
Introduction
Coal is a fossil fuel mineral that has a variety
of uses, including the generation of electricity,
metallurgical applications such as steelmaking,
cement manufacture, and petroleum fuel
production. It contributes 25% of the world's
primary energy needs, after fuel oil which
contributes 35%. Thermal coal contributes
about 40% of electrical energy, and it is
anticipated that this will increase to 46% by
2030. The world energy demand, estimated for
the period from 1990 to 2030, is growing at a
cumulative annual growth rate (CAGR) of
1.7% (Schernikau, 2010). This reaffirms the
need for enhanced production from existing
mines, and the opening of new mines to
increase the supply of coal and to meet
increasing demand.

However, the demand for coal in the short
term, estimated for the period from 2010 to
2016, is projected to increase by 2.8% per
annum. This demand is driven mainly by the
countries outside the Organisation for

Economic Cooperation and Development
(OECD), largely dominated by China and India.
The demand for coal by China in the same
period, for example, is estimated to be
escalating at 5.2% per annum (IEA, 2011).

Despite the increasing demand for coal,
Höök et al. (2010) emphasize that while coal
resources are vast in many countries, the
supply is affected by geology. The depletion of
the more easily accessed coal could have an
effect similar to the end of abundant and cheap
oil. Once the more attractive coal has been
depleted, extraction will become more
expensive and complicated. In addition, the
authors argue that coal reserves in the world
are unevenly distributed. A few countries
control the majority of the world’s supplies,
among them the USA, China, Russia, India,
Indonesia, Australia, South Africa, Germany,
Poland, and Kazakhstan. Together, these
countries account for 93% of the world’s hard
coal reserves.

Coal is extracted using either surface or
underground mining methods. The mine is
required to be efficient and cost-effective in
order to be competitive and profitable. The
efficient mine is the one that uses a minimum
of resources to deliver maximum output, or at
least uses the same resources to produce a
maximum output. Effective cost in particular is
the hallmark of efficient mines. Such mines
form the envelope of best practice, and can be
used as a benchmark for the improvement of
inefficient mines.

New and currently producing coal mines
are subject to challenges that can affect their
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ff fefficiency and cause uncertainties. Some of these challenges
are related to the specific features of a deposit, for example
coal seam thickness, and others such as remoteness, climate,
environmental legislation, and the exchange rate. Shafiee,
Nehring and Topal (2009) and Shafiee and Topal (2012)
highlight factors such as a high stripping ratio, seams with
complex metallurgical characteristics, mines located in
isolated regions, lack of access roads, inadequate electricity
and water supplies, unfavourable climate, and the challenges
of mountain topography, all of which may cause project
uncertainties. Major factors upon which management has to
decide include the stripping ratio, capital allocation, choice of
production rate, and the washing rate or crushing rate.  All
these can be divided into controllable (discretionary) or non-
controllable (non-discretionary) variables. Thus mines need
to be efficient and cost-effective in order to remain
competitive relative to other producing mines.

Previous research in measuring the efficiency and
competitiveness of surface coal mines has not considered the
challenges highlighted in this paper.  The available models
can be considered as ‘black boxes’ because they do not
incorporate details of supply chain sub-processes of coal for
the export market. There is a need for a model that uses
multiple inputs to generate multiple outputs of the whole
supply chain while considering these challenges that affect
the efficiency of the mine. The model will provide an insight
into the competitiveness of the mine relative to other
producers of coal for export 

This paper applies Data Envelopment Analysis (DEA)
methodology, which is a linear programming technique that
is used to determine the envelope of the best practice
decision-making units (DMUs). DEA was used to develop a
model that can be utilized to determine the envelope of the
best-practice surface coal mine, using discretionary variables
and applying linear regression to determining the influence of
non-discretionary variables on the efficiency score.

The numerical example of eight DMUs that were used for
illustration indicated that one DMU is technically efficient,
wwhile the remaining seven are technically inefficient. These
are surface mines that need improvement in order to be
efficient.  It was also found that distance from the port (Dist-
port) and precipitation influence the efficiency score of
surface coal mines. 

