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Abstract 

In this paper we examine the causal relationship between renewable energy consumption and 

economic growth across the G7 countries, using annual data for the period of 1990 to 2011. 

By employing the causality methodology proposed by Emirmahmutoglu and Kose (2011), we 

investigate if there is a causal relationship between the variables. The advantage of this 

methodology is that it takes into account possible slope heterogeneity and cross-sectional 

dependency in a multivariate panel. The empirical results support the existence of a bi-

directional causal relationship between economic growth and renewable energy for the 

overall panel. However, looking at the individual results for each country, the neutrality 

hypothesis is confirmed for Canada, Italy and the US; while for France and UK there is a 

unidirectional causality from GDP to renewable energy, and the opposite for Germany and 

Japan. 
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1. Introduction 

There is a growing body of literature that fossil-fuel based energy generation has detrimental 

effects on the environment. On top of that, the environmental impact can have substantial 

negative consequences for economic growth as well as society at large. According to 

Sadorsky [1], power generation is the fastest growing energy sector in terms of both demand 

and emissions. There is thus a critical need to balance our future energy needs with the 

environmental impact of energy generation. Since energy is a major driver of economic 

growth and prosperity, and with demand for world energy predicted to grow in excess of 50% 

by 2030 according to International Energy Agency (IEA) [2], it is imperative that cleaner 

alternatives of energy generation be introduced for the sake of reducing the climate change 

effects.  

The use of renewable energies, as a whole, is considered a cleaner alternative to fossil fuel 

energy generation. According to IEA [3], renewable energy is projected to be the fastest 

growing world energy source. The growing investment in this type of energy generation is 

considered to be linked with economic growth and development, however the existing 

literature has not reached a general consensus as to whether higher economic growth 

improves the use of renewable energies or vice versa.  

Obtaining energy from renewable sources has advantages other than reduced output of 

harmful substances that cause climate change, such as less reliance on foreign imports for 

import dependent nations (oil and coal energy), meaning greater energy security and the 

ability to generate energy domestically, as well as the decreased impact on the environment. 

Renewable energy can contribute to growth in the new world economy by means of the 

investment in infrastructure, which is potentially massive, with a predicted $20 trillion worth 

of infrastructure spending worldwide necessary to meet the rising demand for energy over the 

course of the next 17 years [1].  

Renewable energy technologies are relatively new and have not yet reached cost-effective 

levels due to a lack of high competition. Given this high cost, it is expected that only high-

income, developed countries have a measurable renewable energy contribution to the power 

grid, even though developing countries have abundance of natural resources, but not the 

means or the capital to exploit them. Thus we make use of the G7 countries, which are all 

highly developed and use the greatest share of renewable energy, illustrated in REN21 [4]. In 

2006 the share of renewable energy (including hydro) in primary energy demand for the G7 
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countries was Canada (16%), France (6.0%), Germany (5.6%), Italy (6.5%), Japan (3.2%), 

United Kingdom (1.7%), and the United States (4.8%). 

In this paper, we examine the existence as well as the direction of the causal relationship 

between renewable energy consumption and economic growth across the G7 countries, using 

annual data for the period of 1990 to 2011. We employ the causality methodology proposed 

by Emirmahmutoglu and Kose [5] that controls for heterogeneity and cross-sectional 

dependence among cross-sections, addressing a shortcoming in the current literature. The 

members of the G7, although being the strongest economies are not similar in all aspects, and 

may have differentiating factors such as geography, climate, education, population size and 

government policy. However, all the G7 countries are linked by growing economic and 

financial integration, interlinked trade, policy similarity, etc. Thus a shock in one of the G7 

may have an effect on one or many of the other countries in the G7. We thus control for the 

presence of cross sectional dependency in our analysis, which tells us that a shock in one of 

the G7 countries will have spill-over effects in the other countries. 

The paper is structured as follows. In section 2, we review briefly recent studies on the 

relationship between renewable energies and economic growth while in section 3 we describe 

the data and methodology. Section 4 discusses the empirical results and concluding remarks 

are given in Section 5.  

 

2. Literature review 

Due to the interest in renewable energies only growing in recent years, the literature has not 

extensively studied the relationship between renewable energy and economic growth. 

