VI.1
Conceptual technical approach collage of materiality disintegration
(Author 2014)
CHAPTER VI

TECHNICAL SPECTACLE

technical resolution
THE TECHNICAL SPECTACLE PRESENTED IN CHAPTER VI WILL SERVE AS THE INVESTIGATION OF THE TECHNICAL AND PROGRAMMATIC REQUIREMENTS OF THE ENCLOSURE DESIGN INTERVENTION.
6.1 Introduction

Technical strategies were developed to give expression to the palimpsest concept on-site. Special attention ought to be given to specific detailing elements when considering the overall concept of this dissertation. Materials were carefully selected throughout the enclosure to interpret the palimpsest and the character of the zoo.
VI_2. Conceptual representation of the technical spectacle (Author 2014).
6.2 Vervet monkey

The vervet monkey was chosen as the primary client for the proposed enclosure. The pragmatic requirements and zoo husbandry is therefore an important consideration for the design enclosure intervention. The study has simplified the life history universe as described in Chapter III to fit the daily activities of the monkey in terms of their eating, sleeping, resting and nesting habits (refer to figure VI.2 on page 232). The selected species will therefore inform decisions, such as the planting pallet, moat wetland design, general material selection and the ecological approach of the enclosure design.
1. Vervet monkey

Chlorocebus pygerythus

Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Cercopithecidae
Genus: Chlorocebus
Species: C. pygerythrus

Weight
(m) 4.5kg
(f) 3.3kg

Height
height: 46-66cm

Habitat
Savannah and woodland edge, near water.

Status
least concerned

Feeding

1. *Acacia erioloba* — seeds and pods
2. *Alba epp* — nectar (flowers)
3. *Caesalpinia pulcherrima* — nectar (flowers)
4. *Celtis africana* — fruit
5. *Deinbollia oblongifolia* — fruit
6. *Euphorbia ingens* — fruit
7. *Euphorbia tirucalli* — fruit
8. *Ficus abutiloides* — figs
9. *Ficus carica* — figs
10. *Ficus sycomorus* — figs
11. *Gossia australis* — fruit
12. *Harpephyllum caffrum* — fruit
13. *Hyphaene coriacea* — fruit
14. *Protorhus longifolia* — fruit
15. *Sclerocarya birrea* — fruit
16. *Schoenocaulon coriaceum* — soft parts of the flowers
17. *Strelitzia nicolai* —

Resting

Travelling, Feeding
Feeding, Resting, Grooming
monkeyland

The world’s first free-roaming multi-species primate sanctuary, Plettenberg Bay, Western Cape

12 hectare forest
550 primates total
6m high fence + 1m of live wires

primate kingdom

Singapore Zoo

Primate Kingdom is made of six large and two small man-made islands planted with tall trees, wild grasses, palms and bamboos. It boasts several collection of attractive primate species such as the lion-tailed macaques, patas monkeys, playful bunch of brown capuchins, docile-looking Celebes crested macaques, douc langurs, black spider monkeys and golden-lion tamarins.

Its landscape was carefully designed to ensure there are ample spaces for each animal, not to mention the need for the primates to feed themselves from the trees.
Water will form a critical part of the proposed enclosure. The use of water will influence the ecology and pragmatic requirements of the enclosure design. Water will form the barrier of the enclosure and become an essential component of habitat creation. The water body will consist of smaller components and will be discussed in the following paragraphs.

6.1.1 Stream

A proposed stream will serve as an important ecological component of the design. In order to apply the vision encapsulated in Marais’s quote, the purification of the water therefore becomes an important aspect. The topography will also be manipulated by means of gravity in order for the stream to flow. Figure VI_11 on page 239 illustrates the process of purification and of the moat.

