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FIXED POINT RESULTS IN FUZZY METRIC-LIKE SPACES

S. SHUKLA AND M. ABBAS

Abstract. In this paper, the concept of fuzzy metric-like spaces is intro-

duced which generalizes the notion of fuzzy metric spaces given by George

and Veeramani [8]. Some fixed point results for fuzzy contractive mappings on
fuzzy metric-like spaces are derived. These results generalize several compara-

ble results from the current literature. We also provide illustrative examples

in support of our new results where result from current literature are not ap-
plicable.

1. Introduction and preliminaries

The evolution of fuzzy mathematics commenced with an introduction of the
notion of fuzzy sets by Zadeh [25], as a new way to represent the vagueness in every
day life. There are many practical problems where the nature of uncertainty in the
behavior of a given system possesses fuzzy rather than stochastic nature.

The concept of a fuzzy metric space was introduced and generalized in many
ways ( [7, 9, 14]) . George and Veeramani [8, 9] modified the concept of fuzzy
metric space introduced by Kramosil and Michalek [14]. They obtained a Hausdorff
and first countable topology on the modified fuzzy metric spaces, which has very
important applications in quantum particle physics, particularly in connection with
both string and ε∞ theory (see, [17] and references therein). In fuzzy metric spaces
given by Kramosil and Michalek [14], Grabiec [11] gave the fuzzy version of Banach
contraction principle. Subsequently, Many authors proved fixed point and common
fixed point theorems in fuzzy metric spaces, (see [1–6,10,13,15,16,20–24]).

Recently, Harandi [12] introduced the concept of metric-like spaces as a general-
ization of partial metric spaces and metric spaces (see [12]) and proved some fixed
point results in such spaces. For definitions and examples of metric like spaces, we
refer to [12].

The aim of this paper is to introduce the notion of fuzzy metric-like spaces,
as a generalization of fuzzy metric spaces. Fixed point theorems for contractive
mappings in fuzzy metric-like spaces are also proved. Examples are provided which
illustrate the results.

Definition 1.1. [25] A fuzzy set A in a nonempty set X is a function with domain
X and values in [0, 1].
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Definition 1.2. [19] A binary operation ? : [0, 1]× [0, 1]→ [0, 1] is a continuous t-
norm if {[0, 1], ?} is an abelian topological monoid with unit 1 such that a?b ≤ c?d
whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1]. Three typical examples of t− norms
are a ? b = min{a, b} (minimum t− norm), a ? b = ab (product t− norm), and
a ? b = max{a+ b− 1, 0} (Lukasiewicz t− norm).

Definition 1.3. [8] The triplet (X,M, ?) is a fuzzy metric space if X is an arbitrary
set, ? is a continuous t-norm, M is a fuzzy set in X2×(0,∞) satisfying the following
conditions:

(FM1) M(x, y, t) > 0;
(FM2) M(x, y, t) = 1 if and only if x = y;
(FM3) M(x, y, t) = M(y, x, t);
(FM4) M(x, y, t) ? M(y, z, s) ≤M(x, z, t+ s);
(FM5) M(x, y, ·) : (0,∞)→ [0, 1] is a continuous mapping;

for all x, y, z ∈ X and s, t > 0.

Here M with ? is called a fuzzy metric on X. Note that, M(x, y, t) can be thought
of as the definition of nearness between x and y with respect to t. It is known that
M(x, y, .) is nondecreasing for all x, y ∈ X. For examples of fuzzy metric spaces we
refer to [18].

2. Fuzzy Metric-Like Spaces

In this section, we define the fuzzy metric-like spaces and give some examples
and properties of fuzzy metric-like spaces.

Definition 2.1. The triplet (X,z, ?) is a fuzzy metric-like space ifX is an arbitrary
set, ? is a continuous t-norm, z is a fuzzy set in X2×(0,∞) satisfying the following
conditions:

(FML1) z(x, y, t) > 0;
(FML2) if z(x, y, t) = 1 then x = y;
(FML3) z(x, y, t) = z(y, x, t);
(FML4) z(x, y, t) ?z(y, z, s) ≤ z(x, z, t+ s);
(FML5) z(x, y, ·) : (0,∞)→ [0, 1] is a continuous mapping;

for all x, y, z ∈ X and s, t > 0.

