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Abstract 

Woody vegetation cover affects several ecosystem processes including carbon and water cycling, 

energy fluxes, and fire regimes. In order to understand the dynamics of savanna ecosystems, 

information on the spatial distribution of woody vegetation over large areas is needed. In this study we 

sought to assess multi-temporal ALOS PALSAR L-band backscatter to map woody cover in southern 

African savannas. The SAR data were acquired from the JAXA archive, covering various modes and 

seasons between 2007 and 2010. We used high resolution airborne LiDAR data as reference data to 

interpret SAR parameters (including backscatter intensities and polarimetric decomposition 

components), to develop SAR-based models as well as to validate SAR-based woody cover maps. The 

LiDAR survey was carried out in April 2008 with the Carnegie Airborne Observatory (CAO, 

http://cao.ciw.edu). The highest correlations to the reference data were obtained from SAR 

backscatters of the dry season, followed by the wet season, and the end of the wet season. The volume 

components from polarimetric decompositions (Freeman-Durden, Van Zyl) were calculated for the end 

of wet season, and showed similar correlations to the LiDAR data, when compared to cross-polarized 

backscatters (HV). We observed increased correlation between the SAR and LiDAR datasets with an 

increase in the spatial scale at which datasets were integrated, with an optimum value at 50 m. We 

modeled woody cover using three scenarios: (1) a single date scenario (i.e., woody cover map based on 

a single SAR image), (2) a multi-seasonal scenario (i.e., woody cover map based on SAR images from 

the same year and different seasons, based on key phonological difference), and (3) a multi-annual 

scenario (i.e., woody cover map based on SAR data from different years). Predicted SAR-based woody 

cover map based on Fine Beam Dual Polarization dry season SAR backscatters of all years yielded the 

best performance with an R² of 0.71 and RMSE of 7.88%. However, single dry season SAR 

backscatter achieved only a slightly lower accuracy (R²=0.66, RMSE=8.45%) as multi-annual SAR 

data, suggesting that a single SAR scene from the dry season can also be used for woody cover 

mapping. Moreover, we investigated the impact of the number of samples on the model prediction 

performance and showed the benefits of a larger spatially explicit LiDAR dataset compared to much 
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smaller number of samples as they can be collected in the field. Collectively, our results demonstrate 

that L-band backscatter shows promising sensitivity for the purposes of mapping woody cover in 

southern African savannas, particularly during the dry season leaf-off conditions. 

Keywords: L-band, backscatter, ALOS PALSAR, savanna, woody cover, Carnegie Airborne 

Observatory, LiDAR, seasonality 

 

1. Introduction 

In the age of accelerating global change the ability to measure changes in the Earth’s ecosystems is 

crucial. This is especially needed in African savannas, which are predicted to be heavily affected by 

climate and land use changes (Marchant 2010; Sankaran et al. 2005). Due to the simultaneous 

occurrence of patches of trees, shrubs and grasses (Scholes and Archer 1997) and pronounced seasonal 

variations driven by water availability (Venter et al. 2003), savannas are very heterogeneous, dynamic 

and sensitive ecosystems. Changes in air temperature and precipitation intensities may have a 

significant impact on the tree-grass balance (e.g., Kulmatiski and Beard 2013) as may increasing 

atmospheric CO2 (Buitenwerf et al. 2012). A shift in this balance can cause a conversion of savannas 

into forests or grasslands (Sankaran et al. 2004), that would impact severely on biodiversity and the 

livelihood of local rural communities. The spatial distribution of woody cover in savannas and its 

temporal dynamics are determined by available resources (water and nutrients) and disturbance events 

(fire, herbivory and human) (Coughenour and Ellis 1993; Sankaran et al. 2005), with varying effects 

depending on the scale (from hillslope catena to region). In turn, it affects carbon and water cycles, fire 

regimes, nutrient cycling and soil erosion (Scholes and Archer 1997). Field measurements of woody 

cover, defined as the area vertically projected on a horizontal plane by woody plant canopies (Jennings 

et al. 1999), are associated with high costs (e.g. labor intensive and time consuming) and are limited to 

point measurements, which cannot adequately describe patterns at different spatial scales. Information 

on the spatial distribution of woody vegetation provides local stakeholders with important baseline 

data for the development of sustainable management strategies as well as assessing the effects of 
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management decisions (e.g., fire and animal controls) (Bucini et al. 2010). Furthermore, these products 

can help provide a better understanding of the ecosystem dynamics and the effects of environmental 

drivers through modeling. 