However, there are few efforts [6, 7, 8, 9, 10, 11, 12, 13, 14, 14] that conclude the importance 

of renewable energy to economic growth in various countries. Here, we will discuss briefly 

the findings of selected recent studies on the topic. 

Sadorsky [6] showed that real income per capita and renewable energy consumption per 

capita have a positive relationship for emerging economies. Sadorsky [6] uses a bivariate 

panel error correction model for eighteen emerging economies over the period 1994–2003. 

The model presents evidence of bi-directional causality between renewable energy 

consumption and economic growth.  
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Apergis and Payne [7] confirmed the results for a larger group of countries (20 OECD 

members). To do so, they used the panel unit root and cointegration testing approach of 

Pedroni [15,16]. This heterogeneous panel cointegration test advanced by Pedroni, allows for 

cross-section interdependence with different individual effects, accounting for heterogeneity 

across countries. Parameters are included in the tests that allow for the possibility of country-

specific fixed effects and deterministic trends. Extending the above group to include more 

OECD countries, Inglesi-Lotz [13] used the renewable energies as an input in a production-

function context, concluding that there is a long-run equilibrium relationship between real 

GDP or real GDP per capita, total renewable energy consumption or share of total renewable 

energy consumption, real gross fixed capital formation, employment and the R&D 

expenditures of the countries. Both studies, however, did not account for cross-dependence 

among the OECD countries, although both used panel cointegration techniques. Also, Inglesi-

Lotz [13] focuses more on the difference of the results between developed and developing 

countries as groups and not individually. 

Menegaki [12] concluded similar results to Inglesi-Lotz [13] for European countries, a 1% 

increase in the share of renewable energies to total supply mix will increase GDP by 4.4%. In 

more disaggregated analysis, Sari and Soyotas [14] showed that three types of renewable 

energies (waste, hydraulic power and wood) explained around 31% of the variation in GDP 

in real terms for Turkey.  

Although the group of G7 countries has received substantial attention in the energy literature, 

the majority of studies focused on the nexus between economic growth and energy in total 

(for example Bildirici [17] and Narayan and Smyth [18]) or other non-renewable types of 

energy such as electricity (for example Narayan et al. [19]). 

Recently, Tugcu, Ozturk and Alsan [20] employed the lately developed causality method by 

Hatemi [21] to test for causality for the existence and direction of causality between non-

renewable and renewable energy and economic growth for the G7 countries over the 1980–

2009 period. Their methodology uses a modified Wald statistic, which accounts for the 

possibility of autoregressive conditional heteroscedasticity (ARCH) effects via a 

bootstrapping simulation. The paper uses classical and augmented production functions as a 

basis for their tests, and thus does not account for cross-sectional dependence or homogeneity 

among countries. Additionally, their study looks at each country individually in a times-series 
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context, rather than in a panel. These factors may limit the inference one can make from the 

results.  

So, although our paper also focuses on the group of G7 countries, the two papers differ in two 

main points methodologically where our paper makes a contribution to the literature and take 

their technical analysis a step forward: a) our paper uses a more recent time period including 

a few years after the financial crisis of 2008/09; b) Tugcu et al. [20] use only time series 

analysis for the individual countries not taking into account cross-sectional dependence like 

in our analysis.  

In the literature, various techniques are employed to control for a number of different issues. 

Despite this, all the results are in agreement; there is a positive relationship between 

renewable energy and economic growth for both emerging and developed economies; 

however no agreed upon methodology to test for causality has arisen in the literature. Given 

certain shortcomings of the papers discussed above, we make use of a multivariate panel 

setup. This allows for greater inference due to the greater degrees of freedom stemming from 

the larger data set a panel provides. Panel also allows us to control for omitted variables. 

Further, cognisance of the potential for cross-sectional dependence and homogeneity among 

countries, for reasons discussed in our methodology below. 

 

3. Methodology and data 

3.1 Methodology 

In the current interconnected and open world economy, panel causality analysis must take 

into consideration two important issues: cross-section dependence and slope heterogeneity. 