Here M with ? is called a fuzzy metric-like on X. A fuzzy metric-like space
satisfies all of the conditions of a fuzzy metric space except that z(x, x, t) may be
less than 1 for all t > 0 and for some (or may be for all) x ∈ X. Also, every fuzzy
metric space is fuzzy metric-like space with unit self fuzzy distance, that is, with
z(x, x, t) = 1 for all t > 0 and for all x ∈ X.

Note that, the axiom (FM2) in Definition 3 gives the idea that when x = y the
degree of nearness of x and y is perfect, or simply 1, and then M(x, x, t) = 1 for
each x ∈ X and for each t > 0. While in fuzzy metric-like space, M(x, x, t) may be
less than 1, that is, the concept of fuzzy metric-like is applicable when the degree
of nearness of x and y is not perfect for the case x = y.

By using the following propositions several examples of fuzzy metric-like spaces
can be obtained.
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Proposition 2.2. Let (X,σ) be any metric-like space. Then the triplet (X,z, ?)
is a fuzzy metric like space, where ? is defined by a ? b = ab for all a, b ∈ [0, 1] and
the fuzzy set z is given by

z(x, y, t) =
ktn

ktn +mσ(x, y)
for all x, y ∈ X, t > 0,

where k ∈ R+, m > 0 and n ≥ 1.

Proof. The proof of properties (FML1)-(FML3) and (FML5) are obvious. For
(FML4), let x, y, z ∈ X and a = σ(x, y), b = σ(y, z), c = σ(x, z), then for all
t, s > 0 we know that

c ≤ a+ b ⇒ ktnsnc ≤ k(t+ s)nsna+ ktn(t+ s)nb

⇒ ktnsnc ≤ (t+ s)n [ksna+ ktnb+mab]

⇒ ktnsn [k(s+ t)n +mc] ≤ (t+ s)n [ktn +ma] [ksn +mb]

⇒ ktn

ktn +ma
· ksn

ksn +mb
≤ k(t+ s)n

k(t+ s)n +mc

⇒ z(x, y, t) ?z(y, z, s) ≤ z(x, z, t+ s).

Therefore (FML4) is also satisfied and (X,z, ?) is a fuzzy metric-like space. �

Remark 2.3. Note that the above Proposition holds even with the t-norm a ? b =
min{a, b}.

Remark 2.4. The Proposition 2.2 shows that every metric-like space induces a
fuzzy metric-like space. For k = n = m = 1 the induced fuzzy metric-like space
(X,z, ?) is called the standard fuzzy metric-like space, where

z(x, y, t) =
t

t+ σ(x, y)
for all x, y ∈ X, t > 0.

Example 2.5. Let X = R+, k ∈ R+ and m > 0. Define ? by a ? b = ab and the
fuzzy set z in X2 × (0,∞) by

z(x, y, t) =
kt

kt+m(max{x, y})
for all x, y ∈ X, t > 0.

Then, since σ(x, y) = max{x, y} for all x, y ∈ X, is a metric-like on X (see [12])
therefore by Proposition 2.2, (X,z, ?) is a fuzzy metric-like space, but it is not a

fuzzy metric space, as z(x, x, t) =
kt

kt+mx
6= 1 for all x > 0 and t > 0.

Proposition 2.6. Let (X,σ) be any metric-like space. Then the triplet (X,z, ?)
is a fuzzy metric-like space, where ? is given by a ? b = ab for all a, b ∈ [0, 1] and
the fuzzy set z is defined by

z(x, y, t) = e−σ(x,y)/t
n

for all x, y ∈ X, t > 0,

where n ≥ 1.
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Proof. The proof of properties (FML1)-(FML3) and (FML5) are obvious. For
(FML4), let x, y, z ∈ X and a = σ(x, y), b = σ(y, z), c = σ(x, z), then for all
t, s > 0 we know that

c ≤ a+ b ⇒ c

(t+ s)n
≤ a+ b

(t+ s)n
⇒ c

(t+ s)n
≤ a

tn
+

b

sn

⇒ e
c

(t+s)n ≤ e[
a
tn + b

sn ]

⇒ e[−
a
tn−

b
sn ] ≤ e−

c
(t+s)n

⇒ z(x, y, t) ?z(y, z, s) ≤ z(x, z, t+ s).

