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Abstract

Tree paths are investigated using first-order logic. The following
results are obtained: (i) every definable path can be defined by a first-
order formula using at most one parameter chosen from the path itself;
(ii) a canonical representation of the formulas that define definable
paths is obtained; and (iii) every tree that has only finitely many paths
that are not definable is n-equivalent to a tree of which all paths are
definable. Moreover, a certain property that might be expected to
hold, involving the transfer of n-equivalence between trees, is shown
not to be true.

Keywords: tree, first-order, definable, path

1 Introduction

A systematic analysis of the first-order theories of trees, as done in [12]
for linear orders, does not exist. It is known by Rabin’s Tree Theorem
([11, 9]) that the monadic second-order theory of rooted binary trees
with infinite paths is decidable and this result can be extended to
other classes of trees. In [10], n-equivalence of finite coloured linear
orders is investigated. Adding colours to linear orders increases the
complexity of their analysis substantially. Hence a general analysis of
the first-order theories of trees is likely to be complex: by partitioning
a tree along any of its paths and assigning to each part in this partition
a first-order sentence of some fixed quantifier rank that characterises
that part of the tree, one obtains a coloured linear order. The analysis
of the first-order theories of trees is further complicated by the fact
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that not all paths in a tree are definable and one cannot quantify over
individual paths. Trees may contain so-called emergent paths (see
[8, 7]) that have the property that every node in the path belongs to
infinitely many other paths too, thus hindering attempts to impose
particular structural properties on paths in a discriminate manner.

Some important known results about the first-order theories of
trees include: the first-order theory of the class of finite trees given
in [1], the first-order theory of the class of well-founded trees (trees
with a well-founded prefix ordering) given in [2], and that every tree
is n-equivalent, for suitable n, to a finitely branching tree ([13, 6]). In
[7] the relationship between a class of linear orders C, and the corre-
sponding class T (C) of trees having paths that are isomorphic to linear
orders in C, is investigated. In [5] axiomatisations of the monadic sec-
ond order theory, the first-order logic with transitive closure theory,
and the first-order logic with least fixed points theory, of finite trees,
is given.

The structure of a tree is determined by the order types of its
paths and by its branching behaviour. There are subtle relationships
between these two structural properties: consider for example Kőnig’s
Lemma (a well-founded tree of height ω has a path with order type
ω if it is finitely branching) and the existence of Suslin trees (well-
founded trees of height ω1 that do not contain any paths with order
type ω1 and that do not have any uncountable antichains) which is
undecidable within ZFC.

This paper examines some first-order aspects of paths in trees. A
broad set-theoretical definition of trees is used: trees are not required
to be finite, rooted, discrete, finitely branching, or well-founded. The
paper is structured as follows:

• Section 2: Background. Some terminology and notation that
is used later is fixed. A short overview of relativisations and
characteristic sentences is given.

• Section 3: Trees. Trees are defined set-theoretically. Paths
and path defining formulas are introduced. Some tree composi-
tion results are given.

• Section 4: Canonical form of formulas that define paths.
A lemma dealing with the elimination of parameters from trees
is given. This lemma is used to prove the following result: every
definable path can be defined by a first-order formula using at
most one parameter chosen from the path itself. A canonical
representation of the first-order formula that defines a definable
path is given.

• Section 5: Trees that have only finitely many undefin-
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able paths. The transfer of truth of first-order sentences be-
tween a tree and certain of its subtrees is investigated. It is
shown that, for every natural number n, every tree that has at
most finitely many paths that are not definable is n-equivalent
to a tree of which all paths are definable.

• Section 6: The partition and cover properties. Using a
Ramsey-type theorem, a proof of the following partition prop-
erty is given: Every tree can, for any natural number n, be
partitioned along any of its paths into subtrees all but one of
which are pairwise n-equivalent. In contrast to this, a certain
cover property that one might expect to be true, involving the
transfer of first-order equivalence between trees with equivalent
covers, is shown to be false. This cover property fails because
end extensions of trees need not be elementary extensions. A
further condition involving elementary chains that is sufficient
for this cover property to hold is suggested.

The motivation behind the partition property and cover property
introduced in Section 6 lies in the problem of axiomatising the first-
order theory of the class Tα that consists of trees of which every path is
isomorphic to the ordinal α. Consider the case where α = ω+1. The
first-order theory of Tω+1 admits models that have paths that are not
isomorphic to ω+1. Consider for example a tree Bω+1 of which each
path is isomorphic to ω+1 and of which each non-leaf node has exactly
two successors. Since Bω+1 has at least 2ℵ0 many paths, and since
each path has a leaf node, the cardinality of Bω+1 is at least 2ℵ0 so
by the downwards Lőwenheim-Skolem theorem, Bω+1 has a countably
infinite elementary substructure B′

ω+1. Each non-leaf node in B′
ω+1

also has exactly two immediate successors so B′
ω+1 will differ from

Bω+1 only in the distribution of its leaf nodes. In particular, B′
ω+1

must contain paths that are isomorphic to ω. The paths in B′
ω+1 that

are parametrically definable are precisely the ones that are isomorphic
to ω + 1 while the paths that are not parametrically definable are
precisely the ones that are isomorphic to ω. Since Bω+1 ∈ Tω+1 and
B′

ω+1 ≡ Bω+1 then B′
ω+1 is a model of the first-order theory of Tω+1.

Now suppose we have a candidate set of axioms A that we wish
to show axiomatises the first-order theory of Tω+1. One way to show
that A does indeed axiomatise the first-order theory of Tω+1 would be
to show, for each natural number n, that every model M of A is n-
equivalent to a tree in Tω+1. The model M may contain paths that are
isomorphic to ω (as in the case of the tree B′

ω+1 above), so a possible
strategy would be to show that each path in M that is isomorphic to ω
can be augmented with a leaf node to obtain a path that is isomorphic
to ω + 1. The resulting tree will be a member of the class Tω+1 and
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if it is n-equivalent to M then we will have succeeded in showing that
A axiomatises the first-order theory of Tω+1.

The partition property and cover property involve the transfer of
n-equivalence between trees in the context described above and may
be useful in showing the completeness of a set of axioms for the first-
order theory of the class Tα.

2 Background

The reader is referred to [2] for more information about characteristic
sentences, and to [12] for more information about relativisations. The
details from [2, 12] that are relevant to this paper are briefly mentioned
in the sections on characteristic sentences and relativisations below.

The axiom of choice is assumed.