The contribution of this work includes development and
demonstration of the application of the DEA model for
measuring the relative efficiency of surface coal mines
supplying coal for the export market only. In addition, the
paper develops an understanding of the influence of the non-
discretionary variables on efficiency score for a surface coal

fmine, which can help the mine to determine the set of
controllable variables that will increase its competitiveness
relative to other producers. For example, coal mining projects
can select optimum technical variables such as capital to
increase their competitiveness.

A literature review on efficiency measurement is first
discussed. This is followed by an explanation of the research
methodology and model formulation, and the application of
the models is illustrated. Finally, conclusions are drawn and
suggestions offered for further research.

Literature review 
The concept of efficiency has been defined by various
authors. In general, it involves the relationship between the
inputs and outputs of an organization or a firm. In the work
of Markovits-Somogyi (2012), efficiency is defined as the
capacity of a company to realize its stated objectives and to
use its available resources cost-effectively. According to
Joubert (2010), efficiency analysis offers guidelines and
benchmarks for both public and private enterprises to achieve
maximum outputs with minimum inputs.

Figure 1 shows a diagram of a producing unit that could
apply to both a profitable and a non-profitable organization.
Referred to as a decision-making unit (DMU), it consumes
inputs and transforms them into outputs.

Efficiency can be evaluated using parametric methods,
those requiring the use of production functions such as
regression and stochastic frontier; and non-parametric
methods, which do not require a predefined function such as
DEA. Most of these are used, but DEA in particular is a
robust approach compared to the other methods, for the
following reasons:

➤ It does not require a predefined function to be specified;
hence it avoids error due to mis-specification of the
function

➤ It can be used even when there is insufficient data
➤ It is used to measure efficiency of a unit involving

multiple inputs and outputs.

The major shortcoming of DEA is that it is sensitive to
outliers, which means that the data used needs to be free
from measurement errors (Kumar and Gulati, 2008). In
contrast, parametric methods need more data and also require
a predefined function to be specified (Markovits-Somogyi,
2012). These factors make DEA preferable to other methods
for measuring the efficiency of DMUs that use similar
multiple inputs to generate similar outputs.

DEA was first introduced by Charnes and Cooper in 1978
(Cooper et al., 2007). It is a non-parametric method for

▲

1002 DECEMBER  2014 VOLUME 114     The Journal of The Southern African Institute of Mining and Metallurgy

Figure 1—Decision-making unit transforming inputs into outputs (after Emmanuel, 2011)



ff fmeasuring the efficiency of a DMU. DEA has been
successfully applied since its introduction. For example, it has
been used to evaluate the performance of various operations,
including production planning, research and development,
agricultural economics, airport performance, and other
applications (Li et al., 2012). In particular, DEA has been
used in evaluating the technical efficiency of coal mines, the
growth in productivity in both opencast and underground
mines, and in assessing the efficiency of coal mine safety
measures (Kulshreshtha and Parikh, 2002; Shu-Ming, 2011;
Tong and jia Ding, 2008). All these studies, however,
consider DEA as a black box. They do not indicate those
details of a mine operation that could decide either the
efficiency or inefficiency of the mine.

The focus of the applications of DEA in coal mines has
been on the general discretionary inputs and outputs; the
influences of non-discretionary inputs have not been
considered. Thus most of the applications consider the inputs
and outputs of a mining company without detailing the
components of the production system. It is difficult to assess
the required technical levels of inputs in each sub-process of
the coal supply chain; hence the evaluation views the coal
mine as a black box.

DData envelopment analysis for efficiency
mmeasurement
DEA is based on a linear programming method that is used to
determine a set of best practices regarded as being efficient
(Li et al., 2012). The method is used to construct an envelope
of the best-practice DMUs using similar inputs and outputs;
the envelope is therefore determined by the pareto-efficient
DMUs (Joubert, 2010).

