1
2

(
1
2

+
1
4

)
=

1
2

+
3
8

and

PT (z1) =
{

2z1 + 1
4

}
=

{
2( 1

2
+ 3

8
) + 1

4

}
=

{
1
2

+
3
16

}
.

Choose w1 ∈ PT (z1) = { 1
2 + 3

16}, that is, w1 = 1
2 + 3

16 . Then

y1 = (1 − β)u1 + βw1 =
1
2

(
1
2

+
1
4

)
+

1
2

(
1
2

+
3
16

)
=

1
2

+
7
32

,

and

PT (y1) =
{

2y1 + 1
4

}
=

{
2( 1

2 + 7
32 ) + 1
4

}
=

{
1
2

+
7
64

}
.

Choose v1 ∈ PT (y1) = {1
2 + 7

64}, v1 = 1
2 + 7

64 . Then

x2 = (1 − α)v1 + αw1

=
1
2

(
1
2

+
7
64

)
+

1
2

(
1
2

+
3
16

)
=

1
2

+
19
128

<
1
2

+
1
4
,
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PT (x2) =
{

2x2 + 1
4

}
=

{
2( 1

2 + 19
128 ) + 1
4

}
=

{
1
2

+
19
256

}
.

Now choose u2 ∈ PT (x2) = { 1
2 + 19

256 }, that is, u2 = 1
2 + 19

256 . Then

z2 = (1 − γ)x2 + γu2 =
1
2

(
1
2

+
19
128

)
+

1
2

(
1
2

+
19
256

)
=

1
2

+
57
512

,

PT (z2) =
{

2z2 + 1
4

}
=

{
2( 1

2 + 57
512 ) + 1
4

}
=

{
1
2

+
57

1024

}
.

Choose w2 ∈ PT (z2) = { 1
2 + 57

1024}, that is, w2 = 1
2 + 57

1024 . Then

y2 = (1 − β)u2 + βw2

=
1
2

(
1
2

+
19
256

)
+

1
2

(
1
2

+
57

1024

)
=

1
2

+
133

2048
,

PT (y2) =
{

2y2 + 1
4

}
=

{
2( 1

2 + 133
2048 ) + 1
4

}
=

{
1
2

+
133
4096

}
.

Choose v2 ∈ PT (y2) = {1
2 + 133

4096}, v2 = 1
2 + 133

4096 . Then

x3 = (1 − α)v2 + αw2

=
1
2

(
1
2

+
133
4096

)
+

1
2

(
1
2

+
57

1024

)
=

1
2

+
361
8192

<
1
2

+
1
6

.

In a similar way, x4 < 1
2 + 1

8 , x5 < 1
2 + 1

10 , . . . , xn < 1
2 + 1

n . This shows that {xn} converges
strongly to a point of FT =

[
0, 1

2

]
.

We now prove our strong convergence theorem using the following Condition (I) originally
due to Senter and Dotson [11].

A multivalued nonexpansive mapping T : K → CB(K) is said to satisfy Condition (I) if
there exists a continuous nondecreasing function f : [0,∞[ → [0,∞[ with f(0) = 0, f(r) > 0 for
all r ∈ (0,∞) such that d(x, Tx) ≥ f(d(x, F (T )) for all x ∈ K.

Theorem 2.4 Let E be a real Banach space, K a nonempty closed and convex subset of E,
T : K → P(K) a multivalued mapping satisfying Condition (I) such that F (T ) �= ∅ and PT be
a quasi-nonexpansive mapping. Then the sequence {xn} as defined in (1.4) converges strongly
to a fixed point p of T.

Proof From Lemma 2.1, limn→∞ ‖xn−p‖ exists for all p ∈ F (T ) = F (PT ). If limn→∞ ‖xn−p‖
= 0, there is nothing to prove. Thus we assume limn→∞ ‖xn − p‖ = c > 0. From the same
lemma, we know ‖xn+1 − p‖ ≤ ‖xn − p‖, so that

d(xn+1, F (T )) ≤ d(xn, F (T )).

Hence, limn→∞ d(xn+1, F (T )) exists. We now prove that limn→∞ d(xn+1, F (T )) = 0. Suppose
on contrary that limn→∞ d(xn+1, F (T )) = b > 0.

For all n ∈ N, take

an =
un − p

‖xn − p‖ , bn =
xn − p

‖xn − p‖ .

Then ‖bn‖ = 1 and ‖an‖ ≤ 1 because ‖un − p‖ ≤ H(PT (xn), PT (p)) ≤ ‖xn − p‖ .
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Now,

‖bn − an‖ =
∥∥∥∥

xn − p

‖xn − p‖ − un − p

‖xn − p‖
∥∥∥∥

=
‖xn − un‖
‖xn − p‖

≥ d(xn, Txn)
‖xn − p‖

≥ f(d(xn, F (T )))
‖xn − p‖

by Condition (I). Since f is continuous,

lim inf
n

‖bn − an‖ ≥ f(b)
c

> 0 for all n ∈ N.

We have already established limn→∞ ‖xn − p‖ = c and limn→∞ ‖zn − p‖ = c in Lemma 2.1.
Using these two, we have

lim
n→∞ ‖(1 − γ)bn + γan‖ = lim

n→∞

∥∥∥∥(1 − γ)
xn − p

‖xn − p‖ + γ
un − p

‖xn − p‖
∥∥∥∥

= lim
n→∞

∥∥∥∥
(1 − γ)xn + γun − p

‖xn − p‖
∥∥∥∥ =

limn→∞ ‖zn − p‖
limn→∞ ‖xn − p‖ =

c

c
= 1.

