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Abstract 

Forecasts of a Global Coupled Model for Austral summer with a 1-month lead are 

downscaled to end-of-season maize yields and accumulated streamflow over the Limpopo 

Province and adjacent districts in northeastern South Africa through application of a MOS 

(Model Output Statistics) approach applied over a 28-year period.  Promising results, based 
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on the hindcasts of the Global Models and historically observed yield and streamflow data, 

suggest potential for a commodity-orientated forecast system for application in agriculture in 

an operational environment. It also serves as a baseline study for inclusion of sophisticated 

crop or runoff models utilising GCM output data towards estimating potential yields and 

streamflows in the region. 

Introduction 

Seasonal forecasts are expected to capacitate the farming community to adapt during periods 

of climate stress and variability given the effective dissemination and use of the information 

(Klopper et al., 2006). The application of these forecasts in Agriculture have been promoted 

during the past few years with promising user responses in several countries including 

Australia (Hayman et al., 2007) and South and southern Africa (Klopper, 1999, O’Brien and 

Vogel, 2003,Vogel and O’Brien, 2006). However, factors limiting the usefulness of forecasts 

include poor dissemination of information, poor communication between key role players in 

agriculture and producers of long range forecasts as well as difficulty in interpreting seasonal 

forecast information not necessarily packaged into an understandable format for the end user 

(Archer, 2003, Vogel and O’Brien, 2006, Ziervogel, 2004). A need therefore arises for 

presenting seasonal forecast information for agriculture as the probabilistic forecast of 

agricultural crop yield, updated through a growing season, having the potential to benefit a 

range of decision makers in climate risk management interventions (Hansen et al., 2011). 

Current seasonal forecast models rely on the modelling of global teleconnections in response 

to large scale phenomena, one of which is the El Niño Southern Oscillation (ENSO - Diaz et 

al., 2001), with well-documented climate response over subtropical regions including 

southern Africa (e,g, Dilley and Heyman, 1995) and implications for maize yields in South 

Africa (e.g. Cane et al., 1994, Moeletsi et al., 2011). Early applications for agriculture in this 

regard focussed purely on the climate response to ENSO to predict possible rainfall outcomes 

for a season and, with sufficient lead time, recommend strategies for fertilizer application and 

planting density accordingly. This approach has yielded positive results over areas where a 

strong ENSO influence has been reported such as the wheat belt over eastern Australia 

(Hammer et al., 1996), South Africa and Zimbabwe (Martin et al., 2000, de Jager et al., 

1998) and is still being considered as useful information to be taken into account before 

planting in southern Africa (Zinyengere et al., 2011), Australia (Anwar et al., 2008; 

Everingham et al., 2008) and with application also in the USA (Cabrera et al., 2007). As 
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South African summer rainfall is influenced, in addition to ENSO teleconnections, by other 

atmospheric circulation phenomena such as the Southern Annular Mode (Gillet, 2006) which 

is sensitive to more external forcing than only ENSO (Arblaster and Meehl, 2005). The 

exclusive use of ENSO as indicator for expected seasonal rainfall can present challenges. 

Anomalously wet conditions over large parts of the South African summer rainfall area 

during recent El Niño events such as during the 1997/98 (Landman and Beraki, 2012) and the 

2009/10 summers substantiate the need to consider more than only the ENSO signal in 

explaining southern African summer rainfall variability. 

In addition to focussing exclusively on the ENSO, advances in forecast skill demonstrated by 

Global Coupled Models (GCMs) could have potential benefits. GCMs have recently 

demonstrated the potential for useful application of their output towards forecasting the 

rainfall expected during a growing season with sufficient lead time for agricultural decision 

making for dryland agriculture in sub-humid and semi–arid regions such as northern Italy 

(Marletto et al., 2007), the wheat producing areas in Australia (Hansen et al., 2004, Asseng et 

al., 2012), Kenya (Hansen et al., 2009) and South Africa (Bezuidenhout and Schulze, 2006). 

The non-existence of crop yield data sometimes necessitates the use of crop growth models to 

simulate historical yield data (Roudier et al., 2012, Anwar et al., 2008, Hansen et al., 2009, 

Marletto et al., 2007) in order to develop and test a seasonal forecast model. Crop simulation 

models such as DSSAT (Decision Support System for Agrotechnology Transfer), and APSIM 

(McCown et al., 1995) are used to create such datasets. The gap in temporal and spatial 

resolution between climate data from statistical forecasts or GCM simulations and that used 

in crop simulation input models however necessitates the reference to so-called analogue 

years based on similarity to the current expected season (de Jager et al., 1998), application of 

stochastic weather generators (Semenov and Doblas-Reyes, 2007, Ines et al., 2011) or 

ensemble reordering of historical data (Ghile and Schulze, 2009). An alternative is to use 

historical yield data if available. Since technological advances and improvement in fertilizers 

and cultivars used are responsible for long-term trends in historical time series unrelated to 

climate variability, such data cannot be used in an original format. Trends are therefore 

removed by subtracting from the time series a low order mathematical model fitted to the 

time series (e.g. Hansen, 2004, Peiris et al., 2008). 

South Africa is a net exporter of maize, the most important agricultural commodity produced 

for domestic consumption in the country. Crop cultivation (commercial, subsistence) is a land 

use that covers about 12% of the surface area of South Africa (Fairbanks et al., 2001). 

Commercial dryland cultivation of maize is by far the most prominent crop cultivation  
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Figure 1. The Area of Intrerest. Relevant districts with maize production data used are: 1 – Middelburg, 2- 

Witbank, 3 – Rustenburg, 4- Thabazimbi. The stream flow measuring points are: a – Beestkraal, b – 

Krokodilpoort, c - Hartbeesfontein, d – Klipvoor, e- Dwaalhoek, f - Glen Alpine 

 

category. The primary focus area for maize cultivation is the central to eastern parts of the 

country. Over the northeastern parts of South Africa (Northwest, Mpumalanga and the 

Limpopo Provinces – Figure 1), dryland cultivation covers between 10% and 15% of the area 

in the Northwest and Mpumalanga provinces where agricultural activity leans much more 

towards commercial agriculture than subsistence agriculture. The proportion of area where 

dryland cultivation is practiced over the Limpopo Province is about half of this with a 50/50 

split in the commercial/subsistence proportions. Subsistence cultivation also contributes 

significantly to household nutrition in the area (Aliber and Hart, 2009).  