Therefore (FML4) is also satisfied and (X,z, ?) is a fuzzy metric-like space. �

Remark 2.7. Note that the above Proposition holds even with the t-norm a ? b =
min{a, b}.

Example 2.8. LetX = R+.Define ? by a?b = ab and the fuzzy set z inX2×(0,∞)
by

z(x, y, t) =
1

emax{x,y}/t , for all x, y ∈ X, t > 0.

Then, since σ(x, y) = max{x, y} for all x, y ∈ X is a metric-like on X (see [12])
therefore by Proposition 2.6, (X,z, ?) is a fuzzy metric-like space, but not a fuzzy
metric space, as z(x, x, t) = 1

ex/t 6= 1 for all x > 0 and t > 0.

Example 2.9. Let X = N. Define ? by a ? b = ab and fuzzy set z in X2 × (0,∞)
by

z(x, y, t) =


x

y3
, if x ≤ y;

y

x3
, if y ≤ x.

Then (X,z, ?) is a fuzzy metric-like space.

Proof. The proofs of properties (FML1),(FML3) and (FML5) are obvious. For
(FML2), let x, y ∈ X, x ≤ y and z(x, y, t) = 1. Then z(x, y, t) = x/y3 = 1, that
is, x = y3. As x ≤ y and x, y ∈ X = N we must have x = y = 1. Similarly, if y ≤ x
and z(x, y, t) = 1, we obtain x = y = 1. Thus, (FML2) is satisfied.
For (FML4), let x, y, z ∈ X, t, s > 0 and we consider the following cases:

(a) Suppose, x ≤ y ≤ z, then z(x, y, t) ? z(y, z, s) = x
y3

y
z3 = x

y2z3 ≤
x
z3 =

z(x, z, t+ s).
(b) Suppose, x ≤ z ≤ y, then z(x, y, t) ? z(y, z, s) = x

y3
z
y3 = xz

y6 ≤
x
z3 =

z(x, z, t+ s).

(c) Suppose, y ≤ x ≤ z, then z(x, y, t) ? z(y, z, s) = y
x3

y
z3 = y2

x3z3 ≤
x
z3 =

z(x, z, t+ s).

(d) Suppose, y ≤ z ≤ x, then z(x, y, t) ? z(y, z, s) = y
x3

y
z3 = y2

x3z3 ≤
z
x3 =

z(x, z, t+ s).

Similarly, for the cases (e) z ≤ x ≤ y and (f) z ≤ y ≤ x one can see that z(x, y, t) ?
z(y, z, s) ≤ z(x, z, t+s). Therefore (FML4) is also satisfied and (X,z, ?) is a fuzzy
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metric-like space. But it is not a fuzzy metric space, as z(x, x, t) = 1
x2 6= 1 for all

x > 1 and t > 0. �

Now we define convergence, Cauchy sequence in fuzzy metric-like spaces and the
completeness of fuzzy metric-like space.

Definition 2.10. A sequence {xn} in a fuzzy metric-like space (X,z, ?) is said to
be convergent to x ∈ X if

lim
n→∞

z(xn, x, t) = z(x, x, t) for all t > 0.

Definition 2.11. A sequence {xn} in a fuzzy metric-like space (X,z, ?) is said to
be Cauchy if lim

n→∞
z(xn+p, xn, t) for all t > 0, p ≥ 1 exists and is finite.

Definition 2.12. A fuzzy metric like spaces (X,z, ?) is said to be complete if
every Cauchy sequence {xn} in X converges to some x ∈ X such that

lim
n→∞

z(xn, x, t) = z(x, x, t) = lim
n→∞

z(xn+p, xn, t) for all t > 0, p ≥ 1.