That is,

lim
n→∞ ‖(1 − γ)bn + γan‖ = 1.

Now Lemma 1.3 implies that limn→∞ ‖bn − an‖ = 0, a contradiction to lim infn ‖bn − an‖ > 0.

Thus we have limn→∞ d(xn+1, F (T )) = 0, and so

lim
n→∞ ‖xn − p‖ = 0.

Hence, the sequence {xn} converges strongly to a fixed point p of T. �
To testify our above theorem, we give the following example.

Example 2.5 Consider the Banach space (R, ‖ · ‖) and K = [1,∞). Obviously, K is a
nonempty closed and convex subset of R. Define T : K → P(K) as

Tx =
[
1, 1 +

x

2

]
.

Then FT = [1, 2]. Let α = β = γ = 1
2 . Define a continuous and nondecreasing function

f : [0,∞) → [0,∞) by f(r) = r
4 . First, we show that d(x, Tx) ≥ f(d(x, FT )) for all x ∈ K.

Indeed, when x ∈ FT = [1, 2], d(x, Tx) = 0 = f(d(x, FT )).
When x ∈ (2,∞),

d(x, Tx) = d

(
x,

[
1, 1 +

x

2

])
=

∣∣∣∣x −
(

1 +
x

2

)∣∣∣∣ =
x − 2

2
,

and

f(d(x, F (T ))) = f(d(x, [1, 2])) = f(|x − 2|) =
x − 2

4
.

Hence, d(x, Tx) ≥ f(d(x, FT )) for all x ∈ K.
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Note that PT (x) = {x} when x ∈ [1, 2]. If x ∈ (2,∞), then

PT (x) =
{

y ∈ Tx : |y − x| = d

(
x,

[
1, 1 +

x

2

])}

=
{

y ∈ Tx : |y − x| =
∣∣∣∣x −

(
1 +

x

2

)∣∣∣∣ =
∣∣∣∣
x

2
− 1

∣∣∣∣
}

=
{

y ∈ Tx : |y − x| =
x

2
− 1

}

=
{

y = 1 +
x

2

}
.

Next, PT is quasi-nonexpansive for all x ∈ K. The case of [0, 2] is trivial. Thus we take x > 2.

H(PT (x), PT (p)) = H

({
1 +

x

2

}
, {p}

)
=

∣∣∣∣1 +
x

2
− p

∣∣∣∣ ≤ |x − p| .

Finally, we generate a sequence {xn} as defined in (1.4) and show that it converges strongly to
a fixed point of T.

Choose x1 = 3 ∈ K = [1,∞), PT (x1) = 1 + 3
2 = { 5

2} and u1 ∈ PT (x1) = { 5
2}. That is,

u1 = 5
2 . Then

z1 = (1 − γ)x1 + γu1 =
1
2
(3) +

1
2

(
5
2

)
=

11
4

and

PT (z1) =
{

1 +
z1

2

}
=

{
1 +

11
4

2

}
=

{
19
8

}
.

Choose w1 ∈ PT (z1) = { 19
8 }. That is, w1 = 19

8 . Then

y1 = (1 − β)u1 + βw1 =
1
2

(
5
2

)
+

1
2

(
19
8

)
=

39
16

,

and PT (y1) =
{
1 + y1

2

}
=

{
1 +

39
16
2

}
=

{
71
32

}
.

Choosing v1 ∈ PT (y1) = { 71
32}, we get x2 = 1

2 ( 71
32 ) + 1

2 ( 19
8 ) = 147

64 = 2 + 19
64 < 2 + 1

2 and

PT (x2) =
{
1 + x2

2

}
=

{
1 +

147
64
2

}
=

{
275
128

}
.

Continuing in this way, we get xn < 2 + 1
n . This shows that {xn} converges strongly to a

point of FT = [1, 2] .

Now we approximate fixed points of the mapping T through weak convergence of the se-
quence {xn} defined in (1.4).

Theorem 2.6 Let E be a uniformly convex Banach space satisfying Opial’s condition and K

be a nonempty closed convex subset of E. Let T : K → P(K) be a multivalued mapping such
that F (T ) �= ∅ and PT be a quasi-nonexpansive mapping. Let {xn} be the sequence as defined
in (1.4) . Let I − PT be demiclosed with respect to zero. Then {xn} converges weakly to a fixed
point of T .

Proof Let p ∈ F (T ) = F (PT ). From the proof of Lemma 2.1, limn→∞ ‖xn − p‖ exists for all
p. Now we prove that {xn} has a unique weak subsequential limit in F (T ). To prove this, let
z1 and z2 be weak limits of the subsequences {xni

} and {xnj
} of {xn}, respectively. By (2.13) ,

there exists un ∈ Txn such that limn→∞ ‖xn−un‖ = 0. Since I−PT is demiclosed with respect
to zero, we obtain z1 ∈ F (PT ) = F (T ). In the same way, we can prove that z2 ∈ F (T ).
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Next, we prove the uniqueness. For this, suppose that z1 �= z2. Then by Opial’s condition,
we have

lim
n→∞ ‖xn − z1‖ = lim

ni→∞ ‖xni
− z1‖

< lim
ni→∞ ‖xni

− z2‖

= lim
n→∞ ‖xn − z2‖

= lim
nj→∞ ‖xnj

− z2‖

< lim
nj→∞ ‖xnj

− z1‖

= lim
n→∞ ‖xn − z1‖,

which is a contradiction. Hence, {xn} converges weakly to a point in F (T ). �
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