One of the biggest challenges of mapping woody cover using optical datasets is to distinguish between 

woody and non-woody (herbaceous) vegetation layers (Bucini et al. 2010). Since they often have 

similar spectral properties, it is only possible to separate these vegetation types by using either 

hyperspectral data (Lu 2006) or time specific optical data capitalizing on phenological differences 

between these two plant growth forms (Loveland et al. 2000), see for example the Australian Statewide 

Landcover and Trees Study (SLATS) initiative (Armston et al. 2009) and the Australian National 

Carbon Accounting System - Land Cover Change Program (NCAS-LCCP) (Lehmann et al. 2013). 

These examples rely on the effective contrast between woody and grassy vegetation during a relatively 

long dry season, devoid of clouds, and when most woody canopies remain green (evergreen) while the 

grassy understory is dry. In large parts of the semi-arid savanna landscapes in southern Africa, trees 

are deciduous and shed their leaves during the dry season (winter), while both grass and woody 

vegetation are green during the wet season (summer). Maximum ―green‖ contrast between both 

life-forms occurs during the autumn (drying) and spring (wetting), when grasses senesced first and 

when trees flushes before the first rains, respectively (Zeidler et al. 2012). However, these periods are 

short (one month), variable across years, and plagued by spatial phenological heterogeneity controlled 

by high rainfall and soil variability (Venter et al. 2003). Thus these short windows are not easy to 

target for a consistent woody cover mapping using optical imagery. Furthermore, accuracy 

assessments of the global operational tree cover product (MODIS VCF (Hansen et al. 2005)) showed 

clear limitations in regions with low tree cover (e.g., tundra-taiga transition zone (Montesano et al. 

2009)). 

Alternatively, the estimation of woody cover parameters is possible with radar sensors. Microwaves 

operate in the spectral range between 1 cm and 1 m and are particularly useful for weather independent 

applications, as long wavelengths penetrate clouds. A key parameter obtained from synthetic aperture 
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radar (SAR) data, is the backscatter intensity. This SAR parameter measures the return energy from a 

ground object and is determined by the physical (geometry of the object) and electrical (dielectric 

constant, which is mostly determined by the water content) properties of the reflective material, as well 

as by the frequency, polarization and angle of incidence of the emitted wave (Raney 1996). The 

interactions of the radar waves with vegetation elements are determined by their size and shape. Short 

waves (X-, C-band) interact primarily with "small" vegetation parts (leaves, twigs) and long waves (L-, 

P-band) with "large" parts (branches, trunks) (Chauhan et al. 1991; Le Toan et al. 1992; Lucas et al. 

2004), suggesting that longer wavelengths such as L-band would be more suitable for the retrieval of 

woody vegetation structure parameters (e.g., stem volume, aboveground biomass (AGB)) (Kasischke 

et al. 1997). Since microwaves, especially when using long wavelengths, interact primarily with 

branches and trunks, they are less sensitive to the grass layer, which should help to separate woody and 

non-woody vegetation layers. Further, density of branches and trunks are closely related with woody 

canopy cover, suggesting that L-band data would be appropriate for woody cover modeling. The 

polarization of the microwave also affects the backscatter mechanisms of vegetated targets. The 

interaction of vertically polarized waves is generally higher with vertically oriented elements 

(branches, trunks), as the interaction of horizontally polarized waves is higher with horizontally 

oriented objects (leaves, twigs) (Leckie and Ranson 1996). The cross-polarized (HV) waves are more 

sensitive to volume scattering (e.g. as occurring within woody canopies) as opposed to co-polarized 

(HH, VV) waves (Rauste et al. 1994; Watanabe et al. 2006). Full polarimetric datasets (i.e. all linear 

polarizations HH, HV, VH and VV) are now available from recent satellite SAR sensors, e.g. ALOS 

PALSAR and PALSAR-2, or RADARSAT-2. Target scattering processes can be modeled and 

quantified from the decomposition of such data. Incoherent target decomposition theorems, derived 

from second-order scattering matrices, are used for describing scattering processes in vegetated areas. 