6.1.2 Moat

The proposed moat is not only to serve as a functional barrier but bleeds as an ecological filter into both the proposed and adjacent enclosures. The moat itself will induce habitat creation and will be inhabited by birds, antelope, insect and other aquatic life. Fig. x illustrates the water purification process of the moat and the pragmatic requirements of the moat as barrier.
The proposed ecosystem will be supported by habitat functions. The enclosure will provide a refuge and habitat to plants and animals, thereby contributing to the conservation of biological and genetic diversity and evolutionary processes. The enclosure will replicate the vervet monkey’s habitat, specifically in context of Pretoria vegetation typologies and the site selection adjacent to the Apies River. The existing Celtis trees on-site form the basis of a historical Celtis forest replication and connect to the habitat functions of the vervet monkeys as well as other species that will not be a threat to the monkeys. The habitat will contribute to the conservation of biological, genetic diversity and evolutionary processes. A selective choice of species was made to share the enclosure with the vervet monkeys. The species include the bat-eared fox, steenbok, klipspringer, brown rabbit, leopard tortoise, the South African hedgehog, grey reedbuck, the secretary bird, the blue crane and other bird and aquatic species. Figures VI_7 on page 237 shows similar species from the NZG Guide from 1960.
Wetland moat

1. Water supply from Apies river borehole
2. Moat fills to indicated water level
3. Water circulated/aerated with nozzles
4. Emergency supply reservoir to provide for evaporation loss
5. Overflow into river during flood event
VI. Technical spectacle

 existing Apies river

 barrier

 enclosure regulations

 “river” moat

 ecosystem

Detail: wetland moat
preliminary detail design of wetland moat barrier

VI.12. Detail design of preliminary detail wetland moat (Author 2014).
VI: Technical spectacle

The design experience aims to provide sensory and haptic qualities that will reconnect the zoo visitor with the animal and its habitat. The beauty, as described by Meyer, will be unveiled throughout the design to stimulate the user’s senses. Materiality is therefore an important design consideration when building landscape experiences in subtle and unique ways.

The visitors rely on all their senses to identify opportunity for interaction with the animal. Hence the need exists for active comparative identification so that one can exploit conservation and cultural messages throughout the landscape design.

The material palette is carefully selected to celebrate the existing character of the historical cages by means of material choices on-site. The technical approach will induce an analogy with the proposed elements in relation to the old materials. The material choices will contribute to the narrative of the enclosure route and extend to properties, such as weathering and seasonality. The narrative will commence at a confined cage-like character, dissolving towards lighter materials and finally release into natural spaces. Mild steel plates, steel rods, reinforcement bars, concrete and timber will be typical materials used in different ways to strengthen the transition and haptic quality of the enclosure experience. The contemporary zoo materials will also be implemented where specific views must be acknowledged. A skywalk circulation tunnel and tower will attempt to serve as an extruded experience for both man and animal.

© University of Pretoria
6.1.3 Mild steel plates

The dynamic beauty principle requires a material that changes over time, just as the planting palette will differ with season changes. The proposed mild steel plates will be allowed to weather over time and adapt to the appearance of dynamic changes through time. The staining caused by corrosion will be channelled in such a way that it selectively allows for stains to occur on the concrete at certain points and complement the dynamic beauty intention.

6.1.4 Steel rods and reinforcement bars

Steel rods and reinforcement bars will be used as aesthetical and functional elements within the enclosure. The rods and reinforcement bars will strengthen the cage-like narrative within the enclosure and provide opportunity for a haptic and transitional experience.

6.1.5 Mesh

The proposed enclosure canopy will consist of a transparent grid structure made of stainless steel rope from Jakob® INOX LINE series. The Jakob® INOX LINE webnet has a skin-like appearance of a diaphragm. The mesh will form a simplistic surface but can also be tensioned into three-dimensional forms featuring funnel-type, cylindrical or spherical shapes. It is therefore an ideal material to use within the enclosure. The mesh has a translucent appearance and is weather-resistant and non-corrodible.

The mesh is 1mm thick and strung in a 30mm diamond pattern, the webnet mesh breaks down the visual barriers between inside and outside. Due to its transparency and flexibility, the mesh can cover large areas of the design. The mesh will be implemented over all walkways and the arrival space, and act as a barrier for the general communal areas.

6.1.6 Surface finishes

The surface finishes of the walkways on ground level will be constructed with steel reinforcement bar. The intention will be to expose the ‘natural’ surface underneath the walkways and contribute to the interface between the visitor and the landscape.
6.6 **Movement**

The experience through the enclosure is dependent on the intended stratification of the design. The general movement of the design therefore circulates the visitor from as many levels as possible. The visitor will experience the enclosure from below the ground right through to the tree canopy level.