The basic DEA models are those of Charnes-Cooper-
Rhodes (CCR) and Banker-Charnes-Cooper (BCC) (Martić et
al., 2009). CCR models assume a constant return to scale
(CRS), and are based on the assumption that an increase in
inputs results in a proportional increase in outputs. The CCR
model is used to determine the overall efficiency of a DMU.

The BCC model assumes a variable return to scale (VRS),
which means that the increase in inputs may result in either
a lesser or greater proportional increase in outputs. The BCC
model is therefore used for determining the pure technical
efficiency of DMUs.

The pure technical efficiency approach measures the
ability of management to utilize resources in producing
outputs. CCR efficiency can be decomposed into scale
efficiency and pure technical efficiency. Scale efficiency helps
management to choose the optimal size of the DMU (Kumar
and Gulati, 2008).

To illustrate the concept of DEA, consider a set of DMUs
A, B, C, Q, and D, using a single input of resource to produce
a single output (Figure 2). The DMUs A, B, C, and Q are
efficient on VRS, thus forming an envelope of best-practice
DMUs, while DMU D is inefficient. Based on CCR, only B is
efficient, while the others are inefficient. A DMU is
considered to be efficient if it has an efficiency score of 1.

Mathematical representation of basic DEA models

Consider a set J = {1...n}, each member of which is
considered to be a DMU using m inputs of xij for i∈ I and
generating s outputs yrj for r∈R. The weights assigned to
inputs and outputs are vi and ur respectively. The efficiency
score can therefore be defined by Equation [1] (Talluri,
2000). The efficiency of each DMU expressed in a fractional
program is then transformed and solved using the linear
programming method (Cooper et al., 2007). The DMU under
evaluation will be DMUj = o and its efficiency score is
denoted by ho.

[1]

[2]
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Figure 2—Illustration of CRS- and VRS-efficient DMUs (Kumar and Gulati, 2008)
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Subject to 

Equation [2] is a fractional program that can be
transformed by Charnes-Cooper transformation into a linear
program (LP):

[3]

subject to

where

The dual of Equation [3] is given by the following linear
program:

[4]

subject to

Equation [4] is solved n times, with n equal to the
number of DMUs. If a variable return to scale is considered,

the condition∑λ = 1 is added in Equation [4]. Taking into
account the presence of slack, the dual of Equation [3] is
given in Equation [5].

[5]

subject to

where s– and s+ are slacks for the input and output respec-
tively.

Research methodology and model formulation
The model consists of two stages. The first stage is the
formulation of the overall DEA model, comprising the mining
operation, the washing operation, and transport to the port,
using discretionary variables. The second stage is the

yregression of the non-discretionary variables on the efficiency
score to assess the influence of non-discretionary variables.
The resulting efficiency scores are dependent on one another,
which violates the assumption of the regression models that
the response and predictor variables should be independent.
Xue et al. (1999) suggest that resampling by replacement
(bootstrapping) of the efficiency scores to create other
samples of the same size as the original sample will eliminate
this dependency. The formulation approach is indicated in
Figure 3. 

➤ Discretionary and non-discretionary data were obtained
through the Raw Material Group (IntierraRMG)
database for coal. Other sources of data included
technical articles, reports, and mining company annual
reports

➤ Illustration was carried out through solving the models
using General Algebra Modelling System (GAMS)
software, a free demonstration system with limited
application. Regression and bootstrap was carried out
in R, which is free and open-source software.

Model formulation

The formulation of the model involved examining the sub-
process of surface coal mines that supply coal to the export

▲
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Figure 3—Modelling approach



fmarket. The chain of the process includes mining, the
wwashing process, and transportation to the port for export.
The structure considered for this research is shown in
Figure 4.

According to Cook et al. (2010), the overall efficiency of
the multistage process is the convex linear combination of
stage-level measures. This can be interpreted as the weighted
efficiency of each subsystem of the whole multistage system.
The weight assigned for the efficiency of each subsystem of
the whole chain is the ratio of the input resources used by the
subsystem under evaluation to the total input resource used
by the whole system.