Such model-based incoherent decomposition theorems decompose a full polarimetric dataset into three 

basic scattering processes (e.g., Freeman and Durden 1998; van Zyl 1989): surface scattering, double 

bounce, and volume scattering. The use of polarimetric decompositions should contribute to improve 
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the modeling of the scattering mechanisms of heterogeneous vegetation objects (trees and shrubs) 

(Freeman and Durden 1998; Lee and Pottier 2009). It is hypothesized that the volume component 

should more directly relate to the canopy scattering and thus should be more sensitive to woody cover 

than single polarized bands. 

In southern African savannas, which seldom reach canopy closure, AGB is closely linked to a 

combination of height and woody cover (Colgan et al. 2012). Thus the findings from previous studies 

relating AGB and L-band backscatter are relevant in this context. Mitchard et al. (2009) estimated 

AGB of tropical savannas and woodlands across four different African landscapes using ALOS 

PALSAR L-band backscatter. Despite the different vegetation structure across four test sites the 

authors reported consistent and similar relationships between field-based AGB estimates and HV 

backscatter with R² varying between 0.61 and 0.76 with a clear reduction in sensitivity between 150 

and 200 Mg/ha. Due to a stronger impact of soil moisture and roughness on HH backscatter, the 

correlation between HH data and AGB was significantly lower compared to cross-polarized data. The 

authors concluded that L-band backscatter data can be used to map AGB up to 150 Mg/ha at high 

accuracies (~±20%), what especially suitable for tropical savannas and woodlands. Carreiras et al. 

(2012) mapped AGB in heterogeneous vegetation areas of Guinea-Bissau with 2008 ALOS PALSAR 

mosaic at 50 m spatial resolution. The vegetation in the study area is characterized by closed and open 

tropical rainforest, mangroves as well as savanna woodlands. The results can be summarized as 

follows: HV backscatter data showed a stronger correlation to the field-based AGB estimates than HH; 

saturation level occurred at around 100 Mg/ha; the machine learning algorithm (bagging stochastic 

gradient boosting (BagSGB) after Breiman et al. (1984)) achieved much higher retrieval accuracy than 

a semi-empirical regression with a coefficient of correlation (R) of 0.95 vs. 0.33 and RMSE of 26.62 

Mg/ha vs. 66.46 Mg/ha, respectively. Ryan et al. (2012) detected small-scale deforestation and forest 

degradation in woodlands of central Mozambique using multi-temporal ALOS PALSAR data acquired 

during the dry season in combination with field-based AGB estimates.  
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Until now there has been limited exploration of woody cover mapping with SAR imagery in 

woodlands, shrublands and savannas across the world, particularly in southern Africa. In a semi-arid 

rangeland of Jornada del Muerto, New Mexico Musick et al. (1998) examined the potential of airborne 

SAR data acquired at different frequencies (C-, L-, and P-bands) to map woody shrub density. In this 

environment where mature shrubs consist mostly of stems of intermediate size (diameter of 1-3 cm), 

L-HV backscatter was found to produce the highest correlation with woody shrub density, in 

agreement with simulation results reported by Ferrazzoli and Guerriero (1995). Lucas et al. (2006) 

showed that C-band data are well related to the Landsat-derived Foliage Projected Cover product and 

can be used to map foliage projected cover in savannas and open woodlands of Northern Australia. 

Bucini et al. (2010) used single polarimetric L-band data (HH polarization) from the Japanese Earth 

Resources Satellite 1 (JERS-1) in combination with optical Landsat ETM+ imagery for mapping 

woody cover for the two million hectares of Kruger National Park. JERS-1 L-band backscatter was the 

most important variable in the prediction model for woody cover, followed by the Landsat green 

channel (Bucini et al. 2010). Mathieu et al. (2013) mapped total canopy cover using multi-temporal 

full polarimetric RADARSAT-2 C-band imagery and airborne LiDAR data in the southern African 

Lowveld savannas. The woody cover product generated at a spatial resolution of 105 m was validated 

with a coefficient of determination (R²) of 0.71 and root mean square errors (RMSE) of 8.1%.  