Over the Limpopo Province there is also a greater proportion of irrigation as opposed to 

dryland cultivation relative to the other two provinces mentioned. The proportion of dryland 

cultivation decreases towards the northeast over this region due to increased unreliability of 

rainfall. The semi-arid nature of this region (Acocks, 1975, Peel et al., 2007, Mzezewa et al., 

2010) makes inter-annual variability of rainfall a key aspect determining the success of 

agriculture similar to the situation in other semi-arid tropical regions of the world 
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(Sivakumar, 1998) as water availability is a limiting factor for crop production. Concurrently, 

the management of water is one of the most crucial aspects of planning and risk assessments 

strategies in this region. From this perspective, the prediction of water resources is of great 

importance for irrigation fed crops. The statistical relationship between ENSO and 

streamflow in Southern Africa increases the potential for streamflow forecasting based partly 

on this association (Chiew and McMahon 2002). A strong relationship between streamflow 

and atmospheric variability over this area of South Africa in particular for the austral mid-

summer season was demonstrated (Landman et al., 2001) using the perfect prognosis 

technique (Wilks, 2011) applied to GCM atmospheric variables.  

The high skill demonstrated over northeastern South Africa in forecasting the seasonal 

rainfall for Austral mid-summer (DJF) by November (Engelbrecht et al., 2011; Landman et 

al., 2012) and accumulated streamflow (Landman et el., 2009) through Model Output 

Statistics (MOS; Wilks, 2011) creates the opportunity for seasonal forecasts to be considered 

in agriculture during the decision making process relating to planting and other management 

strategies early in the growing season based on expected rainfall and subsequent potential 

yield and streamflow estimates. The timing of the forecast in November relative to the 

planting window for maize over these northeastern parts of South Africa (Dupisani, 1987, 

Sacks et al., 2010) renders this forecast useful. Rainfall during the DJF period over the region 

is of cardinal importance for the maize crop as it covers the period of tasseling and grain fill. 

In this paper we investigate the ability of a GCM to forecast an approximation of potential 

yield and streamflow by considering hindcasts of atmospheric circulation patterns for DJF 

made in November, downscaled to surface parameters, over a period of approximately three 

decades.  

Data and Methodology 

The area of interest (AOI) for this study is situated over the north-eastern interior of South 

Africa (Figure 1). Apart from high seasonal rainfall prediction skill during the austral mid-

summer, this area is also of particular interest in a joint project between South African and 

Japanese modellers through the Science and Technology Research Partnership for 

Sustainable Development (SATREPS). Since GCMs are performing well over this region, the 

assumption is made here that by skilfully modelling the climatic drivers (such as ENSO) 

responsible for describing the seasonal-to-interannual variability over the region, the models 

will also be able to provide forecast fields which can be used to predict variables strongly 
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associated with rainfall such as dry-land crops and streamflow. However, ENSO is not the 

only climatic driver over South Africa captured by the physical global models: In a recent 

paper (Landman and Beraki, 2012) a statistical model that used only equatorial Pacific Ocean 

SST as predictor was used to retro-actively predict DJF rainfall over southern Africa. The 

skill of the statistical model was compared with skill obtained with a multi-model system 

consisting of coupled models of the DEMETER project (Palmer et al., 2004) and with the 

direct coupled version of the ECHAM4.5-MOM3 (DeWitt, 2005). The coupled models all 

outscored the statistical model, subsequently providing evidence that state-of-the-art physical 

models are superior to ENSO-based statistical models when predicting mid-summer rainfall 

over South Africa. Results obtained from the SINTEX-F system described here give a 

quantified example of the skill levels for crop yield and streamflow predictions achievable 

using a dynamical model plus MOS post-processing. We do not make a direct comparison 

with skill levels achievable from purely statistically based systems. However, as state-of-the-

art GCMs generally outperform statistical methods for DJF rainfall over the region (Landman 

et al., 2009, Landman and Beraki, 2012) we may expect, in general, that use of GCMs will 

provide more skilful predictions of crop yield and streamflow relative to purely statistical 

methods. Since the maize yields and streamflows over the region considered here are strong 

functions of rainfall during mid-summer, the same conclusion regarding which modelling 

system is preferred can be deduced for these derivatives of rainfall. Therefore, the prediction 

system discussed here is based on a physical global model only. 

Crop yield data for Maize (White and Yellow) are obtained from the South African National 

Department of Agriculture, Directorate: Statistics and Economic Analysis. Yearly figures 

since the early 80’s per district and per province are estimated from data assimilated from 

producers and other co-workers of the Department in the maize-producing areas of South 

Africa. The production figures are provided per district for white and yellow maize together 

and are representative of dryland agriculture. Irrigation cultivation comprises less than 10% 

of maize produced in South Africa and the influence of this should therefore be limited in the 

event of contamination of yield data for dryland cultivation. Considering the region of 

interest, we focus on the provincial figure for the Limpopo Province and also the figures for 

districts in close proximity to the southern border of Limpopo namely the Witbank and 

Middelburg Districts in Mpumalanga, the Rustenburg District in Northwest and the 

Thabazimbi District in Limpopo.  

Streamflow data are obtained from the Hydrological Information System (HIS) (DWAF, 

2012) of the Department of Water Affairs (DWAF). This system provides verified 
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streamflow data for 22 drainage regions with multiple catchment flow-gauge data available 

for each drainage region. A comprehensive overview of flow-gauging structures in South 

African rivers is given in Wessels and Rooseboom, 2009. As the focus of this study is in the 

northeastern parts of South Africa, stations from the Limpopo drainage region are selected, 

serving as the basis for the predictability of streamflow. Stations are selected from the 

database on the basis of their data availability (to conform to the full model period) and the 

size of the catchment area. Data availability should exceed 90% throughout the study period 

to ensure proper representation of hydrological variation. This finally limits the number of 

stations used to 6 from a much larger initial set, mostly located over the north-western parts 

of the Limpopo Province. The six stations, approximate size of their catchments and average 

DJF streamflow are indicated in Table 1. 

 

Table 1. Streamflow stations used in analysis. 