Remark 2.13. In a fuzzy metric-like space, the limit of a convergent sequence
may not be unique. For instance, for a fuzzy metric-like space (X,z, ?) given in

Example 2.5 with m = k = 1. Define a sequence {xn} in X by xn = 1 − 1

n
for all

n ∈ N. If x ≥ 1 then

lim
n→∞

z(xn, x, t) = lim
n→∞

t

t+ max{xn, x}
= lim
n→∞

t

t+ x
= z(x, x, t)

for all t > 0. Therefore the sequence {xn} converges to all x ∈ X with x ≥ 1.

Remark 2.14. In a fuzzy metric-like space, a convergent sequence may not be
a Cauchy sequence. Consider a fuzzy metric-like space (X,z, ?) given in Remark
2.13. Define a sequence {xn} in X by xn = 1 + (−1)n for all n ∈ N. If x ≥ 2 then

lim
n→∞

z(xn, x, t) = lim
n→∞

t

t+ max{xn, x}
= lim
n→∞

t

t+ x
= z(x, x, t)

for all t > 0. Therefore a sequence {xn} converges to all x ∈ X with x ≥ 2 but it
is not a Cauchy sequence as lim

n→∞
z(xn, xn+p, t) does not exist.

Analogous to [11] we give the following definition.

Definition 2.15. Let (X,z, ?) be a fuzzy metric-like space. A mapping T : X → X
is said to be a fuzzy contractive if there exists k ∈ (0, 1) such that

1

z(Tx, Ty, t)
− 1 ≤ k[

1

z(x, y, t)
− 1] (1)

for all x, y ∈ X and t > 0. Here k is called the fuzzy contractive constant of T.
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3. Fixed Point Results

In this section, we prove some fixed point theorems in fuzzy metric-like spaces.

Theorem 3.1. Let (X,z, ?) be a complete fuzzy metric-like space and T : X → X
a fuzzy contractive mapping with fuzzy contractive constant k, then T has a unique
fixed point u ∈ X and z(u, u, t) = 1 for all t > 0.

Proof. For arbitrary x0 ∈ X, define a sequence {xn} in X by xn = Txn−1 for all
n ∈ N. If xn = xn−1 for some n ∈ N then xn is a fixed point of T. Therefore, we
assume that xn 6= xn−1 for all n ∈ N.

For any n ∈ N and t > 0, we obtain from (1) that

1

z(xn, xn+1, t)
− 1 =

1

z(Txn−1, Txn, t)
− 1 ≤ k[ 1

z(xn−1, xn, t)
− 1].

Setting z(xn, xn+1, t) = zn(t) and 1− k = λ, it follows from the above inequality
that

1

zn(t)
≤ k

zn−1(t)
+ λ, for all t > 0.

From successive applications of the above inequality, we obtain

1

zn(t)
≤ kn

z0(t)
+ kn−1λ+ kn−2λ+ · · ·+ λ

≤ kn

z0(t)
+ (kn−1 + kn−2 + · · ·+ 1)λ

≤ kn

z0(t)
+ 1− kn,

that is, 1
kn

z0(t)
+ 1− kn

≤ zn(t) for all t > 0, n ∈ N. (2)

If n ∈ N, p ≥ 1, then we have

z(xn+p, xn, t) ≥ z(xn, xn+1,
t

2
) ?z(xn+1, xn+p,

t

2
)

≥ z(xn, xn+1,
t

2
) ?z(xn+1, xn+2,

t

22
) ?z(xn+2, xn+p,

t

22
)

≥ z(xn, xn+1,
t

2
) ?z(xn+1, xn+2,

t

22
)

? · · · ?z(xn+p−2, xn+p−1,
t

2p−1
) ?z(xn+p−1, xn+p,

t

2p−1
)

= zn(
t

2
) ?zn+1(

t

22
) ? · · · ?zn+p−2(

t

2p−1
) ?zn+p−1(

t

2p−1
).