Firstly, concerning cross-sectional dependence, in the recent past there has been a growing 

economic and financial integration of countries and financial institutions. Given this 

integration, panel data literature has concluded that panel data sets are likely to exhibit 

substantial cross-sectional dependence, which may occur due to the presence of common 

shocks, as well as unobserved components that ultimately form part of the error term.  

Additionally, concerning slope heterogeneity, when dealing with panel data methodologies, it 

is assumed that variations in between cross sectional units are captured by fixed constants, 

using either fixed or random effects. However, not all unobserved individual variation can 
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conclusively be ruled out, and some individual variability in the slopes of the cross-sections 

may exist. If this variability is not taken account of, it may bias our results, and cause 

incorrect inference. 

Thus, before exploring the causality between renewable energy and economic growth, the 

issues of cross-sectional dependence and heterogeneity of slope coefficients are examined. In 

what follows, we outline the essentials of econometric methods used in this study.   

 

3.1.1 Testing cross-section dependence 

To test for cross-sectional dependence, the Lagrange multiplier (LM hereafter) test of 

Breusch and Pagan [22] has been extensively used in empirical studies.  The procedure to 

compute the LM test requires the estimation of the following panel data model: 

it i i it ity x u     for 1,2,...,i N ; 1,2,...,t T       (1) 

where i is the cross section dimension, t is the time dimension, itx is 1k vector of 

explanatory variables, 
i  and 

i  are respectively the individual intercepts and slope 

coefficients that are allowed to vary across states.  In the LM test, the null hypothesis of no-

cross section dependence - 0 : ( , ) 0it jtH Cov u u   for all t and i j - is tested against the 

alternative hypothesis of cross-section dependence - 1 : ( , ) 0it jtH Cov u u  , for at least one pair 

of i j .  In order to test the null hypothesis, Breusch and Pagan [22] developed the LM test 

as: 

1
2

1 1

ˆ
N N

ij

i j i

LM T 


  

              (2) 

where ij̂  is the sample estimate of the pair-wise correlation of the residuals from Ordinary 

Least Squares (OLS) estimation of equation (1) for each i.  Under the null hypothesis, the LM 

statistic has asymptotic chi-square with ( 1) / 2N N  degrees of freedom.  It is important to 

note that the LM test is valid only for relatively small N and sufficiently large T – as we have 

in this study.   
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However, the Cross sectional Dependence (CD) test is subject to decreasing power in 

situations that the population average pair-wise correlations are zero, although the underlying 

individual population pair-wise correlations are non-zero [23].  Furthermore, in stationary 

dynamic panel data models the CD test fails to reject the null hypothesis when the factor 

loadings have zero mean in the cross-sectional dimension.  In order to deal with these 

problems, Pesaran et al. [23] propose a bias-adjusted test, which is a modified version of the 

LM test, by using the exact mean and variance of the LM statistic.  The bias-adjusted LM test 

is: 

21

2
1 1

( )2
ˆ

( 1)

N N
ij Tij

adj ij

i j i
Tij

T kT
LM

N N

 






  

  
  

 
        (3) 

where 
Tij and 2

Tij  are respectively the exact mean and variance of 2( ) ijT k  , that are 

provided in Pesaran et al. [23]. Under the null hypothesis with first T→∞ and then N→∞, 

adjLM test is asymptotically distributed as standard normal. 

 

3.1.2 Testing slope homogeneity 

The second issue investigated here is to test whether or not the slope coefficients are 

homogenous. The causality from one variable to another variable by imposing the joint 

restriction for the whole panel is the strong null hypothesis [24].  Moreover, the homogeneity 

assumption for the parameters is not able to capture heterogeneity due to region specific 

characteristics [25].   