The design aims to provide inclusive access across the entire site. The SANS 10400-S:2014 guidelines will therefore influence the walkway and ramp decisions. The design will therefore adapt a 1:15 gradient on all ramped areas with a minimum of 1200mm landing space.
According to the Sustainable Sites Initiative (SSI) ecosystem processes involving the interaction of living elements, such as vegetation and soil organisms, and non-living elements, such as bedrock, water and air, have many direct and indirect benefits to humans (www.sustainablesites.org 2014).

The SSI suggests that a design should implement ecosystem processes in order for a sustainable site to strive, protect or regenerate sustainable land development and management practices.

In order to sustain such practice, a site-specific planting palette was investigated to reinstate an appropriate endemic community. The planting palette includes the establishment of a woodland habitat relating to the local climate and site conditions. The chosen plant species will provide feeding opportunities and attract the maximum number of species.

Sufficient light, a suitable growing medium, nutrients, irrigation, survival ability, grazing, browsing and other animal impacts are some of the basics requirements for vegetation choices within the enclosure. Plants are selected to accentuate their natural appearance and be planted in mixed communities.

Nevertheless, this proposed strategy will require management practices to overcome the wear and tear generated by the animals within the habitat. An adequate period of time will be allowed (minimum 4 to 6 months) for plant species to ensure sufficient plant growth and establishment.
Habitat

The community is divided into the three habitats that correlate with the habitat of the vervet monkey species and the existing Apies River habitat. The habitats include wetland, riparian and woodland ecologies. The plant strategy choices are therefore further categorised according to these three introduced habitats. These specified species occur mostly in the form of vegetated strips throughout the site and create spaces and places for ecological emergence. Biological processes, social interactions and recreational activities of both man and animal will still remain as important factors of the design.

The introduction of the stream, wetland and woodland typologies into the enclosure aims to improve the biodiversity. Wildflowers, grass, birds and insect species will inhabit the enclosure and form part of the ecological processes.

Current conditions:

Woodland Community

This Woodland Community habitat established by Grobler et al. (2002) generally occurs on gradual to moderate steep slopes and consists of aspects of hills, ridges and granite boulders. The Woodland Community is common to occur along rivers in lower lying areas in the Pretoria vicinity. The vegetation typology presented within the Woodland Community will be introduced to the enclosure to support the woodland ecology of the vervet monkey habitat.

Vervet monkey feeding

The vervet monkey is an omnivorous animal. Their diet consists of both plant matter and other smaller animal species in order to get the nutrition they need to survive. Leaves and young shoots make up the bulk of the vervet monkey’s diet, along with tree bark, flowers and fruits that can be found in the trees surrounding them. The monkeys forage for food on the ground, such as roots, bulbs, seeds, grasses and small arthropods. The final addition to the plant strategy will provide a habitat for the dietary needs of the vervet monkey. The vegetation introduced to the enclosure will aim to sustain the vervet monkeys during most of the year, especially during the summer months.
3. Planting strategy

trees

tall trees:
- Celtis africana
- Ficus sur (4)
- Harpephyllum caffrum (6)
- Sclerocarya birrea
- Searsia pyroides var. pyroides

shrubs:
- Asparagus horstii (4)
- Cormuse occidentalis (6)
- Buddleja salicina (6)
- Searsia pyroides var. pyroides

other:
- Strelitzia nicolai
- Hyphaene coriacea

wetland

mix 1:
- Setaria megaphylla (6)
- Juncus kraussii (6)
- Cyperus prolifer (6)
- Stiun repandum (6)
- Eragrostis plana (6)

mix 2:
- Nymphaea rhombica (6)
- Nymphaea moonbahi (6)
- Mentha aquatica (6)

riparian

mix 1:
- Asparagus larizicus
- Scadoxus panicus
- Setaria megaphylla
- Paniunum maximum

mix 2:
- Hibiscus cattley港澳
- Hypoestes aristata
- Setaria megaphylla
- Jasminum multipartitum

riverine/woodland

mix 1:
- Vernonia ulicocephala
- Clematis brachiaata
- Phyllanthus reticulatum
- Zantedeschia aethiopica
- Blechnum tabulare

river

Author 2014
Conceptual preliminary planting plan (Author 2014).
Resultant specie list:

Trees
- Celtis africana (c)
- Scleria lanrea (c)
- Acacia caffra (c)
- Combretum molle (c)
- Combretum erythrophyllum (w) (c)
- Scleria leptocarpa (w)
- Zanthoxylum capense (w)
- Ulex mitis (c)
- Calophaespernum wallaceae (a)
- Ficus sur (a) (f)
- Harpephyllum caffrum (a)
- Scleria chlorophylla (a) (r)
- Scleroarya birrea (a)

Shrubs
- Enecia cripa subsp. cripa (c)
- Pernetta gardnerifolia var. gardnerifolia (c)
- Buddleja saligna (c)
- Oloa euripus subsp. africana (c)
- Rhamnus prinoides (a) (w)
- Buddleja sathisffolia (c)
- Scleria pyrooides var. pyrooides (c)
- Asparagus cooperi (c)
- Ceraria occidentalis (a)

Herb
- Hypoestes aristata
- Hibiscus calyphyllus (w)
- Phyllanthus reticulatus (a) (r)
- Vernonia oligocephala (g)
- Clematis brachiata (g)

Graminoids
- Melinis nerviglumis (g)
- Oenopagon scoparius (g)
- Themeda triandra (g)
Wetland
- Setaria megalophylla (s)
- Juncus kraussii (s)
- Cyperus profilfer (s)
- Nympheoides rhombicirrhosa (wl)
- Nymphoides nucula (wl)
- Eragrostis plant (s)
- Mentha aquatica (wl)
- Sium repandum (wl)
- Vadiamemia aestiviflora (wl)
- Phragmites australis (wl)
- Camarosa perennis (s)
- Marsilea schelpiana (wl)
- Limosella major (r)
- Isolastrum profilfer (s)
- Encomis antumnalis (wl)
- Falcária oblongata (r)
- Cornus stigmate virgaturn (s)

Succulents
- Euphorbia ingens (a)
- Euphorbia tirucalli (r) (a)

Other
- Hyphaene coriacea (a)
- Spathiphyllum floribunda (a)
- Zantedeschia aethiopica (h)
- Blechnum tabulare (h)

Key: (c)- community; (w)- woodland; (e)- existing; (r)- riverine; (a)- monkey feeding plant; (wl)- wetland; (g)- grass; (s)- sedge; (h)- historical
4. Enclosure entrance

VI_20. Bell-lloc winery, RCR Arquitectes (Archdaily 2014)

VI_22. Jakob Inox mesh (Jacobinox 2012)

VI_23. Design development: entrance ramp and monkey space excavation (Author 2014).

© University of Pretoria

VI_27. Technical development: view to rhino enclosure (Author 2014).

rhino enclosure

giraffe enclosure

underground tunnel

rhino viewing space

moat water

tunnel underneath moat

© University of Pretoria
Detail: entrance tunnel
detail design of entrance tunnel into enclosure (not to scale)
250mm x 115mm x 10mm mild steel plate @ 100mm intervals mounted and fixed to steel channel profile

150mm x 50mm Taper Flange Steel Channel @ 300mm intervals mounted fixed to soil nail

6 Light 12V-10W Wall White Led 314 Outdoor light fixed to exposed aggregate surface, sandblasted finish

100mm temporary electric aggregate facing

200mm x 2mm welded wire mesh level agent

10mm compact bonded permanent facing

4 bars x 500mm M12 Thread flat soil anchor wall @ 1300mm intervals

200mm wall faces shaped and composed around concrete facings with growing medium to landscape architect’s specification
Detail: entrance ramp

detail design of entrance ramp into existing cage (not to scale)
VI. Technical specifications

5. Ground level walkway

VI_32. Puffadder walkway, Babylonstoren, Patrice Taravella (Dezeen 2014).

VI_34. Puffadder walkway, Babylonstoren, Patrice Taravella (Dezeen 2014).