Flow Gauge Nr. River Name Measuring Point 
Catchment Area 

(km
2
) 

Average Flow for 

DJF 1980-2010 

(Million m
3
) 

A2H019 Krokodil River Beestkraal 6131 34.5 

A2H048 Krokodil River Krokodilpoort 4691 29.4 

A2H083 Krokodil River Hartbeesfontein 4116 28.4 

A2H106 Pienaars River Klipvoor 6139 18.7 

A4H005 Mokolo River Dwaalhoek 6131 31.9 

A6H029 Mogalakwena Glen Alpine 11 292 16.1 

 

 

The GCM data used in the study are from the archives of the Research Institute for Global 

Change (RIGC), formerly known as the Frontier Research Centre for Global Change of the 

Japan Agency for Marine-Earth Science and Technology (JAMSTEC). A number of studies 

has demonstrated the value of using 850 hPa geopotential height fields from global models to 

predict seasonal rainfall variability over southern Africa (Engelbrecht et a., 2011; Landman 

and Goddard, 2002; Landman and Beraki, 2012; Landman et al., 2012); these height fields 

represent the low-level circulation over the larger part of the interior of southern Africa which 

is on average about 1.5 km above mean sea level. Here the 850 hPa geopotential height 

hindcasts of the Scale Interaction Experiment-Frontier Research Centre for Global Change 

(FRCGC) coupled GCM (SINTEX-F) (Luo et al., 2005) are downscaled to the agricultural 

districts over north-eastern South Africa as well as to the gauging stations along the Limpopo 
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drainage area. The SINTEX-F model consists of the T106L19 ECHAM-4.6 (Roeckner et al. 

1996) atmospheric component, coupled to the ocean component Ocean Parallellise (OPA8.2, 

Madec et al. 1998), through the Ocean-Atmosphere-Sea Ice-Soil (OASIS 2.4 , Valcke et al. 

2000) coupler. Spatial resolution of the atmospheric component is approximately 1°X1° 

while the OPA 8.2 uses the Arakawa C grid with longitude-latitude resolution of 2°×2° 

cosine (latitude) with increased meridional resolution up to 0.5° near the equator. The global 

model’s hindcasts used were initialised in November for December to February (DJF) 

simulations at a 1-month lead-time over the 28-year period from 1983/84 to 2010/11, 

consisting of 9 ensemble members. 

 

Statistical downscaling using principal component regression: 

Biases in global model rainfall over southern Africa have been shown to be minimised 

through statistical post-processing (Landman and Goddard, 2002; Landman et al., 2009), and 

such processing also has as a result the production of forecast data directly applicable at a 

point of interest (Landman et al., 2012). Moreover, crop yields and streamflows  are not 

represented explicitly by the global model, and so post-processing large-scale model output is 

warranted. The method used here to post-process SINTEX-F data to crop yields of certain 

agricultural district and streamflows from river flow-gauges is called model output statistics 

(MOS; Wilks, 2011). MOS equations are developed by using the principal component 

regression (PCR; Jolliffe, 2002) option of the Climate Predictability Tool (CPT) of the 

International Research Institute for Climate and Society (IRI; http://iri.columbia.edu). The 

maize yields over the selection of agricultural districts are first separately detrended by fitting 

a second-order polynomial to each series, selected on the basis of the respective R
2
 values of 

the fitted lines in order to resolve the time series. The second-order polynomial yields a 

higher R
2
 when fitted to the time series than a first-order polynomial. Both the resulting crop 

indices and streamflows are transformed into an approximate normal distribution prior to 

PCR. The DJF hindcast fields used in the MOS equations are restricted over a domain that 

covers an area between the equator and 80°S and from 20°W to 60°E. This area is selected 

such that it will be able to capture the Southern Annular Mode (SAM; Gillett et al., 2006) and 

the high- and low-pressure systems over the sub-continent and over the southern Atlantic and 

Indian Oceans affecting southern African mid-summer rainfall variability (Tyson and 

Preston-Whyte, 2000). Principal component analysis (PCA) aims to reduce the 

dimensionality of a data set and in this case the 5041 grid-points of the 850 hPa geopotential 

height fields over the area described above. PCR simply starts by applying PCA to the 

http://iri.columbia.edu/
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predictor 850 hPa geopotential heights, thereby eliminating the possibility of multi-

collenearities in the model data and simplifying the regression calculations (Jolliffe, 2002). 

Here, the 850 hPa height field have been reduced to 3 principle component time series used 

in the PCR. 

The MOS equations’ ability to produce skilful hindcasts is tested over the 28-year period 

using cross-validation with a large 5-year-out design, which means that 2 years on either side 

of the predicted year are omitted in order to minimise the artificial inflation of skill. 

Deterministic forecast skill is calculated for the 28-year cross-validation only by considering 

mean squared error skill scores and Kendall’s tau (Wilks, 2011). The former is a relative 

accuracy measure (skill score) and with persistence used here as the reference hindcasts, 

while the Kendall’s Tau (not unduly influenced by possible outlying data) is an alternative to 

the conventional Pearson correlation and has the additional attribute of discrimination 

(Jolliffe and Stephenson, 2011). In addition to cross-validation, the process of retro-active 

forecasting is applied over the 16-year period from 1995/96 to 2010/11 in order to produce a 

set of probabilistic downscaled hindcasts which are subsequently verified. A cross-validation 

3-year-out design is used for the retro-active process, and the initial cross-validation period of 

12 years (1983/84 to 1994/95) is progressively increased by 1 year at each downscaled 

hindcast step. Owing to the small ensemble size of 9 members, the hindcasts distributions 

may be poorly sampled and so their uncertainties have to be estimated. Probabilistic hindcasts 

for the 16 years are subsequently obtained from the error variance of the 3-year-out cross-

validated hindcasts using the ensemble mean (Troccoli et al., 2008). These hindcasts are 

tested for discrimination (to determine if the hindcasts are discernibly different given 

different outcomes – for example, is the forecast probability for a bumper harvest 

systematically higher when the event occurs than when it does not occur?) and for reliability 

(to determine if the confidence communicated in the hindcasts is appropriate – for example, 

the hindcasts are considered reliable if there is consistency between the hindcast probabilities 

for high or low crop yields and the observed relative frequencies of the observed crop yields). 