L-band has been successfully used to map fractional woody cover (Bucini et al. 2010; Li et al. 2012; 

Musick et al. 1998) as well as regional or global forests (Dong et al. 2014; Shimada et al. in press). 

With the successful launch of the fully polarimetric Advanced Land Observation Satellite’s Phased 

Array L-band Synthetic Aperture Radar (ALOS PALSAR, successor of JERS-1) in 2006, opportunities 

for accurate mapping of woody vegetation have been increased with the addition of cross-polarized 

bands (HV) (Kasischke et al. 1997; Le Toan et al. 1992; Rignot et al. 1994). To the author’s 

knowledge there had been no comprehensive investigation of the performance of multi-temporal and 

polarimetric L-band SAR imagery for mapping fractional woody cover in African savannas; this gap 
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needs to be addressed, especially in the context of the new and upcoming L-band sensors (ALOS-2, 

DESDynI-R, Tandem-L, NISAR, SAOCOM). 

Here we examined the potential of multi-temporal full, dual and single polarimetric ALOS PALSAR 

L-band data for mapping fractional woody cover in southern African savannas. Airborne Light 

Detection and Ranging (LiDAR) data served as reference data for interpreting SAR data and 

developing SAR models. From a set of multi-season and multi-year ALOS PALSAR images 

backscatter intensities as well as polarimetric decompositions were extracted and correlated against 

LiDAR-based woody cover reference data. In this study we first investigated the optimum (1) season, 

(2) L-band polarimetric SAR products (backscatter and polarimetric decompositions), and (3) spatial 

resolution or scale of analysis for the fractional woody cover mapping. The optimal channel 

combination, season and spatial resolution were determined and several single date or multi-temporal 

modeling scenarios were assessed for mapping the woody cover. Finally, to examine the impact of the 

number of samples used for model calibration on the model prediction performance, we modeled 

woody cover with different number of samples selected using a random stratified approach from the 

LiDAR data. Our purpose was to quantify the benefits of a larger spatially explicit LiDAR dataset 

compared to typically much smaller sample sizes as they can be practically collected in the field, and 

to assess the number of samples required to reach a given performance for the woody cover retrieval. 

2. Study area 

The study area is located in the Lowveld in the north-east of the Republic of South Africa and is shown 

in Fig. 1 together with the ALOS PALSAR footprints of Fine Beam Single Polarization (FBS), Fine 

Beam Dual Polarization (FBD), and Polarimetry (PLR) modes. The study area extends approximately 

over 365,000 ha and is divided into three dominant land uses. The largest part (260,000 ha, ca. 70% of 

total area) is the Kruger National Park (KNP), the largest national conservation area in the country 

managed by the South African National Parks. Adjacent to KNP is the Sabi Sand Game Reserve 

(SSGR), managed privately by an association of free-hold owners (60,000 ha, ca. 16% of total area). 
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Finally the smallest land use within the SAR footprints is the communal lands of the Bushbuckridge 

Municipality (36,000 ha, ca. 10% of total area), where rural communities make a livelihood from 

small-scale subsistence agriculture and extraction of natural resources from surrounding savannas and 

woodlands (e.g. grass for livestock, fuel wood). 

The study area is a low-lying and gently undulating landscape with an average elevation of about 

400 m and a slight declining gradient toward the east. The slope ranges between 0 and 42.6 degree 

with a mean slope of 1.71 degree and a standard deviation of 1.74 degree. The regional climate is 

characterized by high summer air temperatures and a mild, frost-free winter. The average annual 

temperature is 22 °C. Because of high air temperature and humidity in the summer, the atmosphere is 

unstable and leads to strong convective rainfall events mostly between October and May (Venter et al. 

2003). The dry season extends accordingly between late May and late September. Average annual 

precipitation in the KNP follows a north-south gradient with 300-500 mm in the north and 500-

700 mm in the south (Venter et al. 2003). 