The most familiar way to test the null hypothesis of slope homogeneity - 
0 : iH    for all i- 

against the hypothesis of heterogeneity - 
1 : i jH   for a non-zero fraction of pair-wise 

slopes for i j - is to apply the standard F test.  The F test is valid for cases where the cross 

section dimension (N) is relatively small and the time dimension (T) of panel is large; the 

explanatory variables are strictly exogenous; and the error variances are homoscedastic.  By 

relaxing homoscedasticity assumption in the F test, Swamy [26] developed the slope 

homogeneity test on the dispersion of individual slope estimates from a suitable pooled 

estimator.  However, both the F and Swamy’s test require panel data models where N is small 

relative to T.  Pesaran and Yamagata [27] proposed a standardized version of Swamy’s test 

(the so-called   test) for testing slope homogeneity in large panels.  The   test is valid as 
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( , )N T without any restrictions on the relative expansion rates of N and T when the error 

terms are normally distributed.  In the   test approach, the first step is to compute the 

following modified version of the Swamy’s test as in Pesaran and Yamagata [27]: 

   2
1

N
i i

i WFE i WFE

i i

x M x
S    




          (4) 

where 
i  is the pooled OLS estimator, 

WFE  is the weighted fixed effect pooled estimator, M

is an identity matrix, the 2

i  is the estimator of 2

i . Then the standardized dispersion statistic is 

developed as: 

1

2

N S k
N

k

 
   

 

          (5) 

Under the null hypothesis with the condition of ( , )N T   so long as /N T   and the 

error terms are normally distributed, the   test has asymptotic standard normal distribution.  

The small sample properties of   test can be improved under the normally distributed errors 

by using the following bias adjusted version: 

1 ( )

var( )

it
adj

it

N S E z
N

z

 
   

 
 

         (6) 

where the mean ( )itE z k  and the variance var( ) 2 ( 1) / 1itz k T k T    . 

If the presence of cross-sectional dependence and heterogeneity over the sample period 

exists, it implies that the panel causality test that imposes the homogeneity restriction and 

does not account for spill-over effects across units, may result in misleading inferences; 

hence providing the rationale of using  the bootstrap panel causality approach. 

 

3.1.3 Panel Granger Causality analysis 

The causality test proposed by Emirmahmutoglu and Kose [5] will be employed here that is 

based on the meta analysis of Fisher [28]. They extended the Lag Augmented VAR (LA-

VAR) approach by Toda and Yamamoto [29], which uses the level VAR model with extra 
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dmax lags to test Granger causality between variables in heterogeneous mixed panels.  

Consider a level VAR model with 
maxk di i

 lags in heterogeneous mixed panels:  

 










ii iidk

j

x

ti

dk

j
jtiijjtiij

x

iti yAxAx
max

1
,

max

1
,,12,,11, 

        (7) 


y

tijti

dk

j
ij

dk

j
jtiij

y

iti
yAxAy

iiii

,,

max

1
,22

max

1
,,21,











 

         (8) 

where i (i = 1,……N) denotes individual cross-sectional units and t (t = 1,…….T) denotes 

time periods, 
x

i   and 
y

i  are two vectors of fixed effects, 
x

ti ,
, 

y

ti ,
, are column vectors of 

error terms, ki is the lag structure which is assumed to be known and may differ across cross-

sectional units, and dmaxi is the maximal order of integration in the system for each i. 

Following the bootstrap procedure by Emirmahmutoglu and Kose [5], testing causality from 

x to y is summarized as follows: 

Firstly, we will determine the maximal order dmaxi of integration of variables in the system 

for each cross-section unit based on the Augmented Dickey Fuller (ADF) unit root test and 

select the lag orders kis via information criteria (AIC or SB) by esteeming the regression (2) 

using the OLS method. Next, we will re-estimate equation (2) using the dmaxi and ki under 

the non-causality hypothesis and attain the residuals for each individual as in (9). 

 








 
ii iidk

j

dk

j

jtiijjtiij

y

iti

y

ti yAxAuyu
max

1

max

1

,,22,,21,, (9)                                                       ˆˆˆˆ

 

The next step is to have the residuals centred using Stine’s [30] suggestion, as in (10):, 

  (10)                                                                                   ˆ2ˆ~

2

1







T

lkt

ttt ulkTuu

Where 
,)'ˆ,.....,ˆ,ˆ(ˆ

21 Ntttt   max( )k ki
and

max( max )l d i
. Next, we develop the 

 
TNti .

~
from these residuals. We select randomly a full column with replacement 

from the matrix at a time to preserve the cross covariance structure of the errors. We 

denote the bootstrap residuals as 
*~
t  where (        )  
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Subsequently, a bootstrap sample of y is generated under the null hypothesis:. 