For calculating the former as a verification measure, the relative operating characteristic 

(ROC; Mason and Graham, 2002) is used, and for the latter the reliability diagram (Hamill, 

1997) is used. ROC curves (plotting the hindcast hit rates against the false alarm rates) are 

presented as well as their scores: If the area below the ROC curves is ≤ 0.5, the model 

discriminates correctly only for less than half the time (Mason and Weigel, 2009). For a 

maximum ROC score of 1.0, perfect discrimination has been obtained. 
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Results  

The predictor field (SINTEX-F DJF 850 hPa geopotential heights) used in the PCR is 

decomposed into spatial loading fields (Figure 2a) and time series representing independent 

climate modes of variation (Figure 2b). These modes emphasize the circulation patterns  

 

 

Figure 2. (a)The first three dominant PCA spatial loadings of the SINTEX-F’s DJF 850 hPa geopotential height 

field for the 28-year period of 1983/84 to 2010/11. (b) The temporal scores associated with the loadings (a). The 

explained variance of each mode is also presented 

 

 

important for a rainfall signal over the area of interest and also their occurrence in time per 

DJF season. All three PCs show a response in terms of the Southern Annular Mode, to which 

rainfall over northeastern South Africa is positively correlated (Gillet, 2006), accentuated by 

relatively large contrasts between the areas south of 65°S and around 45°S. The contrast in 

anomalies between areas towards the south of southern Africa and towards the north is 
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emphasised in PC1. Positive anomalies towards the south and negative anomalies towards the 

north are associated with relatively wet conditions over the area of interest. PC 2 and 3 are 

also sensitive towards the position and strength of the Atlantic and Indian Ocean high 

pressure systems, but with particular emphasis towards the east of the country. Pressure 

anomalies towards the east of the country are thought to play an important role in mid to late 

summer rainfall over the northeastern parts of South Africa (Tyson, 1981, D’Abreton and 

Lindesay, 1993, Richard et al., 2001). Considering the semi-arid nature of the AOI and the 

sign of the anomalies represented by the PC fields, it is expected that PC1 should be 

negatively and the other two PC fields positively correlated to both yields and stream flow.  

Because of uncertainties in the forecastprocess seasonal forecasts are usually expressed 

probabilistically.  Notwithstanding, it may be of interest to establish what the deterministic 

hindcast performance of a forecast system is. For this reason, the deterministic verification of 

crop yields downscaled from SINTEX-F ensemble mean hindcasts is presented here in terms 

of mean squared error skill scores (with persistence as reference forecast) and Kendall’s tau, 

a rank correlation coefficient resistant to outliers. Persistence is considered a feasible 

reference hindcast here since farmers are often enquiring about the likelihood of either 

obtaining the same bumper yields of the previous season, or a repeat of a failed crop. Figure 3 

shows the detrended crop yield anomalies (thick dashed lines) as a normalised index and the 

associated cross-validated (thin dashed lines) and retro-active (solid lines with crosses) 

hindcasts for four main agricultural districts which are predominantly associated with dry-

land maize production. The years on the graphs are representing the years in which the crops 

were harvested. Take note of the hindcast for each of the four districts for the 1998 harvest 

year. All of them, except for Thabazimbi, show the hindcast for that year well below the 

average, which was a year during which the rainfall forecast for the DJF 1997/98 El Niño 

season was for dry conditions to occur over the larger part of SADC south of about 10° S 

(Landman and Beraki, 2012; Landman et al., 2012). However, the rainfall forecast of an El 

Niño related drought to occur was over-confident and rainfall over the larger part of the 

summer rainfall regions of South Africa was observed to be near the average. The resulting 

close-to-average crop yields for all four districts in 1998 can be seen in Figure 3, even though 

the Thabazimbi hindcast was for an even bigger harvest. The discrepancy in the Thabazimbi 

forecast can be explained by the fact that the predictor time series, the principal component 

(PC) scores of the SINTEX-F 850 hPa geopotential height fields, are uniquely related to the 

cross-validated crop yield hindcasts as seen in Table 2: While the sign of correlation values 

for all four districts is negative as expected considering the anomaly fields (Figure 2a) for  
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Figure 3. Observed (detrended, thick dashed lines) maize yield indices for four agricultural districts over north-

eastern South Africa, and associated cross-validated (thin dashed line) and retro-active (solid lines and crosses) 

downscaled hindcasts. The years indicated represent the year of harvesting  

 

Table 2. Pearson correlations between PC 1 to 3 used in the PCR equations and the cross-validated crop yield 

hindcasts. 

 Thabazimbi Middelburg Witbank Rustenburg 

PC 1 -0.15 -0.47 -0.46 -0.60 

PC 2 -0.82 +0.56 +0.52 +0.38 

PC 3 -0.25 +0.55 +0.61 +0.65 

 

 

PC 1, the sign of the correlation values for the Middelburg, Witbank and Rustenburg districts 

for PC 2 and for PC 3 is positive (also as  expected), while for Thabazimbi it is the opposite, 

and the score of PC 1 for Thabazimbi is the lowest. The authors feel that this apparent 

discrepancy needs further clarification. The reason for the strong negative correlation value 

with PC2 at Thabazimbi may lie in contamination of yield data with irrigated cultivation 

figures as the total yield from dryland cultivation can be expected to be smaller here than at 

the other districts considered rendering the estimated production figure more vulnerable to be 
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skewed by data from maize under irrigation. For example, the high yields during 2002/03 

seems somewhat unrealistic, especially considering that the yields for that season was never 

again exceeded after that year, despite several subsequent seasons with above-normal rainfall. 

It can also be argued that the negative use of PC 2 emphasises the detrimental effects on 

rainfall that tropical cyclone activity towards the east of South Africa can have, especially 

further north in the region of interest, due to subsidence towards the west of the activity in the 

vicinity of the Mozambique Channel. Finally it also shows that spatial variation in rainfall on 

a seasonal scale as well as the occurrence of exceptional cases can influence findings based 

on statistical relationships, highlighting the importance of a longer historical time series. An 

El Niño related drought occurred over the larger part of South Africa during the 2006/07 

seasons. Here the forecast for anomalously low yield is again only for the districts other than 

Thabazimbi, suggesting that the crops of that district seem to be associated with an opposite 

response to what is normally expected during El Niño seasons.  