2.1 Some notation and terminology

The concatenation of tuples x̄ and ȳ will be denoted as x̄ȳ. The length
of the tuple x̄ = (xi)i∈α is taken as the ordinal α and will be denoted as
ℓ(x̄). 0̄α will denote the tuple of length α of which every entry is 0 and
1̄α will denote the tuple of length α of which every entry is 1. ϕ(u/x)
denotes the formula ϕ(x) with u substituted for x. The quantifier rank
of a formula ϕ is denoted as qr(ϕ). The domain of a structure A is
denoted as |A|. Given a structure A and a tuple ā with entries from
|A|, (A; ā) denotes the structure A with the elements in ā added as
constants. The first-order formula ϕ(x, ā) defines the set B ⊆ |A| in
the structure (A; ā) when u ∈ B if and only if (A; ā) |= ϕ(u/x, ā). The
set B is definable in A when there exists a tuple ā of elements from |A|
and a first-order formula ϕ(x, ā) such that ϕ(x, ā) defines B in (A; ā).
Two structures A and B are called n-equivalent, denoted A ≡n B,
when A and B satisfy the same first-order sentences of quantifier rank
less than or equal to n.

Ehrenfeucht-Fräıssé games (see e.g. [3]) will be used to show the
n-equivalence of structures. An n-round Ehrenfeucht-Fräıssé game is
played by two players - Player I and Player II - on structures A and B,
as follows. In each round i of the game (1 6 i 6 n), Player I chooses an
element from either of the two structures, say ai ∈ |A| (respectively
bi ∈ |B|), and Player II responds by choosing an element bi ∈ |B|
(respectively ai ∈ |A|). Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn).
Player II then wins the game if the structures (A; ā) and

(

B; b̄
)

satisfy
the same atomic sentences. Player II has a winning strategy for the
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n-round game on A and B (a strategy that allows her to win the game
regardless how Player I chooses his elements) if and only if A ≡n B.

The rank of a formula ϕ is the sum of qr(ϕ) and the number of free
variables in ϕ. A is called an n-elementary substructure of B, denoted
A �n B, when A is a substructure of B and for every formula ϕ(x̄) of
rank at most n where x̄ is a k-tuple of variables, if ā ∈ |A|k then A |=
ϕ(ā/x̄) if and only if B |= ϕ(ā/x̄). The Tarski-Vaught criterion for
elementary substructures generalises to n-elementary substructures: if
A is a substructure of B then A �n B if and only if for every formula
ϕ(x, ȳ) of rank at most n and for every tuple ā with entries from |A|,
if B |= ∃xϕ(x, ā/ȳ) then A |= ∃xϕ(x, ā/ȳ). Moreover, if {Ai}i∈α is a
chain of structures such that Ai �n Aj when i < j then Ak �n

⋃

i∈αAi

for all k.
The order types of ({0, . . . , k−1};<) and (N;<) will be denoted as

k and ω respectively. Ordinals will sometimes be identified with their
domains and the finite ordinal k will sometimes be identified with the
natural number k. Given a linear order L = (L;<) and an ordinal
α, an increasing sequence (ai)i∈α in L is called cofinal in L when, for
every x ∈ L, there exist j ∈ α such that x 6 aj . The least ordinal α
for which a sequence (ai)i∈α that is cofinal in L exists, is called the
cofinality of L.

2.2 Relativisations

Let A be any structure. Let x̄ be an n-tuple of variables, ȳ be a k-
tuple of variables all of which are different from the variables in x̄, and
ā ∈ |A|k (the tuples x̄, ȳ and ā may be empty).

For ϕ(x̄) and θ(u, ȳ) any first-order formulas, the relativisation of
ϕ to θ is denoted as ϕθ (where ϕθ = ϕθ(x̄, ȳ)) and is defined as follows:

• If ϕ is atomic then ϕθ := ϕ.

• If ϕ = ¬ψ then ϕθ := ¬
(

ψθ
)

.

• If ϕ = ψ1 ⋆ ψ2, where ⋆ is any of the connectives ∨, ∧, → or ↔,
then ϕθ := ψθ

1 ⋆ ψ
θ
2.

• If ϕ = ∃xψ then ϕθ := ∃x
(

θ(x, ȳ) ∧ ψθ
)

.

• If ϕ = ∀xψ then ϕθ := ∀x
(

θ(x, ȳ) → ψθ
)

.

Define (A; ā)θ to be the structure with domain

{z ∈ |A| : (A; ā) |= θ(z/u, ā)} (1)

and subject to the constant symbols, relation symbols, and function
symbols of the structure A but restricted to the set (1).
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Proposition 1 ([12]) Let ϕ(x̄) and θ(u, ȳ) be any first-order formu-

las. For any n-tuple of elements b̄ from
∣

∣

∣
(A; ā)θ

∣

∣

∣
,

A |= ϕθ
(

b̄/x̄, ā/ȳ
)

⇔ (A; ā)θ |= ϕ
(

b̄/x̄
)

.

2.3 Characteristic sentences

Fix structures A and B with the same finite relational signatures. Let
ā ∈ |A|k and b̄ ∈ |B|k and let x̄ be a k-tuple of variables (the tuples
ā, b̄ and x̄ may be empty).

For n any natural number, the n-characteristic formula J(A; ā)Kn
(where J(A; ā)Kn = J(A; ā)Kn(x̄)) of the structure A over the tuple ā is
defined as follows:

• J(A; ā)K0 := ∧
{

ϕ(x̄) : ϕ an atomic or negated atomic

formula with A |= ϕ(ā/x̄)
}

;

• J(A; ā)Km+1 :=
∧

ak+1∈|A|
∃xk+1J(A; āak+1)Km ∧

∀xk+1
∨

ak+1∈|A|
J(A; āak+1)Km.

For languages with finite relational signatures it can be shown that,
for all natural numbers n and k, there are only finitely many pairwise
non-equivalent n-characteristic formulas, taken over the class of all
structures in that signature and all k-tuples in those structures. If ā
is the empty tuple then J(A; ā)Kn is written as JAKn and is called the
n-characteristic sentence of A.

Lemma 2 ([2]) The following hold for every natural number n:

(i) A |= J(A; ā)Kn (ā/x̄);
(ii) the formula J(A; ā)Kn has quantifier rank n.

Theorem 3 ([2]) The following statements are equivalent for every
natural number n:

(i) (A; ā) ≡n

(

B; b̄
)

;

(ii) B |= J(A; ā)Kn
(

b̄/x̄
)

;

(iii) the formulas J(A; ā)Kn and J
(

B; b̄
)

Kn are equivalent.