The KNP is divided into two broad-scale geological units (Fig. 1). Granite substrates are dominant in 

the western parts of the KNP and are associated with nutrient-poor soils (moderately deep to shallow 

coarse sand and loam on upland and duplex soils on bottomlands). The grass layer is mostly wiry, 

unpalatable and sparse. Granitic landscapes are well wooded with a woody cover varying between 20 

and 60% (Bucini et al. 2010; Eckhardt et al. 2000). Basalt substrates occur mostly in the eastern half of 

the park. Soils are more fertile (dark vertic clay soils) and support high-bulk grasses of high nutritious 

value. The denser grass layer induces more frequent fires of higher intensity (Smit et al. 2013), which 

in turn reduce the density of woody plants. 
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3. Methods and Material 

3.1 Remote sensing data 

3.1.1 SAR data 

ALOS PALSAR was a fully polarimetric L-band (23.6 cm wavelength) sensor and emitted/received in 

up to four different polarizations (HH, HV, VH and VV) depending on the imaging mode. The mission 

was terminated in May 2011, after a power failure which could not be recovered. The revisit period 

was 46 days for imagery taken in the Fine Beam and Polarimetric modes (Rosenqvist et al. 2004). For 

this work four scenes were available for both the Fine Beam Single Polarization (FBS) and Fine Beam 

Dual Polarization (FBD) modes, and two for the Polarimetry mode (PLR). The characteristics of the 

datasets used (acquisition date, polarization, incidence angle, track and frame information) are 

presented in Table 1. All images were taken on an ascending orbit at around 21:00 local time. 

Table 1: Characteristics of the ALOS PALSAR datasets considered in this study and four-days (at image acquisition date 

and three days before) sum of precipitation for four weather stations located in Kruger National Park  

Acquisition 
mode 

Acquisition 
date 

Polarization 
Incidence 
angle [°] 

Track Frame 
Precipitation 

(mm) 
Season 

FBS 03/02/2007 HH 34.3 586 6680 SKZ: 6.9 MWET 

FBS 08/02/2009 HH 34.3 586 6680 SKZ: 10.2 MWET 

FBS 27/12/2009 HH 34.3 586 6680 - MWET 

FBS 11/02/2010 HH 34.3 586 6680 SKZ: 0.2 MWET 

FBD 06/08/2007 HH/HV 34.3 586 6680 - DRY 

FBD 23/09/2008  HH/HV 34.3 586 6680 SKZ: 0.4 DRY 

FBD 11/08/2009 HH/HV 34.3 586 6680 - DRY 

FBD 29/09/2010 HH/HV 34.3 586 6680 - DRY 

PLR 14/04/2007 HH/HV/ VH/VV 21.5 582 6690 
NHL: 12.0 
SKZ: 13.2 

EWET 

PLR 19/04/2009 HH/HV/ VH/VV 21.5 582 6690 - EWET 

H horizontal polarization; V vertical polarization; FBS Fine Beam Single Polarization mode; FBD Fine Beam Dual 

Polarization mode; PLR Polarimetry mode. Weather stations acronyms: NHL: Nhlanguleni; SKZ: Skukuza; TAL: 

Talamati; TSH: Tshokwane. DRY dry season; EWET end of wet season; MWET middle of wet season. 
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Figure 1: Study area with the ALOS PALSAR footprints in Fine Beam Single Polarization (FBS), Fine Beam Dual 

Polarization (FBD) and Polarimetry (PLR) modes used in this study  

(Weather stations acronyms: NHL: Nhlanguleni; SKZ: Skukuza; TAL: Talamati; TSH: Tshokwane) 

The datasets in FBD and FBS modes cover the same area, approximately 60 x 70 km, while the two 

fully polarimetric datasets cover a smaller area (25 x 60 km) located within the FBS/FBD scenes 

(Fig. 1). The PALSAR data were acquired in the dry season (DRY) or winter (August/September), the 

middle of rainy season (MWET) or summer (December-February) as well as at the end of rainy season 

(EWET) or autumn (April). All images used in this study were extracted from the ALOS PALSAR 

archive. Due to the global acquisition strategy implemented by JAXA the various modes available 

were biased in term of seasonal coverage (Rosenqvist et al. 2004): for instance, during the MWET 

season only images in FBS mode were available, during the DRY season only FBD mode, and during 

the EWET season only PLR mode, respectively. However, a HH dataset was available at each season 

allowing the investigation of the optimum season to map the woody cover. Further, the best 
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configuration reported to map the woody cover using RADARSAT-2 (C-band) in the region (winter, 

HH/HV) (Mathieu et al. 2013) was available. 