    ˆˆˆ *

,

max

1

max

1

*

,,22,,21

*

, ti

dk

j

dk

j

jtiijjtiij

y

iti uyAxAy
ii ii

 








      (11) 

where 
ˆ y

i  12,
ˆ

ijA
 and 22,

ˆ
ijA

are the estimations from step 3. 

For each individual, Wald statistics are calculated to test for the non-causality null hypothesis 

by substituting 
*

,tiy
 for tiy ,  and estimating equation (2) without imposing any parameter 

restrictions. Using individual p-values (pi) that correspond to the Wald statistic of the ith 

individual cross-section, the Fisher test statistic λ is obtained as follows: 

2 ln( )              i 1,......,N                                                                                     (12)
1

N
pi

i
   



 

Finally, the bootstrap empirical distribution of the Fisher test statistics are generated by 

repeating steps 3 to 5 10,000 times and specifying the bootstrap critical values by selecting 

the appropriate percentiles of these sampling distributions. Using simulation studies, 

Emirmahmutoglu and Kose [5] demonstrate that the performance of LA-VAR approach 

under both the cross-section independency and the cross-section dependency seem to be 

satisfactory for the entire values of T and N. 

 

3.2 Data 

The annual data used in this analysis covers the time period 1990 to 2011. The variables used 

are renewable energy and real GDP. Real GDP is measured in constant 2005 dollars, and the 

series was obtained from the World Bank. The energy data used is measured in Terawatt 

Hours (TWh), and is based on generation from renewable sources, including wind, 

geothermal, solar, biomass and waste, while cross border electricity supply is not accounted 

for. This data was obtained from the BP Statistical Review of World Energy 2012. All series 

are in natural logarithm form. 

Tables 1 and 2 summarise the descriptive statistics of the two variables of interest for each of 

the G7 countries.  Based on these tables, we find that Germany and US have the lowest and 

highest mean of renewable energy generation respectively, and that Canada and US have the 
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lowest and highest mean levels of real GDP, respectively. For more detailed per country 

graphs, please refer to the Appendix, Figure A1. 

 

Table 1: Descriptive statistics for GDP in G7 countries 

        GDP   

   Mean  Median Maximum Minimum  Std. Dev.  Skewness  Kurtosis 
 Jarque-

Bera 

CANADA 27.59385 27.62623 27.84977 27.31969 0.188074 -0.155942 1.515488 2.109293 

FRANCE 28.25625 28.28152 28.40492 28.08739 0.116685 -0.143398 1.470294 2.220398 

GERMANY 28.59745 28.62012 28.74472 28.42228 0.093352 -0.136563 1.926309 1.125127 

ITALY 28.13126 28.16052 28.2416 28.00959 0.07632 -0.263153 1.632706 1.967615 

JAPAN 29.07579 29.07384 29.18023 28.95399 0.064857 -0.052643 1.999954 0.926912 

UK 28.30679 28.33951 28.5035 28.06402 0.158363 -0.294412 1.58958 2.141333 

US 30.01006 30.05515 30.22206 29.72261 0.178227 -0.345461 1.634075 2.147864 

 

Table 2: Descriptive statistics for renewable energy generation in G7 countries 

        Renewable Energy   

   Mean  Median Maximum Minimum 
 Std. 

Dev. 
 Skewness  Kurtosis 

 Jarque-

Bera 

CANADA 2.110356 2.170424 2.957305 1.385642 0.43405 -0.031484 2.293318 0.461417 

FRANCE 2.082696 2.176013 2.434674 1.544197 0.286399 -0.676901 2.220432 2.237131 

GERMANY 1.379201 1.14747 2.945365 0.570879 0.72338 0.848703 2.467214 2.901294 

ITALY 2.138623 2.04407 3.530757 1.217996 0.706709 0.327276 1.872781 1.557472 

JAPAN 3.017046 2.957044 3.492803 2.500475 0.334757 -0.067061 1.715901 1.527991 

UK 1.579229 1.639036 3.378031 -0.502857 1.147902 -0.228585 1.990665 1.125449 

US 4.496166 4.349924 5.298746 4.155031 0.314142 1.342447 3.655626 7.001958 

 