 

 

Figure 4 . Mean squared error skill scores obtained by using persistence as reference hindcasts (left-hand panel) 

and Kendall’s tau values (right-hand panel). The statistical significance for each score is shown on top of each 

bar. The significance values are obtained through a Monte Carlo rerandomization process 
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The deterministic hindcast performance for each district is shown in Figure 4. In addition, 

verification scores for the Limpopo Province are also included. As a larger proportion of the 

final yield over the Limpopo Province is representative of irrigated crops, the provincial final 

crop yield estimate results could be influenced more significantly by occasional 

contamination from including both dry-land and irrigated crop data. The relatively low 

MSESS and Kendall’s tau values for the province may therefore be a result of human 

influence in the form of irrigation that may negatively impact on the contribution from the 

climatic signal with which the physically based hindcasts of the global model is associated.  

 

   

Figure 5. Relative operating characteristic curves for above- (>67
th

 percentile; thick solid curve) and below- 

(<33
rd

 percentile; thick dashed curve) normal maize yield hindcasts produced by downscaling SINTEX-F DJF 

850 hPa geopotential height fields to agricultural districts over north-eastern South Africa, and associated areas 

beneath each curve 

 

The verification results of the 16-year probabilistic retro-active hindcasts for maize yield are 

presented in Figure 5 and 6. The downscaled hindcasts show good discrimination for both the 

low- and high-yield cases, with ROC scores for both categories ~0.7. The hindcasts also 

present a good level of reliability, but high-yield cases occur less frequently than anticipated 

by the prediction system, since the hindcast probabilities are consistently higher than the 

observed relative frequencies (the weighted least squares regression line is always below the 

diagonal line of perfect reliability). For seasonal climate forecasts, the most common 

situation is indicated by the weighted regression line for below-normal yields (Troccoli,  

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/met.1402#figure-viewer-met1402-fig-0005
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Figure 6. Reliability diagram (top) and frequency histogram (bottom) for above- (>67
th

 percentile) and below- 

(<33
rd

 percentile) normal maize yield hindcasts produced by downscaling SINTEX-F DJF 850 hPa geopotential 

height fields to agricultural districts over north-eastern South Africa. The thick solid (dashed) curve and the 

black (white) bars represent the high- (low-) yield category. The thin solid (dashed) line is the weighted least 

squares regression line of the high- (low-) yield reliability curve 

 

2008). Here the hindcasts correctly indicate increases as well as decreases in the probabilities 

of low-yield years, but the changes in probabilities are over-stated, giving rise to a slope of 

less than 45°, indicating that the hindcasts for low-yields are over-confident. The histograms 

below the reliability diagram of Figure 6 show the frequencies with which high-yield and 

low-yield hindcasts respectively occur in probability intervals of 10%, and shows how 

strongly and how often the hindcast probabilities depart from the climatological probabilities 

(33% for the three equi-probable case presented here – high- (low-) yield seasons are 

associated with the top (bottom) 33% of climatology). Ideally, the hindcasts should have 

frequencies of probabilities close to 0% and 100% in which case the histogram would be u-

shaped as opposed to the inverted v-shaped histogram seen here. Notwithstanding. the 

hindcasts possess some sharpness (the level of confidence that is communicated in the 

hindcasts) since there are hindcasts obtained here with probabilities across most of the range. 
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However, the low-yield cases are more "peaked" around 33% indicating that most of the 

hindcasts have probabilities close to the climate frequency - so hindcasts for this category are 

less sharp than those for the high-yield cases (Figure 6). 

 

The verification results presented thus far are mainly for rain-fed agricultural production. 

Judging by both the deterministic and the probabilistic verification results, operational 

prediction of maize-yield can be skilfully attempted over north-eastern South Africa by using 

the technique presented here of downscaling the large-scale circulation of a global model to 

observed yields. This notion signifies progress towards the estimation of crops based on 

objective, verifiable predictions systems such as the one presented here. Notwithstanding, the 

presented prediction system produce hindcasts with reduced skill for districts where irrigation 

is practiced more widely (e.g. lower skill for the Limpopo province).The maize estimation for 

irrigated crops prior to the rainy season therefore cannot be served by the presented 

prediction system.  

An alternative approach to help irrigation farmers with planning for a coming season could be 

one that predicts the seasonal flows within the drainage area from which they obtain their 

water supply for irrigation. The same predictor field (DJF 850 hPa geopotential heights 

produced by the SINTEX-F coupled model) is used to predict for the flows as measured at six 

flow-gauges within the Limpopo drainage area. The probabilistic hindcasts for streamflows, 

similarly produced and for the same period of 16 seasons as was done for the maize yields 

presented above, are also verified here in order to determine if an operational prediction 

system for streamflows is feasible. Figures 7 and 8 show probabilistic verification results of 

the streamflow hindcasts. ROC scores well above 0.5 are found here, suggesting, as in the 

case for maize yield, that the streamflow forecast system is able to discriminate low-level 

flows from the rest of the flows, as well as high-level flows from the rest of the flows 

(Figure 7). However, the reliability shown in Figure 8 seems to be lower than for the maize 

yield case shown in Figure 6. For low-level flows specifically (as opposed to low crop yields) 

the 16-year hindcasts are generally over-confident  (Wilks, 2011).  The hindcast probabilities 

of the high-level flows are consistently lower than the observed relative frequencies, which  
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Figure 7. Relative operating characteristic curves for above- (>67
th

 percentile; thick solid curve) and below- 

(<33
rd

 percentile; thick dashed curve) normal streamflows of the Limpopo drainage area hindcasts produced by 

downscaling SINTEX-F DJF 850 hPa geopotential height fields to six flow-gauges, and associated areas 

beneath each curve 

 

Figure 8. Reliability diagram (top) and frequency histogram (bottom) for above- (>67
th

 percentile) and below- 

(<33
rd

 percentile) normal streamflows of the Limpopo drainage area hindcasts produced by downscaling 

SINTEX-F DJF 850 hPa geopotential height fields to six flow-gauges. The thick solid (dashed) curve and the 

black (white) bars represent the high- (low-) yield category. The thin solid (dashed) line is the weighted least 

squares regression line of the high- (low-) yield reliability curve 
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indicate that high-level flows always occur more frequently than predicted by the forecast 

system.  These verification results suggest that irrigation-based maize producers may benefit 

from using operational streamflow forecasts, but that they may be best advised to use such 

forecasts with caution owing to the low reliability shown here. Notwithstanding, the system 

should be able to supply forecast information with good high-flow discrimination that could 

improve on crop estimates for farmers using irrigation as a water source for optimising maize 

production.   