3 Trees

3.1 Trees as ordered sets

The simplest first-order language for trees has no constant symbols,
two relation symbols (the usual equality symbol = and an order sym-
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bol <), and no function symbols. Define the following first-order for-
mulas in this language:

x ⌣ y := x < y ∨ x = y ∨ y < x

x 6 y := x < y ∨ x = y

A tree is then a structure T = (T ;<) that satisfies the following first-
order sentences:

• ∀x¬(x < x) (irreflexivity);

• ∀x∀y∀z(x < y ∧ y < z → x < z) (transitivity);

• ∀x∀y∀z ((y < x ∧ z < x) → (y ⌣ z)) (subtotalness);

• ∀x∀y∃z (z 6 x ∧ z 6 y) (connectedness).

The elements of T are called nodes. Given a tuple ā of nodes from
T and a subset A ⊆ T , the language may sometimes be enriched by
adding the tuple of constant symbols ā to obtain the structure (T; ā),
or by adding the unary relation symbol A to obtain the structure
(T;A), where for u ∈ T it holds that (T;A) |= A(u/x) if and only
if u ∈ A. When referring to a tree T without specifying additional
constant or relation symbols, it will be understood that T has the
form T = (T ;<). A leaf is node that is maximal with respect to <.

Given nodes a, b ∈ T with a 6 b, define the following sets:

a6 := {x ∈ T : a 6 x}

b> := {x ∈ T : x < b}

C(b) := {x ∈ T : b 66 x}

T b
a := a6 ∩ C(b)

[a, b) := {x ∈ T : a 6 x < b}

Define the following trees:

Ta := (T; a)a6x =
(

a6;<↾a6
)

T
b := (T; b)¬(b6x) =

(

C(b);<↾C(b)

)

T
b
a := (T; a, b)a6x∧¬(b6x) =

(

T b
a ;<↾T b

a

)

⋆T
b :=

(

T
b; b>

)

⋆T
b
a :=

(

T
b
a; [a, b)

)

Note that, for trees T and S with a, b ∈ T such that a <T b and
c, d ∈ S such that c <S d, if T

a ≡n Sc and Tb ≡n Sd, it need not be
the case that Tb

a ≡n Sd
c .
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3.2 Paths

Let T = (T ;<) be a tree. If A is a linearly ordered subset of T that is
maximal in the set of all linearly ordered subsets of T then (A;<↾A)
is called a path in T. As a notational convenience the path (A;<↾A)
will usually simply be identified with the set A although it must be
understood that a path is a linear order rather than just a set.

For k any natural number and ϕ(x, z̄) any formula with z̄ a k-tuple
of variables different from x, define the formula

πϕ(z̄) := ∃xϕ(x, z̄) ∧ ∀x∀y (ϕ(x, z̄) ∧ ϕ(y, z̄) → (x ⌣ y)) ∧

∀x∀y (x < y ∧ ϕ(y, z̄) → ϕ(x, z̄)) ∧ ¬∃x∀y (ϕ(y, z̄) → y < x) .

If ā is a k-tuple consisting of nodes from T then ϕ(x, ā) defines a path
in (T; ā) if and only if (T; ā) |= πϕ(ā).

Let Σ be a first-order theory. The tree T will satisfy the theory

{

∀z̄ (πϕ(z̄) → σϕ(z̄)) : ϕ(x, z̄) is any formula and σ ∈ Σ
}

if and only if every definable path in T satisfies the theory Σ.

A path A is called singular when there exists a ∈ A such that
A = {x ∈ T : x ⌣ a}, else A is called emergent. Every singular path
is definable: if A is singular with A = {x ∈ T : x ⌣ a} then the
formula ϕ(x, a) = x ⌣ a defines A in (T; a). If B ⊆ A then (B;<↾B)
is called a stem when the following condition is satisfied: if x ∈ B
and y < x then y ∈ B (in other words, stems are simply downwards
closed subsets in a tree). Again the stem (B;<↾B) will usually simply
be identified with the set B although a stem is actually a linear order
rather than just a set. Given a tree T and a stem B in T, define the
following sets and trees (Xc denotes the set-theoretical complement
of the set X):

B< := {x ∈ T : y < x for all y ∈ B}

T
B :=

(

(B<)c; <↾(B<)c
)

⋆T
B :=

(

T
B;B

)

Note that if (bi)i∈β is a cofinal sequence of nodes in B and β is a limit
ordinal then

⋃

i∈β

⋆T
bi = ⋆T

B.
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3.3 Tree composition theorems

The following Feferman-Vaught-type composition theorems will be
used in the remainder of the paper. The first result, which is a refine-
ment of the Feferman-Vaught composition theorem for ordinal sums
(see [4]), can be proved using a straightforward application of Ehren-
feucht-Fräıssé games and the proof is omitted.

Lemma 4 Let n be a natural number. Let T = (T ;<T ) and S =
(S;<S) be trees. Let a, b, c ∈ T and p, q, r ∈ S with a <T b <T c and
p <S q <S r. If ⋆T

b
a ≡n ⋆S

q
p and ⋆T

c
b ≡n ⋆S

r
q then ⋆T

c
a ≡n ⋆S

r
p.

The following known result (see e.g. [3, Lemma 3.12]) is used in
the proof of Lemma 5:

If k,m > 2n − 1 then k ≡n m. (2)

Lemma 5 Let n be a natural number. Let T = (T ;<T ) and S =
(S;<S) be any trees. Let τ and σ be ordinals (possibly finite) such
that τ ≡n σ. Let (ai)i∈1+τ and (bi)i∈1+σ be increasing sequences of

nodes in T and S respectively such that ⋆T
ai+1
ai ≡n ⋆S

bj+1

bj
for all i and

j with i, i + 1 ∈ 1 + τ and j, j + 1 ∈ 1 + σ.1 Let A =
⋃

i∈1+τ [a0, ai),
B =

⋃

i∈1+σ[b0, bi), A
′ = {x ∈ T : ai 6 x for all i}, B′ = {x ∈ S : bi 6

x for all i},

T
′ =

(

a60 \A
′; (<T )↾(a60 \A′)

, A
)

,

S
′ =

(

b60 \B
′; (<S)↾(b60 \B′)

, B
)

.

Then T′ ≡n S′.

Proof Given a node t ∈ |T′| (respectively s ∈ |S′|), let tτ (respec-
tively sσ) be the greatest element i ∈ 1 + τ (respectively i ∈ 1 + σ)
such that t ∈ a6i (respectively s ∈ b6i ). Note that t ∈ T

atτ+1
atτ and

s ∈ S
bsσ+1

bsσ
for all t ∈ |T′| and s ∈ |S′|.