VI_36. Les fleurs maudites, Charlotte Trillaud (Domusweb 2014).

VI_35. Material pallet of walkway (Author 2014).

© University of Pretoria
Detail: ground level walkway

detail design of ground level walkway (not to scale)
6. Skywalk

VI_37. Eggum Lofoten, Snohetta Architects (Archdaily 2007)

VI_38. Kirstenbosch "boomslang" canopy walkway Mark Thomas Architects (Archdaily 2007)

VI_39. The Saxon Boutique Hotel walkway (Classicafrica 2010)

VI_40. Material pallet of skywalk (Author 2014)
Detail: skywalk
detail design of skywalk (not to scale)
6. Furniture

Detail: bench on skywalk

detail design of bench (not to scale)

120mm x 80mm Rhino Modified Timber slat @ 500mm intervals fixed to custom galvanised steel bracket with oil based finish.

8mm dia. Universal end not added to custom shaped frame @ 500mm intervals with 10mm spaces between timber slats.

8mm x 80mm x 450mm Mild steel base plate added to circular tube frame as support to timber structure.

70mm dia. Mild steel hollow section frame custom shaped according to bench requirements as shown on sketch plan.

252mm wide x 10mm thick Custom designed mild steel bracket @ 2000mm intervals as required by bench size layout.

500mm x 500mm x 8mm Mild steel base plate @ 2000mm intervals fixed to circular hollow section frame.
Detail: bench and dustbin

Detail design of bench and dustbin (not to scale)
Zoo landscape sustainability

According to Thayer (1994: 317), ‘the goal of sustainable landscapes is the transformation of culture – the taming of technology, the emergence of a new environmental ethics, a new measure of life quality and a substantially broadened sense of community, including not only humans but all life’.

With hundreds of people visiting the NZG, the NZG can influence visitors by example. The enclosure will therefore aim to design a landscape that encourages natural plant succession, the demonstration of wildlife conservation, and regional resource collaboration. The enclosure will produce oxygen, collect storm water and recycle waste, while creating a habitat for humans and animals. The enclosure will interpret sustainable design principles by responding to the local climate, culture, planting and animal requirements. This will result in a rich diversity of new design principles for the design enclosure.

The sustainable use of water is a global issue that zoos need to address. A well-designed exhibit can set an example for the public and designers of the zoological milieu. The plant selection and horticultural practices can reduce the requirements for ongoing irrigation. The design will therefore aim to include endemic vegetation and proper soil preparation. Composting programmes, such as collecting animal manure produced on a daily basis, must also be implemented.

In conclusion, the sustainable principles implemented within the enclosure will aim to reduce the water demand, act as a filter, reduce storm-water runoff, provide wildlife habitat, reduce energy consumption, improve air quality, improve human health and increase outdoor recreational opportunities (www.sustainsites.org 2014).
6.1.13 **Sustainability rating**

The Sustainable Sites Initiative (SSI) tool was used to generate a sustainability rating for the proposed vervet monkey enclosure. The prerequisites and credits are organised into nine sections that are based on the process of site development. The vervet monkey enclosure achieved the following ratings:

- Site context: 10/13
- Pre-design assessment and planning: 3/3
- Site design – water: 22/23
- Site design – soil and vegetation: 40/40
- Site design – Material selection: 33/42
- Site design – human health and well-being: 28/30
- Construction: 13/17
- Operations and maintenance: 19/22
- Education and performance monitoring: 11/11
- Innovation or exemplary performance: 6/9

The design achieved an overall rating of 185/200, which classifies it as a platinum-rated project.
VI_42
Conceptual "Apes" habitat
vision (Author 2014)
The concluded enclosure

The concluded enclosure has multiplied, overlapped and implemented the difference design experience strata on various scales through different rhythms. The incremental moments of monkey and human interaction has revealed, enabled and regerated a temporal and dynamic ecology. The enclosure revived the romantic Apies River described by Eugene Marais, while simultaneously creating habitat en evoking visitor emotion. The final design response redefined the threshold between man and animal through reconfiguration and spatial manipulation. The study proved that a zoological enclosure can provide experience and beauty to the user without compromising the animal exhibited, the natural dignity of the habitat, or finally, the character of the zoological garden.
Figures