Chen et al. (2009) show that the weight assigned to the
efficiency of each sub-process to obtain the overall efficiency
should be greater than a parameter αα which is chosen to
avoid one or two of the weights being zero, and the rest
being equal to 1 upon optimization. These concepts together
wwere applied in the formulation of the DEA model for this
research.

To formulate the model, we considered a set of surface
coal mines J = {1...n}producing coal and supplying it to the
export market. Each mine is considered as a DMU. Assuming
that input to the mining operation denoted by m is i∈ {1,...,}
inputs at the beginning of the washing operation denoted by
b is k∈ {1,...,K} inputs at the beginning of port denoted by p
is f∈ {,...,F}, intermediate output from mining and as an
input into the washing operation is g∈ {1,...,G}, and the
output from the washing operation, which is also an input to
the port, is t∈ {1,...,T}.

The following definitions for the symbols were used:
xxij

m = the given amount of input i∈ I to the mining
operation m of DMU j∈J

xxkj
b = the given amount of input k∈K to the washing plant

b of DMU j∈J
xxfjx

p
= the given amount of input f∈F to the port p of
DMU j∈J

zzgi
m = the amount of intermediate output from the mining

operation and is an input to the washing plant of the
DMU j∈J

zztj
b = the amount of intermediate output from the washing

plant and is an input to the port of the DMU j∈J
yyrj

p
= the given amount of output r∈R from the port p of
DMU j∈J

vr
p = weight given to the outputs r∈R from the port p of

DMU j∈J
ufu

p
= weight given to the inputs f∈F in the port p of
DMU j∈J

ηt
b = weight given to the outputs t∈T from the washing

plant b of DMU j∈J
uk

b = weight given to the inputs k∈K to the washing
plant bof DMU j∈J

ui
m = weight given to the inputs i∈ I to the washing plant

b of DMU j∈J
ηg

m = weight given to the outputs g∈G from mining and
is an input to washing plant 

ωiω
m = weight for the inputs i∈ I to the mining operation m

after transformation to linear program (LP)
ωfω

p
= weight for the inputs f∈ff F to the port p after

transformation to LP 
ωkω

b = weight for the inputs k∈K to the washing plant b
after transformation to LP

γg
m = weight for the outputs g∈G from the mining

operation m after transformation to LP
γt

b = weight for the outputs t∈T from the washing
operation b after transformation to LP

µr
p = weight for the outputs r∈R from the port p after

transformation to LP
εε = an infinitesimal positive number that ensures the

weights are positive.

Convex linear combination of the efficiency of each sub-
process was used to generate the overall efficiency of the
supply chain. The resulting mathematical model of the
surface coal mine supply chain for the export market
represented by Figure 4 is presented in Equation [6].

[6]

subject to
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Figure 4—Surface coal mine supply structure for the export market
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The above linear programming was transformed by the
Charnes-Cooper transformation approach in Equation[3] to
yyield:

[7]

subject to

where:
u1, u2, u3 are added to account for variable return to scale

for the mining operation, washing operation, and
port respectively

ε is an infinitesimal number whose value is 10-6. It is
used in ensuring that the optimal weights are
positive

β is a parameter that is chosen to avoids the weights
assigned to efficiency score in convex linear
combination being zero upon optimization  of
efficiency, and also to ensure that there is a
minimum weighted input for each DMU in each
sub-process. In this research optimal value of 
β = 0.2

Considering the influence of non-discretionary variables
on the resulting efficiency score, the linear regression was
applied, using the efficiency score as a dependent variable
and non-discretionary variables as independent variables
(thickness, distance to the port, precipitation, life of mine
(LOM), and calorific value (CV)). The regression model that
was applied in this research is shown in Equation [8].

[8]

where θ is the efficiency score and α is the coefficient of
regression.

Illustration of the application

To illustrate the application of the model, data from eight
surface coal mines producing coal for export were extracted
from RMG database, while the supplementary information
such as standards for export tons, number of employees and
others  were obtained from  media reports, company
websites, and mining company annual reports.