Discussion and Conclusions 

The use of a coupled ocean-atmosphere model’s large-scale output to predict end-of-season 

maize yield and mid-summer seasonal streamflows over north-eastern South Africa was 

investigated. Re-forecasts or hindcasts of DJF 850 hPa geopotential height fields were 

statistically downscaled respectively to yields at four agricultural districts and to flows at six 

river flow-gauges. The main reason for this modelling study was to investigate the feasibility 

to construct operational forecast systems which are both objective and verifiable and can be 

used to help reduce the risk in agricultural decision-making. The forecast systems are 

objective since they consist of a regression-based approach which uses the three most 

dominant climatological modes of the coupled model’s low-level circulation as predictors, all 

of which have a physical basis which is recognised as synoptic patterns likely to contribute to 

a robust description of the seasonal-to-interannual variability over southern Africa during the 

austral mid-summer. The systems are also verifiable since a set of downscaled hindcasts were 

created through a procedure that mimics a true operational forecasting environment. 

Verification of the downscaled hindcasts shows that the prediction systems work well under 

certain conditions. For example, dry-land crops have a better chance of being predicted 

reliably than irrigation conditioned crops. Moreover, good discrimination is obtained for both 

crops and streamflow hindcasts, but often associated with over-confidence. High maize yields 

occur less frequently than predicted, and for streamflow, high flows occur more frequently 

than predicted. Notwithstanding the discrepancies identified in the forecast systems, these 

types of seasonal forecasts are generally lacking in South Africa, and so the provision of 

modestly skilful forecasts on a real-time operational basis, and even at the relatively short 1-

month lead-time presented here, may benefit both dry-land and irrigation farmers, 

agricultural economists, seed companies, farming co-operations, to name but a few.  
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Notwithstanding the establishment of new regression-based technologies for objective crop 

prediction in South Africa, more sophisticated methods to model crops remain warranted. 

The results presented here may also be considered as a baseline that needs to be outscored by 

more sophisticated approaches. Examples of such approaches include the use of physical crop 

models that assimilate output from global climate models on temporal and spatial scales 

reconcilable with their requirements (e.g. Le Roux, 2009). These crop models can only 

perform well if the output from global model systems is skilfully representing reality.  

Improvement and development of global forecasting systems over southern Africa has 

already been demonstrated through multi-model ensembles (Landman and Beraki, 2012), 

ocean-atmosphere coupled models (Landman et al., 2012) and the development of coupled 

model systems in South Africa (Beraki et al., 2011; Engelbrecht et al., 2010). These global 

modelling systems should further enhance seasonal forecast skill over southern Africa and 

subsequently help improve empirically based systems such as those presented in this paper. 

Implementing and using these objective and verifiable MOS models operationally will be a 

first for South Africa.  

Acknowledgements: 

The research on which the paper is based is supported by SATREPS and by ACCESS. 

SATREPS (Science and Technology Research Partnership for Sustainable Development) is a 

program for research projects by the Japan Science and Technology Agency (JST) and the 

Japan International Cooperation Agency (JICA). ACCESS (Applied Centre for Climate and 

Earth System Science) is a South African Centre of Excellence of the Department of Science 

and Technology. 

The Authors would also like to thank the two anonymous reviewers for their contributions 

towards substantially improving the paper.  

 

REFERENCES 

Acocks JPH. 1975. Veld types of South Africa (2
nd

 edn). Memoirs of the botanical Survey of 

South Africa 40, Government Printer, Pretoria.  

Aliber M and Hart TGB. 2009. Should subsistence agriculture be supported as a strategy to 

address rural food security? Agrekon: Agricultural Economics Research, Policy and 

Practice in southern Africa 48(4): 434-458. 



20 

 

Anwar MR, Rodriguez D, Liu DL, Power S and O’Leary GJ. 2008. Quality and potential 

utility of ENSO-based forecasts of spring rainfall and wheat yield in south-eastern 

Australia. Aust J Agr Res 59: 112–126. Doi: 10.1071/AR07061 

Arblaster JM and Meehl GA. 2005. Contributions of external forcings to Southern Annular 

Mode trends. J Climate 19: 2896-2905. 

Archer ERM. 2003. Identifying Underserved End-User Groups in the Provision of Climate 

Information. B Am Meteorol Soc 84: 1525–1532. Doi: 10.1175/BAMS-84-11-1525  

Asseng S, McIntosh PC, Wang G and Khimashia N. 2012. Optimal N fertiliser management 

based on a seasonal forecast. Eur J Agron 38: 66-73. Doi:10.1016/j.eja.2011.12.005. 

Beraki A, DeWitt D, Landman WA and Olivier C. 2011. Ocean-atmosphere coupled climate 

model development at SAWS: Description and diagnosis. South African Society for 

Atmospheric Sciences 27th Annual Conference, 22-23 September 1011, 

Hartbeespoort, North-West Province, South Africa. ISBN 978-0-620-50849-0. 

Bezuidenhout C N and Schulze RE. 2006. Application of seasonal climate outlooks to 

forecast sugarcane production in South Africa. Clim Res 30: 239 – 246. 

Cabrera, VE; Jagtap SS and Hildebrand PE. 2007. Strategies to limit (minimize) nitrogen 

leaching on dairy farms driven by seasonal climate forecasts. Agr Ecosyst Environ 

122: 479-489. 

Cane MA, Eschel G and Buckland RW.1994. Forecasting Zimbabwe maize yield using 

Eastern Equatorial Pacific sea surface temperature. Nature 370: 204-205.  

Chiew FHS and McMahon TA. 2002. Global ENSO-streamflow teleconnection, streamflow 

forecasting and interannual variability. Hydrolog Sci J 47: 505-522. 

de Jager JM,Potgieter AB and van den Berg WJ. 1998. Framework for forecasting the extent 

and severity of drought in maize in the Free State Province of South Africa. Agr Syst 

57(3): 351-365.Doi:10.1016/S0308-521X(98)00023-7. 