Using (2) in the above inequality, we obtain

z(xn+p, xn, t) ≥ 1
kn

z0(
t
2
)
+ 1− kn

?
1

kn+1

z0(
t
22

)
+ 1− kn+1

? · · · ? 1
kn+p−1

z0(
t

2p−1 )
+ 1− kn+p−1

≥ 1
kn

z0(
t
2
)
+ 1

?
1

kn

z0(
t
22

)
+ 1

? · · · ? 1
kn

z0(
t

2p−1 )
+ 1

.
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As, k ∈ (0, 1), therefore using the properties of continuous t-norm we obtain from
the above inequality that

lim
n→∞

z(xn+p, xn, t) = 1 for all t > 0, p ≥ 1.

Therefore {xn} is a Cauchy sequence in (X,z, ?). By completeness of (X,z, ?),
there exists u ∈ X such that

lim
n→∞

z(xn, u, t) = lim
n→∞

z(xn+p, xn, t) = z(u, u, t) = 1 for all t > 0, p ≥ 1. (3)

We show that u is a fixed point of T.
Again, for all t > 0, n ≥ 0, we obtain from (1) that

1

z(Txn, Tu, t)
− 1 ≤ k[ 1

z(xn, u, t)
− 1] =

k

z(xn, u, t)
− k,

that is,
1

k
z(xn,u,t)

+ 1− k
≤ z(Txn, Tu, t).

Using the above inequality we obtain

z(u, Tu, t) ≥ z(u, xn+1,
t

2
) ?z(xn+1, Tu,

t

2
)

= z(u, xn+1,
t

2
) ?z(Txn, Tu,

t

2
)

≥ z(u, xn+1,
t

2
) ?

1
k

z(xn,u, t
2
)
+ 1− k

.

Taking limit as n → ∞ and using (3) in the above inequality we obtain that
z(u, Tu, t) = 1, that is, Tu = u. Therefore, u is a fixed point of T and z(u, u, t) = 1
for all t > 0.

For uniqueness, let v be another fixed point of T. Suppose, z(u, v, t) < 1 for
some t > 0, then it follows from (1) that

1

z(u, v, t)
− 1 =

1

z(Tu, Tv, t)
− 1

≤ k[
1

z(u, v, t)
− 1]

<
1

z(u, v, t)
− 1,

a contradiction. Therefore, we must have z(u, v, t) = 1, for all t > 0, and therefore
u = v. �

The following example illustrates the above theorem.

Example 3.2. Let X = [0, 1]. Define ? by a?b = ab and fuzzy set z in X2×(0,∞)
by

z(x, y, t) =
t

t+max{x, y} , for all x, y ∈ X, t > 0.

Then (X,z, ?) is a complete fuzzy metric-like space. If T : X → X is given by

Tx =

{
0, if x = 1;
x

2
, otherwise.
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Then T is a fuzzy contractive mapping with fuzzy contractive constant k ∈ [ 12 , 1).
Note that all conditions of Theorem 3.1 are satisfied. Moreover, T has a unique
fixed point 0 ∈ X and z(0, 0, t) = 1 for all t > 0. Note that, T is not a fuzzy
contractive mapping with respect to the standard fuzzy metric on X given by

M(x, y, t) =
t

t+ |x− y| for all x, y ∈ X, t > 0.

Indeed, for x = 1, and y =
9

10
there is no k in (0, 1) satisfying

1

M(Tx, Ty, t)
− 1 ≤ k[

1

M(x, y, t)
− 1] for all t > 0.

Therefore the result of Gregori and Sapena (see Theorem 4.4 of [11]) is not appli-
cable to this case.

Corollary 3.3. Let (X,z, ?) be a complete fuzzy metric-like space and T : X → X
a mapping satisfying

1

z(Tnx, Tny, t)
− 1 ≤ k[

1

z(x, y, t)
− 1]

for some positive integer n, and for all x, y ∈ X, t > 0, where k ∈ (0, 1). Then T
has a unique fixed point u ∈ X and z(u, u, t) = 1 for all t > 0.