I_1. Bruegel's two monkeys painting by Pieter Bruegel the Elder (Bibliokept 2012). 8
I_4. NZG within the Tshwane metropolitan (Author 2014). 24
I_5. Location of NZG in context of CBD of Pretoria (Author 2014) 26
I_6. Aerial photographic of site location (Author 2014). 28
I_7. Conceptual analogy of chapter overview (Author 2014). 33
I_8. Location of NZG in context of Pretoria, current and historical (Author 2014). 36
I_9. Diagrammatic representation of methodological approach (Author 2014). 38
II_1. The Lion-Trainers, 1985, by José Garcia y Màs (Baratay 2002). 42
II_2. Timeline of history of zoological gardens compared to the history of landscape architecture (Author, 2014). 52
II_3. Hamburg Zoological Garden; Carl Hagenbeck Zoo; Nordland Panorama (Zeno 1911). 53
II_4. Zoo as conservation centre (National Geographic, 2000). 54
II_5. Orang-utang imitating children (Griatte, 1997). 56
II_6. Historical map of NZG, (NZG, 1920). 58
II_7. Map Plan of Developed Zoological Gardens, north and south of the Apies river (department of public works 1967) 60
II_8. Spatial manifestation of how we look at animals adapted from Jeffe (1969) (Author 2014). 61
III_2. Composite Landscapes: Photomontage by John Stezaker (land8 2013) 70
III_3. Nelson Byrd Woltz’s Biobhabitats: weir system 78
III_4. Nelson Byrd Woltz’s Biobhabitats: water channel 78
III_5. Nelson Byrd Woltz’s Biobhabitats: water inlet (Woltz, 2009) 80
III_6. Patios de los Naranjos in Seville: irrigation as art (Treib 1999) 83
III_7. Patios de los Naranjos in Seville: top view of courtyard and cathedral (Treib 1991) 83
III_8. Human condition intertwined with the natural landscape. Adapted from Hargreaves landscapes' Crissy field park (Author 2014). 84
III_9. Natural process in form of art. Interpretation of Hargreaves landscape (Author 2014). 84
III_11. Constructing landscapes that refine landscape and engage culture adapted from PWP Landscape architecture (Author 2014). 85
III_13. Crissy Field Park by Hargreaves associates integrates a diversity of recreational uses with a vigorous and dynamic environment. (Hargreaves 2001) 88
III_14. Stratagem II synopsis (Author 2014) 89
III_15. Photograph showing reflection of Author and primate cage (Author 2014). 90
III_16. Conceptualizing the life history composite of the animal (Author 2014) 93
III_17. Conceptualizing the life history volume of the animal. (Author 2014) 94
III_18. Understanding the in situ life history of the animal (Author 2014) 95
III_19. Displacement of the life history volume (Author 2014) 96
III_20. Modification of an animal's life history universe to remove fitness depressing events (Author 2014) 97
III_21. Spatial compression of the life history universe (Author 2014) 98
III_23. Unzoo versus Zoo , adapted from Jon Coe (Author 2014) 102
III_24. Coercion to cooperation: The evolution in zoo design towards the Unzoo (Author 2014). 105
III_26. Illustration of Landscape immersion aims to bring animals and guests within their natural environment habitat or landscape. Animals are separated by woven fences and people move through sky walks thus allowing as much space as possible for animals and the best views for people. 108
IV_1. Barrier analysis in the NZG of the confined experience (Author 2014) 131
IV_2. Barrier analysis in the NZG (Author 2014) 140
IV_3. Analysis of existing enclosures on site: catalogue, biomes and functions (Author 2014). 138
IV_4. Circulation strategies: With Hierarchy, central main loop- this is typical for zoos that provide a traditional activity (Author 2014, adapted from Harrison 2007). 136
IV_5. Circulation strategies: Without Hierarchy - not efficient and quite often is an unpleasant experience. It is easy to be disoriented, one can become lost, and one can, as a result, miss many worthwhile animal exhibits (Author 2014, adapted from Harrison 2007). 136