Data-sets for selected discretionary and non-discretionary
variables are presented in Table I and Table II respectively. In
Table I the revenue is secondary data that was calculated
from the product of price and export tonnages. For illustration
purposes, surface coal mines for this research were given
DMU numbers.

▲
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Table I

Discretionary input variables and output variables

DMU Reserve CAPEX No. Moisture SR Ash (%) ROM (Mt) Carbon tax Recovery Export CV Export FOB Price Revenue 
(Mt) US$M Employees (%) $/t) (% (Mt) MJ/Kg $/t US$M

DMU1 61.40 750.00 448 2.0 3.00 14.5 3.197 23 0.9 2.09 27.21 103.25 215.79
DMU2 25.20 177.00 250 3.5 7.00 6 2.800 23 0.9 2.8 27.21 103.25 289.10
DMU3 29.10 45.30 70 6.0 4.60 12 7.640 23 0.9 7.18 23.02 103.25 741.34
DMU4 21.30 144.00 400 9.0 5.50 10 2.800 23 0.9 1.4 25.12 03.25 144.55
DMU5 172.60 1300.00 170 14.5 3.70 9.5 8.210 23 0.9 27.9 25.12 103.25 2880.68
DMU6 66.00 330.00 330 2.2 7.00 10.35 2.612 23 0.9 2.612 25.12 103.25 269.69
DMU7 26.31 275.00 300 2 10 8.75 2.900 23 0.9 2.9 25.12 103.25 299.43
DMU8 100.00 122.90 400 3.5 10 9 3.779 23 0.9 3.779 23.02 103.25 390.18

Source: RGM, annual mining reports, media and company websites

29.10 45.30 70 6.0 4.60 12 7.640 23 0.9 7.18 23.02 103.25 
21.30 144.00 400 9.0 5.50 10 2.800 23 0.9 1.4 25.12 03.25 

172.60 1300.00 170 14.5 3.70 9.5 8.210 23 0.9 27.9 25.12 103.25 
66.00 330.00 330 2.2 7.00 10.35 2.612 23 0.9 2.612 25.12 103.25 
26.31 275.00 300 2 10 8.75 2.900 23 0.9 2.9 25.12 103.25 

100.00 122.90 400 3.5 10 9 3.779 23 0.9 3.779 23.02 103.25 



The model in Equation [7] was solved using General
Algebraic Modelling system software (GAMS), a free
demonstration system considering discretionary variables
only. In the second step, multiple regressions were applied on
non-discretionary variables. The regression of the efficiency
score on non-discretionary variables was done using the R
open-source software. 

The inputs for the sub-processes of the DEA model were:

➤ Mining operation: CAPEX (capital expenditure),
stripping ratio (SR), number of employees, and
moisture (%)

➤ Washing plant ROM, ash,  and recovery
➤ Port: carbon tax.

The overall outputs of the model were revenue and CV-
export.

Results

The results of the efficiency scores after solving the model
(Equation [7]) using GAMS for each DMU using the data in
Table I are presented in Figure 5. DMU 6 is technically
efficient, with an efficiency score of 1; this DMU define the
envelope of the best practice of all surface mines used in the
illustration for the application. DMUs 1–5, 7, and 8) are
inefficient surface coal mines with efficiency scores less than
1. This implies that in order to be efficient, DMU 1 has to
improve by 4.5%, DMU 2 by 11.2%, DMU 3 by 18.0%, DMU
4 by 25.9%, DMU 5 by 1.7%, DMU 7 by 1.2%, and DMU 8 by
6.9% in relation to the best-practice mines through reduction
of controllable inputs.