We describe a winning strategy for Player II for the n-round Ehren-
feucht-Fräıssé game on T′ and S′. We will play two sets of smaller
Ehrenfeucht-Fräıssé games in parallel with the main game on T′ and
S′, and the nodes that have been played in these smaller games in
their earlier rounds will be determined by the nodes that have been
played in the main game in its earlier rounds. The two sets of smaller
games that we will consider are (i) the n-round game on τ and σ where

1The first element in 1+τ and 1+σ is taken as 0. If τ and σ are infinite then 1+τ = τ
and 1 + σ = σ.

9



the elements played in its earlier rounds are of the form tτ ∈ τ and
sσ ∈ σ for the nodes t ∈ |T′| and s ∈ |S′| that were played in the main

game, and (ii) for each j and k, a game on the trees ⋆T
aj+1
aj and ⋆S

bk+1

bk
where the nodes played in its earlier rounds are those that have been
played in the main game on T′ and S′ and that belong to ⋆T

aj+1
aj and

⋆S
bk+1

bk
.

Let 0 6 i 6 n− 1 and suppose that, after round i of the game, the
nodes that have been chosen by the two players so far are t1, . . . , ti ∈
|T′| and s1, . . . , si ∈ |S′| (if i = 0 then the game is yet to begin).
Suppose that Player I chooses the node ti+1 ∈ |T′| for his (i + 1)-th
turn. We now describe how Player II can choose a response si+1 ∈ |S′|
that will allow her to eventually win this game. (The case where,
for the (i + 1)-th round of the game, Player I instead chose a node
si+1 ∈ |S′|, is handled similarly but with obvious modifications.)

Let j = tτi+1. Consider for a moment the n-round game on τ and
σ. Note that there are τ many sets of the form T

am+1
am , and σ many

sets of the form S
bm+1

bm
. Suppose that Player II plays this game using

the winning strategy she has for it (since τ ≡n σ) and that, after
round i, the elements that have been chosen so far in this game are
tτ1 , . . . , t

τ
i ∈ τ and sσ1 , . . . , s

σ
i ∈ σ. Let the (i+1)-th move of Player II,

in response to Player I’s choice of j ∈ τ as his (i+1)-th move for this
game, be the element k ∈ σ.

Next consider the n-round game on the structures ⋆T
aj+1
aj and

⋆S
bk+1

bk
. Player II has a winning strategy for this game since ⋆T

aj+1
aj ≡n

⋆S
bk+1

bk
. Let u1, . . . , up be all the nodes from amongst t1, . . . , ti such

that u1, . . . , up ∈
∣

∣

⋆T
aj+1
aj

∣

∣, and let v1, . . . , vp be all the nodes from

amongst s1, . . . , si such that v1, . . . , vp ∈
∣

∣

∣⋆S
bk+1

bk

∣

∣

∣
. Suppose that the

response of Player II, using her winning strategy for this game, to
Player I’s choice of the node ti+1 ∈

∣

∣

⋆T
aj+1
aj

∣

∣ for his (p + 1)-th move,
assuming that the nodes played so far in this game are u1, . . . , up ∈
∣

∣

⋆T
aj+1
aj

∣

∣ and v1, . . . , vp ∈
∣

∣

∣⋆S
bk+1

bk

∣

∣

∣
, is the node vp+1 ∈

∣

∣

∣⋆S
bk+1

bk

∣

∣

∣
.

Returning now to the n-round game on T′ and S′, Player II’s
(i+1)-th move, in response to Player I having chosen the node ti+1 ∈
|T′| for his (i+ 1)-th move, is then the node si+1 = vp+1.

At the end of the game, let t̄ = (t1, . . . , tn) and s̄ = (s1, . . . , sn).
To show that (T′; t̄) and (S′; s̄) satisfy the same atomic sentences (and
hence that Player II wins the game, from which it then follows that
T′ ≡n S′), it suffices to show, for all i and j, that (i) ti = tj iff si = sj ,
that (ii) ti < tj iff si < sj and that (iii) ti < aq for some q iff si < br for
some r (because T′ |= A(ti/x) iff ti < aq for some q, and S′ |= B(si/x)
iff si < br for some r).
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It is straightforward to verify that the winning strategy used by
Player II above for the game on σ and τ , and her winning strategies

for the various games on the trees of form ⋆T
aj+1
aj and ⋆S

bk+1

bk
, together

with the structure of the trees T′ and S′, guarantee that (i)-(iii) do
indeed hold. ⊣

Lemma 6 Let T = (T ;<T ) and S = (S;<S) be trees. Consider the
following configurations of nodes:

• ā = (a1, . . . , ak), where a1, . . . , ak ∈ T with a1, . . . , ak−1 ∈ C(ak);

• b̄ = (b1, . . . , bk), where b1, . . . , bk ∈ S with b1, . . . , bk−1 ∈ C(bk);

• c̄ = (c1, . . . , cm), where c1, . . . , cm ∈ T with c1, . . . , cm ∈ a6k ; and

• d̄ = (d1, . . . , dm), where d1, . . . , dm ∈ S with d1, . . . , dm ∈ b6k .

If (⋆T
ak ; a1, . . . , ak−1) ≡n

(

⋆S
bk ; b1, . . . , bk−1

)

and (Tak ; c̄) ≡n

(

Sbk ; d̄
)

then (T; ā, c̄) ≡n

(

S; b̄, d̄
)

.

Proof Suppose that (⋆T
ak ; a1, . . . , ak−1) ≡n

(

⋆S
bk ; b1, . . . , bk−1

)

and
(Tak ; c̄) ≡n

(

Sbk ; d̄
)

and let σ and τ be winning strategies for Player
II for the n-round Ehrenfeucht-Fräıssé games on (⋆T

ak ; a1, . . . , ak−1)
and

(

⋆S
bk ; b1, . . . , bk−1

)

, and on (Tak ; c̄) and
(

Sbk ; d̄
)

, respectively. A
winning strategy for Player II for the n-round game on (T; ā, c̄) and
(

S; b̄, d̄
)

is obtained by combining her winning strategies σ and τ as
follows.

Whenever Player I chooses a node from T ak (respectively Sbk),
then, based on all the nodes that have already been chosen from the
sets T ak and Sbk , Player II uses her strategy σ to choose a node from
Sbk (respectively T ak), and whenever Player I chooses a node from
Tak (respectively Sbk), then, based on all the nodes that have already
been chosen from the sets Tak and Sbk , Player II uses her strategy τ
to choose a node from Sbk (respectively Tak).