 

4. Empirical findings 

As per the methodology section, firstly the panel dataset was examined for possible cross-

sectional dependency and slope homogeneity. To do so, four different tests are employed 

(CDBP, CDLM, CD, LMadj),with a null hypothesis of no cross-sectional dependence. The 

results conclude that the null hypothesis can be rejected at 1% level of significance and 

hence, there is evidence of cross-sectional dependence (Table 3-first four rows) meaning that 

a shock originating in one country may spill over onto other countries.. As shown in the 

methodology, the causality tests control for this dependency. 
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Table 3: Cross-sectional Dependence and Slope Homogeneous Tests 

Test Test statistic Conclusion 

BPCD  164.627*** 
Cross-Sectional dependency confirmed. 

LMCD  22.162*** 
Cross-Sectional dependency confirmed. 

CD  12.430*** 
Cross-Sectional dependency confirmed. 

adjLM  57.6947*** 
 

  
 

  12.4245*** 
Slope Heterogeneity confirmed 

adj  0.6306 
Slope Heterogeneity not confirmed 

Swamy Shat 67.5094*** Slope Heterogeneity confirmed 

Note: *,** and *** indicate significance at the 10%, 5% and 1% levels respectively. 

 

The last three rows of Table 3 show the results of the slope homogeneity tests. Although 

according to  the slope homogeneity assumption fails to be rejected, according to Swamy-

Shat, and adj  the null hypothesis of homogenous slopes can be rejected at a 10% level of 

significance. This implies that the panel causality analysis by imposing homogeneity 

restriction on the variable of interest may result in misleading inferences. Therefore country 

specific characteristics should be taken into account.  

The establishment of the existence of cross-sectional dependence and heterogeneity across 

G7 countries suggests the suitability of the bootstrap panel causality approach developed by 

Emirmahmutoglu and Kose [5] based on meta-analysis of Fisher [28] in heterogeneous mixed 

panels which accounts for these econometric issues. Our bootstrap test causality results are 

reported in Tables 4 and 5. The appropriate lag length was chosen based on the Akaike 

Information Criterion (AIC) in Table 4 and the Schwarz Information Criterion (SIC) in Table 

5 for each individual country ranging between 1 and 3. The results are almost identical 

confirming the robustness of the results.  

The overall results for the panel of G7 countries suggest that the null of no Granger causality 

from economic growth to renewable energy consumption can be rejected at 5% level of 

significance.Under AIC, the Fisher test statistic (47.523) is greater than the bootstrap critical 

value (44.809) and under SIC, the Fisher test statistic (53.755) is greater than bootstrap 

critical value (38.244) both at a 5% level of significance. For the Renewable Energy Led 

Hypothesis, under AIC the Fisher test statistic (59.966) is greater than the 5% bootstrap 

critical value (43.382) indicating that there is a causality running from renewable energy 
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consumption to economic growth for the overall panel. However the results under SIC show 

a Fisher statistic of 23.102 that is smaller than the bootstrap critical values confirming that the 

null hypothesis of no causality from renewable energy to economic growth cannot be 

rejected.  

Moreover individual country results are presented in Tables 4 and 5 too. Both using AIC and 

SIC selection criteria, the GDP Led Hypothesis (GDP causing renewable energy 

consumption) can only be confirmed for France and the United Kingdom; their Wald 

statistics indicate that the null hypothesis of no causality can be rejected at 1% level of 

significance. For the rest of the G7 countries, there is no causality running from GDP to 

renewable energy consumption indicated.  

With regards to the Renewable Energy Led Hypothesis, under AIC and SIC, the null 

hypothesis of no causality from renewable energy consumption to economic growth can be 

rejected for Japan. The same is confirmed for Germany but only under AIC. As with the 

overall result, this may suggest that there is some delay in the causality, for example the AIC 

criterion suggested 3 lags for Germany but the SIC only 1, showing that the causal 

relationship is statistically significant in a 3-lagged period, and not sooner in a 1-lagged 

period. For the rest of the G7 countries, there is no causality running from renewable energy 

consumption to GDP. 