Department of Water Affairs. 2012. Hydrological Services, viewed August 18-29 2012, 

http://www.dwaf.gov.za/hydrology/ 

DeWitt DG. 2005. Retrospective forecasts of interannual sea surface temperature anomalies 

from 1982 to present using a directly coupled atmosphere–ocean general circulation 

model. Mon Weather Rev 133: 2972–2995. 

doi.%2010.1071/AR07061
10.1175/BAMS-84-11-1525
http://www.dwaf.gov.za/hydrology/


21 

 

Diaz HF, Hoerling MP and Eischeid JK. 2001. ENSO variability, teleconnections and climate 

change. Int  J Climatol 21: 1845-1862. 

Dilley M and Heyman BN. 1995. ENSO and disaster: Droughts, floods and El Niño. 

Disasters 19(3): 181–193. 

Du Pisani A. 1987. The CERES-Maize model as potential tool for drought assessment in 

South Africa. Water SA 13(3): 159 – 164. 

Engelbrecht FA, Landman WA, Engelbrecht CJ, Landman S, Bopape, MM, Roux B, 

McGregor JL and Thatcher M. 2011. Multi-scale climate modelling over southern 

Africa using a variable-resolution global model. Water SA 37: 647-658. 

Engelbrecht, F., McGregor, J. and Tsugawa, M. 2010. On the development of a new cube-

based coupled climate model: Geometric aspects. South African Society for 

Atmospheric Sciences 27th Annual Conference, 22-23 September 2011, 

Hartbeespoort, North-West Province, South Africa. ISBN 978-0-620-50849-0. 

Everingham YL, Clarke A J and Van Gorder S. 2008. Long lead rainfall forecasts for the 

Australian sugar industry. Int  J Climatol 28: 111–117. Doi: 10.1002/joc.1513 

Fairbanks DHK, Thompson MW, Vink DE, Newby TS, van den Berg HM and Everard DA. 

2000. The South African land-cover characteristics database: a synopsis of the 

landscape. S Afr J Sci 96: 69-82.  

Ghile YB and Schulze RE. 2009. Use of an ensemble re-ordering method for disaggregation 

of seasonal categorical rainfall forecasts into conditioned ensembles of daily rainfall 

for hydrological forecasting. J Hydrol 371: 85-97.Doi: 10.1016/j.jhydrol.2009.03.019. 

Gillet NP, Kell TD and Jones PD. 2006. Regional climate impacts of the Southern Annular 

Mode. Geophys Res Lett 33: L23704. Doi:10.1029/2006GL027721 

Hamill T. 1997. Reliability diagrams for multicategory probabilistic forecasts. Weather 

Forecast 12: 736-741. 

Hammer GL, Holzworth DP and Stone R. 1996. The value of skill in seasonal climate 

forecasting to wheat crop management in a region with high climatic variability. Aust 

J Agr Res 47: 717–737. Doi:10.1071/AR9960717 

Hansen JW, Mason SJ, Sun L and Tall A. 2011. Review of seasonal climate forecasting in 

sub-Saharan Africa. Exp Agr 47: 205-240.  

http://0-dx.doi.org.innopac.up.ac.za/10.1071/AR9960717


22 

 

Hansen JW, Mishra A, Rao KPC, Indeje M and Ngugi RK. 2009. Potential value of GCM-

based seasonal rainfall forecasts for maize management in semi-arid Kenya. Agr Syst 

101 (1–2): 80-90. Doi:10.1016/j.agsy.2009.03.005. 

Hansen JW, Potgieter A and Tippett MK. 2004. Using a general circulation model to forecast 

regional wheat yields in northeast Australia. Agr Forest Meteorol 127(1–2): 77-92. 

Doi:10.1016/j.agrformet.2004.07.005. 

Hayman P, Crean J, Mullen J and Parton K. 2007. How do probabilistic seasonal climate 

forecasts compare with other innovations that Australian farmers are encouraged to 

adopt? Aust J Agr Res 58: 975–984. 

Ines AVM, Hansen JW and Robertson AW. 2011. Enhancing the utility of daily GCM 

rainfall for crop yield prediction. Int  J Climatol 31: 2168–2182. 

Doi: 10.1002/joc.2223 

Jolliffe IT. 2002. Principal Component Analysis, Second Edition. Springer, New York. 

Jolliffe, IT and Stephenson DB. 2011. Forecast Verification: A Practitioner’s Guide in 

Atmospheric Sciences, Second Edition. Wiley, Amsterdam. 

Klopper E, Vogel CH and Landman WA. 2006. Seasonal climate forecasts – potential 

agricultural-risk management tools?  Climatic Change 76: 73–90. 

Klopper E. 1999. The use of seasonal forecasts in South Africa during the 1997/98 rainfall 

season. Water SA 25: 311-316. 

Landman W.A. and Beraki, A. 2012. Multi-model forecast skill for midsummer rainfall over 

southern Africa. Int  J Climatol 32: 303-314. Doi: 10.1002/joc.2273. 

Landman WA, and Goddard L. 2002. Statistical recalibration of GCM forecasts over 

southern Africa using model output statistics. J Climate 15: 2038-2055. 

Landman WA, DeWitt D, Lee D-E, Beraki, A and Lötter D. 2012. Seasonal rainfall 

prediction skill over South Africa: 1- vs. 2-tiered forecasting systems. Weather 

Forecast 27: 489-501. Doi: 10.1175/WAF-D-11-00078.1. 

Landman WA, Engelbrecht FA, Beraki A, Engelbrecht C, Mbedzi M, Gill T and Ntsangwane 

L. 2009. Model Output Statistics Applied to Multi-Model Ensemble Long-Range 

Forecasts over South Africa. WRC Report No. 1492/1/08. Water Research 

Commission, Pretoria, South Africa. 56 pp 



23 

 

Landman WA, Kgatuke MM, Mbedzi, M, Beraki A, Bartman A and du Piesanie A. 2009. 

Performance comparison of some dynamical and empirical downscaling methods for 

South Africa from a seasonal climate modelling perspective. Int  J Climatol 29: 1535-

1549. Doi: 10.1002/joc.1766. 

Landman WA, Mason SJ, Tyson PD and Tennant WJ. 2001. Statistical downscaling of GCM 

simulations to Streamflow. J Hydrol 252(1–4):  221-236. Doi:10.1016/S0022-

1694(01)00457-7 

Le Roux N. 2009. Seasonal maize yield simulations for South Africa using a multi-model 

ensemble system. Unpublished MSc dissertation, University of Pretoria. 