At the end of the game, let the nodes that were chosen by the two
players be t1, . . . , tn ∈ T and s1, . . . , sn ∈ S and let t̄ = (t1, . . . , tn)
and s̄ = (s1, . . . , sn). To confirm that the structures (T; ā, c̄, t̄) and
(

S; b̄, d̄, s̄
)

satisfy the same atomic formulas (and hence that Player II
wins the game), it suffices to check the following for all i and j: (i)
ai = aj ⇔ bi = bj , (ii) ai < aj ⇔ bi < bj , (iii) ci = cj ⇔ di = dj , (iv)
ci < cj ⇔ di < dj , (v) ai = cj ⇔ bi = dj , (vi) ai < cj ⇔ bi < dj , (vii)
ci < aj ⇔ di < bj , (viii) ti = tj ⇔ si = sj , (ix) ti < tj ⇔ si < sj ,
(x) ti = aj ⇔ si = bj , (xi) ti < aj ⇔ si < bj , (xii) ai < tj ⇔ bi < sj ,
(xiii) ti = cj ⇔ si = dj , (xiv) ti < cj ⇔ si < dj , and, finally, (xv)
ci < tj ⇔ di < sj .

It is straightforward to check that each of (i)-(xv) does indeed hold.
It hence follows that (T; ā, c̄) ≡n

(

S; b̄, d̄
)

. ⊣
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4 Canonical form of formulas that de-

fine paths

Lemma 7 (Elimination of parameters) Let T be any tree. Let
ā = (a1, . . . , ak) be a k-tuple of nodes from T such that a1, . . . , ak−1 ∈
C(ak) and let b, c ∈ a6k . Let n be a natural number. The following
statements are equivalent:

(i) (T; b, ā) ≡n (T; c, ā)

(ii) (T; b, ak) ≡n (T; c, ak)

(iii) (Tak ; b) ≡n (Tak ; c)

Proof (i) ⇒ (ii): Immediate.
(ii) ⇒ (iii): Suppose that (T; b, ak) ≡n (T; c, ak). Then Player

II has a winning strategy for the n-round Ehrenfeucht-Fräıssé game
on the trees (T; b, ak) and (T; c, ak). Clearly this winning strategy
will require that, whenever Player I chooses a node from a6k in either
of these two trees then Player II responds with a node from a6k in
the other tree. It follows that Player II has a winning strategy for
the n-round game on the trees (Tak ; b) and (Tak ; c) hence (Tak ; b) ≡n

(Tak ; c), as required.
(iii) ⇒ (i): Suppose that (Tak ; b) ≡n (Tak ; c). Since

(⋆T
ak ; a1, . . . , ak−1) ≡n (⋆T

ak ; a1, . . . , ak−1)

then by Lemma 6, (T; b, ā) ≡n (T; c, ā). ⊣

Corollary 8 Let T be any tree. Let ā = (a1, . . . , ak) be a k-tuple of
nodes from T such that a1, . . . , ak−1 ∈ C(ak) and let b, c ∈ a6k . Let n
be a natural number. The following statements are equivalent:

(i) (T; ā) |= J(T; b, ā)Kn(c/x, ā)
(ii) (T; ak) |= J(T; b, ak)Kn(c/x, ak)
(iii) Tak |= J(Tak ; b)Kn(c/x)

Proof By Theorem 3 and Lemma 7. ⊣

Every path that contains a leaf can be defined using at most one
parameter chosen from the path itself: If A is a path in a tree T

and A has a leaf a then A can be defined in (T; a) by the formula
ϕ(x, a) = x 6 a. The next theorem shows that every leafless path
that is at all definable can be defined using at most one parameter
chosen from the path itself.

12



Theorem 9 (Canonical form of path-defining formulas) Let T
be any tree. Let ā = (a1, . . . , ak) be a tuple of nodes from T and let
A be a leafless path that is defined in (T; ā) by a formula ϕ(x, ā) of
quantifier rank m. For every b ∈ A such that a1, . . . , ak ∈ C(b) ∪ {b},
there exists an m-characteristic formula τ(x, y) such that A is defined
in (T; b) by the formula

ψ(x, b) = ∃z(x < z ∧ τ(z, b)).

Proof Let b ∈ A with a1, . . . , ak ∈ C(b) ∪ {b} and note that A is de-
fined in (T; āb) by the formula ϕ′(x, āb) = ϕ(x, ā). Let the cofinality
of the stem A ∩ b6 be α and let (bi)i∈α be a sequence that is cofinal
in the stem A ∩ b6. Since there are only finitely many pairwise non-
equivalent m-characteristic formulas over 2-tuples in the language of
trees, it follows from the infinite pigeonhole principle there must ex-
ist an m-characteristic formula τ(x, y) and a subsequence (ci)i∈α of
(bi)i∈α such that (T; b) |= τ(ci/x, b) for every i ∈ α, and the sequence
(ci)i∈α will also be cofinal in the stem A ∩ b6. Since, in particular,
(T; b) |= τ(c0/x, b), then by Theorem 3, τ(x, y) ≡ J(T; c0, b)Km(x, y)
hence (T; b) |= J(T; c0, b)Km(ci/x, b) for each i ∈ α. By Corollary 8 it
follows that

(T; āb) |= J(T; c0, āb)Km(u/x, āb) ⇔

(T; b) |= J(T; c0, b)Km(u/x, b) (3)

for every u ∈ b6.
For every u ∈ b6\A, (T; āb) 6|= J(T; c0, āb)Km(u/x, āb): If (T; āb) |=

J(T; c0, āb)Km(u/x, āb) then by Theorem 3, (T;u, āb) ≡m (T; c0, āb) and
since (T; āb) |= ϕ′(c0/x, āb) then (T; āb) |= ϕ′(u/x, āb), a contradiction
with the fact that ϕ′(x, āb) defines A in (T; āb).

Hence by (3), (T; b) 6|= J(T; c0, b)Km(u/x, b) for every u ∈ b6\A.
Moreover, (T; b) 6|= J(T; c0, b)Km(u/x, b) for every u ∈ C(b), because

(T; b) |= J(T; c0, b)Km(u/x, b) only if b 6 u.
Since, however, (T; b) |= J(T; c0, b)Km(ci/x, b) for each i ∈ α, and

since A consists precisely of those nodes that lie below a node ci for
some i ∈ α, it follows that A can be defined in (T; b) using the formula

ψ(x, b) = ∃z (x < z ∧ J(T; c0, b)Km(z, b)) ,

as required. ⊣

Obviously the formula ψ(x, b) given in the above theorem is not the
formula of lowest quantifier rank to define A (since qr(ψ) = qr(ϕ) + 1
where ϕ(x, ā) is known to define A). Furthermore, it may actually be
the case that A can be defined without any parameters whatsoever.
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Corollary 10 Let T be any tree. For every node a ∈ T and for every
natural number n, there are only finitely many paths in T that pass
through a and can be defined by a formula ϕ(x, a) of quantifier rank n
in the tree (T; a).