Table 4: Results of Granger Causality test using AIC selection criteria 

    
GDP Led Hypothesis Renewable Energy Led Hypothesis 

Country Lag length  

   ki Wald Statistic p- value Wald Statistic p- value 

Canada 2 8.013 0.018 4.592 0.101 

France 3 28.339 0.000*** 3.728 0.292 

Germany 3 0.282 0.963 40.044 0.000*** 

Italy 3 1.933 0.586 0.729 0.866 

Japan 1 0.004 0.949 7.72 0.005*** 

United Kingdom 3 12.572 0.006*** 4.761 0.19 

United States 2 2.536 0.281 2.129 0.345 

              

Fisher Test Statistic value (λ) 47.523 59.966 

Critical values CV 1% CV 5% CV 10% CV 1% CV 5% CV 10% 

 
69.922 44.809 36.293 67.506 43.382 34.704 

        
Note: *,** and *** indicate significance at the 10%, 5% and 1% levels respectively and hence conclusion of causality. 
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Table 5: Results of Granger Causality test using SIC selection criteria 

    
GDP Led Hypothesis Renewable Energy Led Hypothesis 

Country Lag length  

   ki 
Wald 

Statistic 
p- value Wald Statistic p- value 

Canada 2 8.013 0.018 4.592 0.101 

France 3 28.339 0.000*** 3.728 0.292 

Germany 1 2.701 0.1 0 0.993 

Italy 1 1.325 0.25 0.01 0.92 

Japan 1 0.004 0.949 7.72 0.005*** 

United Kingdom 3 12.572 0.006*** 4.761 0.19 

United States 2 2.536 0.281 2.129 0.345 

              

Fisher Test Statistic value (λ) 53.755 23.102 

Critical values CV 1% CV 5% CV 10% CV 1% CV 5% CV 10% 

 
55.659 38.244 31.398 54.612 36.552 29.989 

        
Note: *,** and *** indicate significance at the 10%, 5% and 1% levels respectively and hence conclusion of causality. 

 

 

All in all, the tests confirm the neutrality hypothesis for Canada, Italy, and the United States 

indicating that economic growth and renewable energy consumption are indicators that do not 

affect each other. For France and UK, the GDP Led Hypothesis is confirmed indicating GDP 

causes renewable energy consumption while for Japan and Germany the Renewable Led 

Hypothesis is confirmed indicating that renewable energy consumption causes economic 

growth in these countries.  

 

5. Conclusion 

This study applies a panel Granger causality methodology that controls for heterogeneity and 

cross-sectional dependence in a panel, to test the existence and direction of a causal 

relationship between renewable energy and GDP growth, using data for the G7 countries over 

the period 1990 to 2011. For the overall panel, the results confirm a bidirectional relationship 

between economic growth and renewable energy, with some evidence that the causality from 

renewable energy to economic growth has a delayed response. Looking at the results for each 

country individually, the neutrality hypothesis is confirmed for Canada, Italy and the US; 
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while for France and UK there is a unidirectional causality from GDP to renewable energy 

and the opposite for Japan and Germany, with a lagged response for the latter.  

From a policy perspective, for Canada, Italy and the US, programmes that will promote the 

use of renewable energies will have little to no effect to the economic growth; at the same 

time, if all the current conditions remain constant, further economic growth and improvement 

of the economies after the financial crisis will not necessarily contribute towards generation 

of more renewable energy. 

For France and UK, however, the exit of the international “dead end” and a higher economic 

growth rate might be the “green light” for more investments in renewable energies. 

Consequently, macroeconomic policies with the main purpose to boost the economy for these 

two countries will be translated to higher renewable energy generation. On the other hand, for 

Germany and Japan, the generation and hence, consumption of renewable energy and 

substitution of fossil-fuel generation will boost the economic activity through job creation, as 

Frondel et al. [31] suggested for Germany, and investment. 
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Appendix 

Figure A1. Real GDP per capita and Renewable energy consumption across G7 countries: 1990 - 2011 

 

 

 

 

 

 

*Note: The right axis represents renewable energy consumption, while the left axis represents GDP.  
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