IV_6. Site analysis and implications of topography, hydrology and climate (Author 2014). 134
IV_7. Circulation strategies: Without Hierarchy - not efficient and quite often is an unpleasant experience. It is easy to be disoriented, one can become lost, and one can, as a result, miss many worthwhile animal exhibits (Author 2014, adapted from Harrison 2007). 136
IV_8. Circulation strategies: With Hierarchy, central main loop- this is typical for zoos that have an icon in the middle, such as a lake or a heritage structure, or a space that provides a traditional activity (Author 2014, adapted from Harrison 2007). 136
IV_9. Circulation strategies: With Hierarchy, multiple loops- he visitors can select the zones they wish to visit and the sequence of visitation depending on the time and energy (Author 2014, adapted from Harrison 2007). 136
IV_10. Analysis of existing enclosures on site: catalogue, biomes and functions (Author 2014). 138
IV_11. Barrier analysis in the NZG (Author 2014) 140
IV_12. Barrier analysis in the NZG of the confined experience (Author 2014) 141
VI_60. Conceptual intention: skywalk (Author 2014). 208
VI_63. Conceptual intention: skywalk (Author 2014). 208
VI_64. Conceptual intention: moat (Author 2014). 208
VI_65. Seamless water body: moat (Author 2014). 208
VI_67. Reconfiguration of old cages (Author 2014). 209
VI_68. Conceptual sketch plan development (Author 2014). 209
VI_70. Conceptual intention: Skywalk (Author 2014). 209
VI_71. Conceptual development: moat edge (Author 2014). 210
VI_72. Conceptual development: connection (Author 2014). 210
VI_73. Conceptual development: Apies river palimpsest (Author 2014). 211
VI_74. Sketch plan: Technical drawing of design response of primate enclosure (Author 2014). 212
VI_75. Sketch plan: final proposed design response of primate enclosure (Author 2014). 213
VI_76. Sectional elevation a-a: proposed response of enclosure entrance (Author 2014). 214
VI_77. Conceptual technical approach collage of materiality disintegration (Author 2014). 216
VI_78. Conceptual preliminary planting plan (Author 2014). 237
VI_80. Eggum Lofoten, Snohetta Architects (Archdaily 2007) 240
VI_81. Observation tower conceptual design (Author 2014). 246
VI_82. Observation Tower / ARHIS (Archdaily 2010) 246
VI_83. The Saxon Boutique Hotel walkway (Classicafrica 2010) 246
VI_84. Roofing system of prize winning hotel in France (Archdaily 2011) 246
VI_85. Puffadder walkway, Babylonstoren, Patrice Taravella (Dezeen 2014). 244
VI_86. Observation tower at Veche Riverbank / Ateliereen Architecten (Archdaily 2012) 246
VI_87. Observation Tower / ARHIS (Archdaily 2010) 246
VI_88. Roofing system of prize winning hotel in France (Archdaily 2011) 246
VI_89. Kirstenbosch "boomslang" canopy walkway Mark Thomas Architects (Archdaily 2007) 248
VI_90. Material pallet of skywalk (Author 2014) 248
VI_91. Material pallet of skywalk (Author 2014) 248
VI_92. Material pallet of skywalk (Author 2014) 248
VI_93. Eggum Lofoten, Snohetta Architects (Archdaily 2007) 248
VI_94. Eggum Lofoten, Snohetta Architects (Archdaily 2007) 248
VI_95. Eggum Lofoten, Snohetta Architects (Archdaily 2007) 248
References

Graetz, M. 1995. The role of architectural design in promoting the social objectives of zoos a study.

dankie Here vir tydsbestuur, energie en moed
dankie Wouter vir kwaai wees en liefde
dankie Adine vir huil en lag
dankie Hugo vir koffie en ontbyt op jou
dankie mamma en pappa vir ondersteuning en geduld
dankie Prof. Vosloo vir struikel en sukses
dankie Johan vir drome
dankie Arthur vir grensoortreding
dankie Graham vir rigting
dankie aan almal wat n boompie, mannetjie of sirkeltjie geplak het

wat n onvergeetlike jaar