Proof By Theorem 9 and the fact that there are only finitely many
pairwise non-equivalent characteristic formulas of a given quantifier
rank over tuples of a given length. ⊣

5 Trees that have only finitely many

undefinable paths

Proposition 11 Let T be any tree, let A be a path in T, let a ∈ A
and let B = A ∩ a6. Then A can be defined by a formula in (T; a) if
and only if B can be defined by a formula in Ta.

Proof If A has a leaf then the result is trivial, so consider the case
where A does not have a leaf. First suppose that A can be defined
by a formula in (T; a). By Theorem 9 there exists a node c ∈ B (c
is the node c0 in the proof of Theorem 9) and natural number k such
that the formula ϕ(x, a) = ∃y

(

x < y ∧ J(T; c, a)Kk(y, a)
)

defines A in
(T; a). By Corollary 8,

(T; a) |= J(T; c, a)Kk(u/x, a) ⇔ Ta |= J(Ta; c)Kk(u/x)

for each u ∈ a6. It follows that B is defined in Ta by the formula
ψ(x) = ∃y

(

x < y ∧ J(Ta; c)Kk(y)
)

.
Conversely, suppose that ϕ(x) is any formula that defines the path

B in Ta. Since Ta = (T; a)a6x then by Proposition 1, the formula
ϕa6x(x, a) defines the set B in (T; a). Hence the formula ψ(x, a) =
x < a ∨ ϕa6x(x, a) defines the path A in (T; a). ⊣

Proposition 12 Let T be any tree and let a ∈ T . Let A be a path in
T that does not contain a (i.e. A ⊆ C(a)). Then A is definable in T

if and only if A is definable in Ta.

Proof If A has a leaf c then the formula x 6 c defines A in both of
the trees (T; c) and (Ta; c). Hence consider the case where A does not
have a leaf.

First suppose that the path A is definable in T. By Theorem 9 it
follows that there exists b ∈ A with a ∈ C(b) (hence b 6< a) such that
A can be defined by a formula in (T; b). By Proposition 11, A∩b6 can

14



be defined by a formula in Tb so by another application of Proposition
11 in the context of the tree Ta (since |Tb| ⊆ |Ta|), A can be defined
by a formula in (Ta; b).

Next suppose that A is definable in Ta. By Theorem 9 there exists
b ∈ A and a formula ϕ(x, b) that defines A in (Ta; b). Since (Ta; b) =
(T; b, a)¬(a6x) then by Proposition 1 it follows that ϕ¬(a6x)(x, b, a)
defines A in (T; b, a). ⊣

Proposition 13 Let T be any tree and let A be a path that is not
definable in T. For every a ∈ A and for every natural number n, there
exists b ∈ a6 ∩A and c ∈ a6\A such that Tb ≡n Tc.

Proof Let a ∈ A and let n be a natural number, but suppose to
the contrary that Tu 6≡n Tv for every u ∈ a6 ∩ A and v ∈ a6\A. Let
τ1, . . . , τm be all the n-characteristic sentences in the language of trees,
up to logical equivalence. Let I = {i : Tu |= τi for some u ∈ a6 ∩ A}.
Then for every u ∈ a6 we have that Tu |= τi for some i ∈ I if and only
if u ∈ A. But then A can be defined in (T; a) using the formula

ϕ(x, a) = x < a ∨ a 6 x ∧

(

∨

i∈I

τ
θ(w,x)
i (x)

)

where θ(w, x) = x 6 w, a contradiction. ⊣

Proposition 14 Let T be a tree that has only finitely many paths that
are not definable. For every natural number n, there exists a tree S

of which every path is definable, and such that S ≡n T.

Proof Let n be a natural number. Let A be a path in T that is not
definable. Since T has only finitely many paths that are not definable
then there exists a ∈ A such that A is the only path in T that contains
a and is not definable. By Proposition 13 there exists b ∈ a6 ∩A and
c ∈ a6\A such that Tb ≡n Tc. Let T′ be the tree that is obtained
from T by replacing Tb with Tc. Since ⋆T

b ≡n ⋆T
b then it follows by

Lemma 6 that T′ ≡n T.
Every path in T that contains c is definable hence by Proposition

11, every path in Tc is definable. By another application of Proposition
11, every path in T′ that contains the node c from the copy of Tc that
was substituted for Tb, is definable in T′.

Moreover, by Proposition 12, every path X in T for which X ⊆
C(b) that is definable in T, is definable in Tb as well, so by a second
application of Proposition 12 in the context of the tree T′, such a path
X is also definable in T′.

15



Hence the tree T′ has one fewer path that is not definable than the
tree T: every path in T′ that contains the node c from the copy of Tc

that was substituted for Tb, is definable in T′, while every path in the
tree T′ that is contained in C(b) and is a definable path in T, is also
definable in T′.

Repeat this construction for every other path in T that is not
definable so as to eventually obtain a tree S with the property that
every path in S is definable and S ≡n T. ⊣

6 The partition and cover properties

6.1 The partition property

Let L = (L;<) be a linear order and let C be a finite set. A func-
tion f :

{

(x, y) ∈ L2 : x < y
}

→ C is called a colouring of L. The
colouring f is called additive when the following condition holds:
for all x1, y1, z1 ∈ L and x2, y2, z2 ∈ L with x1 < y1 < z1 and
x2 < y2 < z2, if f ((x1, y1)) = f ((x2, y2)) and f ((y1, z1)) = f ((y2, z2))
then f ((x1, z1)) = f ((x2, z2)). An increasing sequence (ai)i∈α in L
is called homogeneous in L if there is an element c ∈ C such that
f ((ai, aj)) = c for all i < j. The following version of Ramsey’s Theo-
rem is proved in [14].

Theorem 15 ([14]) If f is an additive colouring of a limit ordinal
α then there exists a sequence (xi)i∈β that is cofinal and homogeneous
in α.

Now consider any tree T. Let A be a leafless path of cofinality α
in T (α will be a limit ordinal since A is leafless) and let (bi)i∈α be a

sequence that is cofinal in A. Consider the set C =
{r

⋆T
bj
bi

zn

: i < j
}

and let C/≡ be the quotient set of C under the equivalence relation
of logical equivalence. The set C/≡ will be finite.