Luo JJ, Masson S, Behera S, Shingu S and Yamagata T. 2005. Seasonal climate predictability 

in a coupled OAGCM using a different approach for ensemble forecasts. J Climate 

18: 4474-4497. 

Madec G, Delecluse P, Imbard M, and Levy C. 1998. OPA 8.1 ocean general circulation 

model reference manual. LODYC/IPSL Tech. Rep. Note 11, 91 pp. 

Marletto V,Ventura F, Fontana G and Tomei F. 2007. Wheat growth simulation and yield 

prediction with seasonal forecasts and a numerical model, Agr Forest Meteorol 

147(1–2): 71-79. Doi:10.1016/j.agrformet.2007.07.003. 

Martin RV, Washington R and Downing TE. 2000. Seasonal Maize Forecasting for South 

Africa and Zimbabwe Derived from an Agroclimatological Model. J Appl Meteorol 

39:1473–1479. Doi: 10.1175/1520-0450(2000)039<1473:SMFFSA>2.0.CO;2  

Mason SJ and Graham NE. 2002. Areas beneath the relative operating characteristics (ROC) 

and relative operating levels (ROL) curves: Statistical significance and interpretation. 

Q J Roy Meteorol Soc 128: 2145-2166. 

Mason SJ and Weigel AP. 2009. A Generic Forecast Verification Framework for 

Administrative Purposes. Mon Wea Rev 137: 331–349. Doi: 

10.1175/2008MWR2553.1 

McCown RL, Hammer GL, Hargreaves JNG, Holzworth D and Huth NI. 1995. APSIM: an 

agricultural production system simulation model for operational research. Math 

Compute Simulat 39: 225-231. 

10.1175/1520-0450(2000)039%3c1473:SMFFSA%3e2.0.CO;2


24 

 

Moeletsi ME, Walker S and Landman LA. 2011. ENSO and implications on rainfall 

characteristics with reference to maize production in the Free State Province of South 

Africa. Phys Chem Earth (A/B/C) 36: 715-726.Doi: 10.1016/j.pce.2011.07.043. 

Mzezewa J, Misi T and  van Rensburg LD. 2010. Characterisation of rainfall at a semi-arid 

ecotope in the Limpopo Province (South Africa) and its implications for sustainable 

crop production. Water SA 36(1): 19-26. 

O’Brien K and Vogel C (eds.) 2003. Coping with climate variability. The use of seasonal 

climate forecasts in southern Africa. Ashgate Studies in Environmental Policy and 

Practice, Hampshire, England. 

Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Delecluse P, Deque M, Diez 

E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Gueremy JF, Hagedorn R,  

Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP,  

Orfila B, Rogel P, Terres JM, Thomson MC. 2004. Development of a European 

multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). B 

Am Meteorol Soc 85: 853–872. 

Peel MC, Finlayson BL and McMahon TA. 2007. Updated world map of the Köppen-Geiger 

climate classification, Hydrology and Earth System Science. 11: 1633-1644, 

Doi:10.5194/hess-11-1633-2007. 

Peiris TSG, Hansen JW and Zubair L. 2008. Use of seasonal climate information to predict 

coconut production in Sri Lanka. Int  J Climatol 28: 103–110. Doi: 10.1002/joc.1517. 

Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, 

Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U and 

Tompkins A. 1996. The atmospheric general circulation model ECHAM4: Model 

description and simulation of present day climate. Max-Plank-Institute für 

Meteorologie Rep. 218, Hamburg, Germany, 90 pp. 

Roudier P, Sultan B, Quirion P, Baron C, Alhassane A, Traoré S B and Muller B. 2012.  An 

ex-ante evaluation of the use of seasonal climate forecasts for millet growers in SW 

Niger. Int  J Climatol 32: 759–771. Doi: 10.1002/joc.2308 

Sacks WJ, Deryng D, Foley JA and Ramankutty N. 2010. Crop planting dates: an analysis of 

global patterns. Global Ecology and Biogeography 19: 607–620. Doi: 10.1111/j.1466-

8238.2010.00551.x 



25 

 

Semenov MA and Doblas-Reyes FJ. 2007. Utility of dynamical seasonal forecasts in 

predicting crop yield. Clim Res 34:71-81. Doi: 10.3354/cr034071 

Sivakumar  MVK. 1998. Climate variability and food vulnerability. Global Change 

Newsletter (IGBP) 35: 14-17.  

Troccoli, A., Harrison, M., Anderson, D.L.T. and Mason S.J. 2008. Seasonal Climate: 

Forecasting and Managing Risk. NATO Science Series on Earth and Environmental 

Sciences, Vol 82. Springer, New York. 

Tyson PD and Preston-Whyte RA. 2000. The Weather and Climate of Southern Africa. 

Oxford University Press, Cape Town.  

Tyson PD. 1981. Atmospheric circulation variations and the occurrence of extended wet and 

dry spells over Southern Africa. J Climatol 1: 115–130. 

Valcke S, Terray L, and Piacentini A. 2000. The OASIS coupler using guide version 2.4. 

Tech. Rep. TR/CMGC/00-10. CERFACS, Toulouse, France, 85pp. 

Vogel C and O’Brien K. 2006. Who can eat information? Examining the effectiveness of 

seasonal climate forecasts and regional climate-risk management strategies. Clim Res 

33: 111–122. 

Wessels P. and Rooseboom A. 2009. Flow-Gauging Structures in South African Rivers. 

Water SA 35(1): 1-19.  

Wilks DS. 2011. Statistical Methods in the Atmospheric Sciences, Third Edition. Academic 

Press, Amsterdam. 

Ziervogel G. 2004. Targeting seasonal climate forecasts for integration into household level 

decisions: the case of smallholder farmers in Lesotho. Geogr J 170: 6–21. 

Doi: 10.1111/j.0016-7398.2004.05002.x 

Zinyengere N, Mhizha T, Mashonjowa E,Chipindu B, Geerts S and Raes D. 2011. Using 

seasonal climate forecasts to improve maize production decision support in 

Zimbabwe. Agr Forest Meteorol 151(12): 1792-1799. 

Doi:10.1016/j.agrformet.2011.07.015. 


	Seasonal forecasts of the SINTEX-F coupled model applied to maize yield and streamflow estimates over north-eastern South Africa
	Abstract

	Introduction
	Data and Methodology
	Results
	Discussion and Conclusions
	Acknowledgements:
	REFERENCES