The influence of non-discretionary variables (Table II) on
efficiency score for each DMU was determined using R
software. The results are summarized in Table III. The
summary statistics tests in Table III show that the
probabilities (p-value) for t-value for coefficient of Dist-port,
precipitation, and thickness variables are lower than the 0.05
significance level, while that of LOM is greater than 0.05.
This suggests that the Dist-port, precipitation, and thickness
vvariables have an influence on the efficiency scores, while
LOM has no influence on the efficiency scores of the mines.
The inclusion of the CV variable in the regression together
wwith the other discretionary variables in Table II shows no
relationship with the efficiency score. This is due to the
relationship between the CV and the other predictor variables,
wwhich affects the regression results.

ffBootstrap technique was applied to the efficiency scores
obtained for each DMU to avoid dependence among them, so
as to generate a random set of efficiency scores. For
illustration purpose the data was resampled with replacement
of 1000 samples, with each having eight DMUs, on the
variables indicated in Table II, and then regression was
applied to each sample.  The results of the bootstrap
regression are presented in Table IV.

Through observation of the confidence interval 95% (CI)
in Table IV, distance to the port (Dist-port) and precipitation
affect the efficiency of a surface coal mine. This is because
the confidence interval for coefficients of these variables does
not include zero. This statistical test suggests that these
variables have influence on the efficiency score.  The CIs for
the coefficient of the thickness and LOM include zero value,
which indicates that thickness and LOM do not affect the
efficiency score.

The major differences between the results presented in
Table III and Table IV are in the values of the standard errors.
The results in Table III have standard errors obtained from
efficiency scores that are dependent on each other, and those
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Table II

Non-discretionary input variables

DM Thickness Precipitation Dist-port LOM CV 
(m) (mm) (Km) (Yrs) (MJ/kg)

1 4.0 600 286 20 29.31
2 3.2 568 407 12 31
3 3.0 685 250 20 27.2
4 11.0 789 105 10 28.26
5 38.0 655 278 17 27.9
6 5.0 674 164 17 30
7 0.6 674 161 9 29.3
8 2.9 568 360 10 28.01

Table III

Regression results for the discretionary variables

Variables Estimate Std. Error t value Pr(>|t|)

Precipitation -0.00293 0.00046 -6.41200 0.00769
Thickness 0.00390 0.00120 3.23500 0.04805
Dist-port -0.00170 0.00032 -5.35900 0.01272
LOM 0.00066 0.00297 0.22300 0.83784

Table IV

Regression results for 1000 bootstrap samples

Variables Estimate Bias Std. Error CI (95%)

Precipitation -0.00293 0.00050 0.00199 (-0.0128, -0.0012)
Thickness 0.00390 -0.00187 0.01870 (-0.0062, 0.0885)
Dist-port -0.00170 0.00022 0.00126 (-0.0063, -0.0008)
LOM 0.00066 -0.00051 0.00835 (-0.0067, 0.0307)

Figure 5—Variable return–to-scale technical efficiency of DMUs for
illustration
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fin Table IV are obtained from resampling technique that
eliminates dependence among the efficiency scores.

In addition, it is observed that the results from both
ordinary regression and bootstrap regression are not
sufficiently conclusive to confirm that the selected non-
discretionary variables for illustration do affect the efficiency
score of a surface coal mine. More data and more variables
can help to draw conclusions and identify extra non-discre-
tionary variables that influence the efficiency of surface coal
mines. For example, the ordinary linear regression indicates
that the thickness of the coal seam has an influence on the
efficiency score, while the regression for the bootstrap
(resampling) technique indicates that the thickness does not
influence the efficiency score. This apparent contradiction can
be clarified by including more observations in the study.

Conclusions 

Determining the relative efficiency of a surface coal mine
helps management to identify inefficient mines and select the
optimal level of the variables that can be used in order to
improve the company’s efficiency and thus its competi-
tiveness. It can help the mine to determine the effective cost
of achieving the desired outputs.

At any given producer, the relative technical efficiency of
the mine can be determined by comparing it with the best-
practice mines. New mines can also determine their position
or can choose the best discretionary variables to help them to
increase their competitiveness in the market.

This study suggests that future research should be
focused on creating models to predict the efficiency of new
surface mines, taking into account both the discretionary and
non-discretionary variables from the results of the efficiency
score. This would help new mines to evaluate their
operational variables before spending more capital, making
them competitive in any given business environment.
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