Define the function f : {(i, j) ∈ α× α : i < j} → C/≡ by specify-

ing that f ((i, j)) =
[r

⋆T
bj
bi

zn]

≡
, where [τ ]≡ denotes the equivalence

class in C/≡ that contains τ . The function f is a colouring of α, and
from Theorem 3 and Lemma 4 it follows that f is additive. Hence by
Theorem 15, together with the fact that α is a regular ordinal, there
exists a sequence (xi)i∈α that is cofinal and homogeneous in α under
f . Let ai = bxi

for every i ∈ α. Then for p, q, s, t ∈ α with p < q and
s < t, the homogeneity of (xi)i∈α together with Theorem 3 gives that

⋆T
aq
ap ≡n ⋆T

at
as .

We have hence obtained the following result for trees.
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Partition Property: Let T be any tree and let A be a
leafless path in T. For every natural number n, there is an
ordinal α and a sequence (ai)i∈α that is cofinal in A such
that ⋆T

aq
ap ≡n ⋆T

at
as for all p < q and s < t.

6.2 The cover property

Let A be a stem (hence possibly also a path) with no greatest node in
a tree T. A sequence (ai)i∈α that is cofinal in A will be called a cover
for (T;A). If (ai)i∈α is a cover for (T;A) then, since A has no greatest
node, α must be a limit ordinal, A =

⋃

i∈α a
>
i and ⋆T

A =
⋃

i∈α ⋆T
ai .

Consider the following cover property of trees:

CP: Let n be any natural number. Let (ai)i∈α and (bi)i∈α
be covers for the trees (T;A) and (S;B) respectively. If
(T; ai) ≡n (S; bi) for every i then ⋆T

A ≡n ⋆S
B.

The above cover property is false, as will be shown in Example
16. We first describe a method that will be used in Example 16 for
constructing trees.

A tree T is called well-founded when every non-empty set of nodes
in T has a minimal element. The height of a node a ∈ T for well-
founded T is the order type (chosen from the class of ordinals) h(a)
of the set a>. The height of T is the ordinal

⋃

a∈T (h(a) + 1).

Let A be a non-empty set and let α be an ordinal. For each ordinal
β with β < α, define the set Gβ recursively as follows:

• (Initial value.) Let G0 := {()}. The empty sequence () repre-
sents the root of the tree.

• (To find Gβ+1 given Gβ.) Let β be any ordinal with β < α and
let the set Gβ be known. Choose any function fβ+1 : Gβ → P(A)
such that fβ+1(x̄) 6= ∅ for at least one tuple x̄ ∈ Gβ . Then

Gβ+1 := {x̄y : x̄ ∈ Gβ and fβ+1(x̄) 6= ∅ and y ∈ fβ+1(x̄)}.

• (To find Gβ when β is a limit ordinal.) Let β be a limit ordinal
with β < α and let the set Gγ be known for each γ < β. Let

Lβ := {x̄ : ℓ(x̄) = β and if ȳ is a proper initial sub-

sequence of x̄ then ȳ ∈ Gγ for some γ < β}.

Choose any function fβ : Lβ → P(A) such that fβ(x̄) 6= ∅ for at
least one tuple x̄ ∈ Lβ . Then

Gβ := {x̄y : x̄ ∈ Lβ and fβ(x̄) 6= ∅ and y ∈ fβ(x̄)}.
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Now define G :=
⋃

β<α

Gβ and f :=
⋃

β<α

fβ .

For x̄, ȳ ∈ G, define x̄ < ȳ if and only if x̄ is a proper initial
subsequence of ȳ. The structure (G;<) is a well-founded tree of height
α and will be denoted as G(α,A, f).

We now give the earlier promised counterexample to the property
CP.

Example 16 Fix a natural number n with n > 6. We will construct a
tree T, paths A and B in T, and covers (ai)i∈ω and (bi)i∈ω for (T;A)
and (T;B) respectively, such that (T; ai) ≡n (T; bi) for every i but

⋆T
A 6≡n ⋆T

B. To show that ⋆T
A 6≡n ⋆T

B, we will find a sentence ψ of
quantifier rank at most 6 such that ⋆T

A |= ψ but ⋆T
B 6|= ψ.

Define the function h : N → N as follows:

h(i) = 2 (2n + i− 1) + 1.

Consider the tree T = G (ω, {0, 1, 2}, f) with f =
⋃

β<ω fβ defined
recursively as follows:

1. Take G0 =
{

()
}

.

2. Let β be an ordinal with β < ω and let the set Gβ be given.
Define fβ+1 : Gβ → P({0, 1, 2}) as follows:

(a) f1(()) = {0, 1, 2}.

(b) If x̄ has the form x̄ = ȳ0̄2n where ℓ(ȳ) = k · 2n for some odd
natural number k, then fβ+1(x̄) = {0, 1, 2}.

(c) If the last entry of x̄ is 2 then fβ+1(x̄) = ∅.

(d) Else fβ+1(x̄) = {0, 1}.

In other words, T is obtained by taking the binary tree of height ω
and adding one additional successor to the root node and to each node
of the form ȳ0̄2n with ℓ(ȳ) = k · 2n for some odd natural number k.

Let ai = 0̄h(i)·2n and bi = 0̄(h(0)−1)·2n 1̄(2i+1)·2n for every natural
number i and let A =

⋃

i∈N a
>
i and B =

⋃

i∈N b
>
i . The paths A and B

are depicted in Figure 1.

Then (T; ai) ≡n (T; bi) for each i but ⋆T
A = (T;A) 6≡n (T;B) = ⋆T

B.

To see that (T; ai) ≡n (T; bi) for each i, we show that

⋆T
0̄(h(i)−1)·2n ≡n ⋆T

0̄(h(0)−1)·2n , (4)

⋆T
0̄(h(i)−1)·2n+1

0̄(h(i)−1)·2n
≡n ⋆T

0̄(h(0)−1)·2n 1̄1

0̄(h(0)−1)·2n
, (5)

⋆T
ai
0̄(h(i)−1)·2n+1

≡n ⋆T
bi
0̄(h(0)−1)·2n 1̄1

and (6)
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q ()×

0̄2·2n×

0̄4·2n×

0̄6·2n×

❵
❵

❵

0̄2(2n−1)·2n = 0̄(h(0)−1)·2n×

0̄2(2n)·2n = 0̄(h(1)−1)·2n×

0̄2(2n+1)·2n = 0̄(h(2)−1)·2n×

0̄(2(2n−1)+1)·2n = 0̄(h(0))·2ns

0̄(2(2n)+1)·2n = 0̄(h(1))·2ns

0̄(2(2n+1)+1)·2n = 0̄(h(2))·2ns

❵

❵
❵

a0

a1

a2

A

q ()×

0̄2·2n×

0̄4·2n×

0̄6·2n×

❵
❵

❵

0̄2(2n−1)·2n = 0̄(h(0)−1)·2n×

0̄(h(0)−1)·2n 1̄1·2ns

0̄(h(0)−1)·2n 1̄3·2ns

0̄(h(0)−1)·2n 1̄5·2ns

❵

❵
❵

b0

b1

b2

B

Figure 1: The paths A (left) and B (right) in the tree T (see
Example 16). Nodes that have three immediate successors are
indicated with the symbol ×.