Proof. From Theorem 3.1, Tn has a unique fixed point u ∈ X and z(u, u, t) = 1
for all t > 0. As Tn(Tu) = T (Tnu) = Tu, so Tu is also a fixed point of Tn and by
uniqueness we have Tu = u. Since the fixed point of T is also a fixed point of Tn,
therefore fixed point of T is unique. �

In the next the theorem we replace the completeness of space by applying an
additional condition on mapping T.

Theorem 3.4. Let (X,z, ?) be a fuzzy metric-like space and T : X → X a fuzzy
contractive mapping with fuzzy contractive constant k. Suppose that there exists
u ∈ X such that z(u, Tu, t) ≥ z(x, Tx, t) for all x ∈ X and t > 0, then u becomes
a unique fixed point of T and z(u, u, t) = 1 for all t > 0.

Proof. Let zx(t) = z(x, Tx, t) for all x ∈ X and t > 0. Then by assumption
zu(t) ≥ zx(t) for all x ∈ X and t > 0. We claim that z(u, Tu, t) = 1 for all t > 0.
Indeed, if zu(t) = z(u, Tu, t) < 1 for some t > 0, then it follows from (1) that

1

zTu(t)
− 1 =

1

z(Tu, TTu, t)
− 1

≤ k[
1

z(u, Tu, t)
− 1] = k[

1

zu(t)
− 1]

<
1

zu(t)
− 1,

that is, zu(t) < zTu(t), Tu ∈ X, a contradiction. Therefore, we have zx(t) =
z(u, Tu, t) = 1 for all t > 0, and so Tu = u. Following the similar argument as
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in Theorem 3.1, uniqueness of fixed point of T follows. If z(u, u, t) < 1 for some
t > 0, then from (1), we have

1

z(u, u, t)
− 1 =

1

z(Tu, Tu, t)
− 1 ≤ k[

1

z(u, u, t)
− 1] <

1

z(u, u, t)
− 1,

a contradiction. Therefore, z(u, u, t) = 1. �

Remark 3.5. In the above theorem it is shown that in a fuzzy metric-like space,
the self fuzzy distance of the fixed point of a fuzzy contractive mapping is always 1,
that is, the degree of self nearness of the fixed point of a fuzzy contractive mapping
is perfect.

Example 3.6. Let X = [0, 1]∩Q. Define ? by a?b = max{a+b−1, 0} (Lukasiewicz
t−norm) and the fuzzy set z in X2 × (0,∞) by

z(x, y, t) = 1− max{x, y}
1 + t

for all x, y ∈ X, t > 0.

Then (X,z, ?) is a fuzzy metric-like space. It is obvious that, (X,z, ?) is not a
complete fuzzy metric-like space. Let T : X → X be a mapping defined by

Tx =

{
x
4 , if x ∈ [0, 12 ] ∩Q;
x
2 , if x ∈ ( 1

2 , 1] ∩Q.

Then T is a fuzzy contractive mapping with fuzzy contractive constant k ∈ [ 12 , 1).
Note that, z(0, T0, t) = 1 ≥ z(x, Tx, t) for all x ∈ X and t > 0. Thus, all the
conditions of Theorem 3.4 are satisfied and 0 is the unique fixed point of T and
z(0, 0, t) = 1 for all t > 0.

Let (X, ρ) be a metric-like space and (X,z, ?) be the induced standard fuzzy
metric-like space. Suppose (X,z, ?) has an additional property that lim

t→∞
z(x, y, t) =

1 for all x, y ∈ X. In the next theorem we investigate the existence and uniqueness
of fixed point of mapping with a different contractive condition in such spaces.

Theorem 3.7. Let (X,z, ?) be a complete fuzzy metric-like space such that

lim
t→∞

z(x, y, t) = 1

for all x, y ∈ X and T : X → X a mapping satisfying the condition

z(Tx, Ty, αt) ≥ z(x, y, t) (4)

for all x, y ∈ X, t > 0, where α ∈ (0, 1). Then T has a unique fixed point u ∈ X
and z(u, u, t) = 1 for all t > 0.