Tai ≡n Tbi . (7)

Player II will then have a winning strategy for the n-round Ehren-
feucht-Fräıssé game on the trees (T; ai) and (T; bi) by combining her
winning strategies for the n-round games on the four sets of trees given
in (4) - (7).

Proof of (4): Note that the greatest node in the stem (0̄(h(i)−1)·2n)
> that

has three immediate successors is the node 0̄(h(i)−3)·2n and h(i)− 3 =
2(2n + i − 2), and the greatest node in the stem (0̄(h(0)−1)·2n)

> that
has three immediate successors is the node 0̄(h(0)−3)·2n and h(0)− 3 =
2(2n − 2). Now

⋆T
0̄(2p+2)·2n

0̄2p·2n
∼= ⋆T

0̄(2q+2)·2n

0̄2q·2n

for all integers p and q with 0 6 p 6 2n + i − 2 and 0 6 q 6 2n − 2
hence

⋆T
0̄(2p+2)·2n

0̄2p·2n
≡n ⋆T

0̄(2q+2)·2n

0̄2q·2n
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for all such p and q.
Let C be the set that consists of all nodes t that belong to the stem

(0̄(h(i)−1)·2n)
> ⊆ A such that t has three immediate successors, and

let D be the set that consists of all nodes s that belong to the stem
(0̄(h(0)−1)·2n)

> ⊆ B such that s has three immediate successors. Since
|C|, |D| > 2n − 1 then by (2),

(C;<↾C) ≡n (D;<↾D).

Since there are |C| many trees of the form ⋆T
0̄(2p+2)·2n

0̄2p·2n
, and |D|

many trees of the form ⋆T
0̄(2q+2)·2n

0̄2q·2n
, then it follows from Lemma 5 that

⋆T
0̄(h(i)−1)·2n ≡n ⋆T

0̄(h(0)−1)·2n .

Proof of (5): This follows (see Figure 2) from the fact that

⋆T
0̄(h(i)−1)·2n+1

0̄(h(i)−1)·2n
∼= ⋆T

0̄(h(0)−1)·2n 1̄1

0̄(h(0)−1)·2n
.

Proof of (6): Note that

⋆T
0̄p+1

0̄p
∼= ⋆T

0̄(h(0)−1)·2n 1̄q+1

0̄(h(0)−1)·2n 1̄q

for all p and q with (h(i) − 1) · 2n + 1 6 p < (h(i)) · 2n and 1 6 q <
(2i+ 1) · 2n (see Figure 2), hence

⋆T
0̄p+1

0̄p
≡n ⋆T

0̄(h(0)−1)·2n 1̄q+1

0̄(h(0)−1)·2n 1̄q

for all such p and q. Let

L =
(

[

0̄(h(i)−1)·2n+1, ai
)

;<↾[0̄(h(i)−1)·2n+1,ai)

)

,

M =
(

[

0̄(h(0)−1)·2n 1̄1, bi
)

;<↾[0̄(h(0)−1)·2n 1̄1,bi)

)

.

Note that ||L|| , ||M|| > 2n − 1 so by (2), L ≡n M. Since there are

||L|| many trees of the form ⋆T
0̄p+1

0̄p
, and ||M|| many trees of the form

⋆T
0̄(h(0)−1)·2n 1̄q+1

0̄(h(0)−1)·2n 1̄q
, then it follows from Lemma 5 that

⋆T
ai
0̄(h(i)−1)·2n+1

≡n ⋆T
bi
0̄(h(0)−1)·2n 1̄1

.

Proof of (7): This follows from the fact that Tai
∼= Tbi.
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Figure 2: The trees ⋆T
ai
0̄(h(i)−1)·2n

(left) and ⋆T
bi
0̄(h(0)−1)·2n

(right) used in the proofs of (5) and (6) in Example 16.
Function values under f are indicated in boxes.

Hence we conclude that (T; ai) ≡n (T; bi). Now to see that (T;A) 6≡n

(T;B), consider the following formulas:

ϕ(x) := ∃x1∃x2∃x3
(

∧i 6=j(xi 6= xj) ∧ ∧3
i=1(x < xi)∧

¬∃z
(

∨3
i=1(x < z ∧ z < xi)

))

ψ(X) := ∀x (X(x) → ∃y (X(y) ∧ x < y ∧ ϕ(y)))

The formula ϕ(x) states that x has three immediate successors and
ψ(X) states that every node in X sits below another node in X that
has three immediate successors. Note that qr(ψ) 6 6 6 n. Now
(T;A) |= ψ(A) but (T;B) 6|= ψ(B) hence (T;A) 6≡n (T;B). This
concludes our counterexample to the property CP.

Call a cover (ai)i∈α of a tree (T;A) an n-elementary cover when

⋆T
ai �n ⋆T

aj for all i and j with i < j. Note that if (ai)i∈α is an
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n-elementary cover of (T;A) then no node ai can have an immediate
predecessor: if b were an immediate predecessor of ai then

(⋆T
ai+1 ; b) |= ∃x

(

b < x ∧ (ai+1)
>(x)

)

while
(⋆T

ai ; b) 6|= ∃x
(

b < x ∧ (ai)
>(x)

)

,

a contradiction with the fact that ⋆T
ai �n ⋆T

ai+1 . Hence well-founded
trees (T;A) of height less than ω2 cannot have n-elementary covers.

While Example 16 shows that the cover property CP does not hold,
a sufficient condition for the conclusion ⋆T

A ≡n ⋆S
B of CP to hold is

that the covers (ai)i∈α and (bi)i∈α be n-elementary covers.

Proposition 17 Let (ai)i∈α and (bi)i∈α be n-elementary covers for
the trees (T;A) and (S;B) respectively. If (T; ai) ≡n (S; bi) for every
i then ⋆T

A ≡n ⋆S
B.

Proof Let (ai)i∈α and (bi)i∈α be n-elementary covers for (T;A) and
(S;B). Then

⋆T
ak �n

⋃

i∈α

⋆T
ai = ⋆T

A and

⋆S
bk �n

⋃

i∈α

⋆S
bi = ⋆S

B

for all k. Furthermore, since (T; ai) ≡n (S; bi) for every i then it
follows that ⋆T

ak ≡n ⋆S
bk too. Hence ⋆T

A ≡n ⋆S
B. ⊣
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