Proof. For arbitrary x0 ∈ X. Define a sequence {xn} in X by xn = Txn−1 for all
n ∈ N. If xn = xn−1 for any n ∈ N, then xn is a fixed point of T. We assume that
xn 6= xn−1 for all n ∈ N. For any n ∈ N and t > 0 we obtain from (4) that

z(xn, xn+1, t) = z(Txn−1, Txn, t) ≥ z(xn−1, xn,
t

α
).

Setting z(xn, xn+1, t) = zn(t) and repeating the above process we obtain

zn(t) ≥ z0(
t

αn
) for all t > 0, n ∈ N. (5)
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If n ∈ N, p ≥ 1, then we have

z(xn+p, xn, t) ≥ z(xn, xn+1,
t

2
) ?z(xn+1, xn+p,

t

2
)

≥ z(xn, xn+1,
t

2
) ?z(xn+1, xn+2,

t

22
) ?z(xn+2, xn+p,

t

22
)

≥ z(xn, xn+1,
t

2
) ?z(xn+1, xn+2,

t

22
)

? · · · ?z(xn+p−2, xn+p−1,
t

2p−1
) ?z(xn+p−1, xn+p,

t

2p−1
)

= zn(
t

2
) ?zn+1(

t

22
) ? · · · ?zn+p−2(

t

2p−1
) ?zn+p−1(

t

2p−1
).

Using (5) in the above inequality we obtain

z(xn+p, xn, t) ≥ z0(
t

2αn
) ?z0(

t

22αn+1
) ? · · · ?z0(

t

2p−1αn+p−1
).

As α ∈ (0, 1) and lim
t→∞

z(x, y, t) = 1 for all x, y ∈ X, so using the properties of

continuous t-norm we obtain from the above inequality that

lim
n→∞

z(xn+p, xn, t) = 1 for all t > 0, p ≥ 1.

Therefore {xn} is a Cauchy sequence in (X,z, ?). By completeness of (X,z, ?)
there exists u ∈ X such that

lim
n→∞

z(xn, u, t) = lim
n→∞

z(xn+p, xn, t) = z(u, u, t) = 1 for all t > 0, p ≥ 1. (6)

We now show that u is a fixed point of T. To prove this, we proceed as follows:
For all t > 0, n ≥ 0, we obtain from (4) that

z(u, Tu, t) ≥ z(u, xn+1,
t

2
) ?z(xn+1, Tu,

t

2
)

= z(u, xn+1,
t

2
) ?z(Txn, Tu,

t

2
)

≥ z(u, xn+1,
t

2
) ?z(xn, u,

t

2α
).

Taking limit as n → ∞ and using (6) in the above inequality we obtain that
z(u, Tu, t) = 1. Therefore, u is a fixed point of T and z(u, u, t) = 1, for all t > 0.

For uniqueness, let v be another fixed point of T. Using (4) we obtain

z(u, v, t) = z(Tu, Tv, t) ≥ z(u, v,
t

α
),

that is,

z(u, v, t) ≥ z(u, v,
t

α
) for all t > 0.

As the above inequality holds for all t > 0, we obtain

z(u, v, t) ≥ z(u, v,
t

αn
) for all n ∈ N.

Taking limit as n → ∞ and using the fact that lim
t→∞

z(x, y, t) = 1 for all x, y ∈ X
it follows that z(u, v, t) = 1, so u = v. �
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Next example shows that the condition lim
t→∞

z(x, y, t) = 1 for all x, y ∈ X in

Theorem 3.7 is not superfluous.

Example 3.8. Let X = {0, 1} and c > 2 be a fixed number. Define ? by a ? b =
max{a+ b− 1, 0} (Lukasiewicz t−norm) and the fuzzy set z in X2 × (0,∞) by

z(1, 0, t) = z(0, 1, t) = 1− 1

c
,z(0, 0, t) = z(1, 1, t) = 1− 2

c
.

Then (X,z, ?) is a complete fuzzy metric-like space. Let T : X → X be a mapping
defined by

T0 = 1, T1 = 0.

Then, all the conditions of Theorem 4, except lim
t→∞

z(x, y, t) = 1 for all x, y ∈ X
are satisfied with arbitrary α ∈ (0, 1). Note that T has no fixed point in X.
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