3.1.2 LiDAR data 

LiDAR-based products (e.g., Digital Elevation Model (DEM), Canopy Height Model (CHM)) can be 

produced with very high accuracy, leading to rapid growth in the use of LiDAR systems in the last ten 

years (Lefsky et al. 2002). Since LiDAR is usually operated from an aerial platform, its use is limited 

to small spatial coverage due to high costs, and as a result, the main field of application is restricted to 

local scales. An aerial LiDAR platform can be used efficiently to provide a large number of reference 

data for robust SAR-based modeling (e.g., Cartus et al. 2012; Englhart et al. 2011). 

Small-footprint discrete-return LiDAR data acquired by the ―Carnegie Airborne Observatory‖ (CAO) 

Alpha system (Asner et al. 2007) were used in the study as calibration and validation data for the SAR 

models. The LiDAR data were collected over two areas totaling about 11,250 ha which are referred as 

L1 and L2 (Fig. 1). The LiDAR sensor was operated at a frequency of 50 kHz and flown at a height of 

about 2000 m with a laser spot spacing of 1.12 m (Asner et al. 2007). The LiDAR data were collected 

in April 2008. 

3.2 Precipitation data 

Moisture condition is one of the most important factors influencing the radar backscatter. Increasing 

surface moisture resulting from rainfall, fog or dew, affects the dielectric constant of ground targets, 

which accordingly increases the backscatter (Leckie and Ranson 1996). In order to identify possible 

influence of moisture on the SAR data, the sum of precipitation during four days prior the acquisition 

date (including the acquisition day) for each PALSAR scene was calculated (Table 1). The 

precipitation data used were recorded from four weather stations (Fig. 1), located in the KNP within 

the PALSAR footprints, with daily resolution for the period between 1
st
 of January 2007 and 30

th
 of 

September 2010. The precipitation data were made available by the South African National Parks 
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(SANParks 2013a, b). No precipitation events were recorded at any of the weather stations on any of 

the acquisition dates. Interestingly no record of precipitation were observed prior to any acquisition 

dates at the weather stations Tshokwane (TSH) and Talamati (TAL), while some were recorded at the 

weather stations Skukuza (SKZ) and Nhlanguleni (NHL). This illustrates the rainfall gradients 

mentioned previously and the high rainfall spatial heterogeneity in the region. The precipitation data 

shows expected rainfall patterns for the various seasons, i.e. DRY: smallest and less frequent rainfall 

event; MWET: high and most frequent rainfall event; EWET: most variable season. 

 

Figure 2: Flow chart of the data processing and analysis steps 
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3.3 Processing steps 

From the SLC (Single Look Complex) data multi-looked backscatter values and two polarimetric 

decompositions were calculated (Fig. 2). A fractional woody cover metric was derived from the high 

resolution LiDAR dataset, which served as calibration and validation of the SAR models. The 

relationships between SAR and LiDAR datasets were analyzed at different spatial resolutions. The 

SAR modes were processed with different multi-looking factors and the LiDAR woody cover values 

were aggregated at the corresponding spatial resolution. A simple linear regression was built between  

the SAR parameters and LiDAR-based woody cover metric to analyze the effects of the spatial 

resolution and seasonality. A SAR-based woody cover map was modeled at the optimal spatial 

resolution using the best seasonal images and a machine learning algorithm "Random Forests" (RF) 

(Breiman 2001). Finally validation of the derived products was conducted using coefficient of 

determination (R²), root mean square error (RMSE), relative RMSE (rRMSE), and estimation bias. 

3.3.1 SAR data processing 

A multi-look technique was first applied on the SLC level 1.1 datasets. The multi-look factors used for 

the different acquisition modes are shown in Table 2. The multi-look images were radiometrically 

calibrated using a sensor-specific calibration factor (-115 dB). A coherence matrix [T] using 1 and 7 

looks in range and azimuth directions, respectively, was firstly estimated for the two full polarimetric 

images. Then from the coherence matrices model-based polarimetric decompositions of Freeman- 

Table 2: Multi-look factors applied to the ALOS PALSAR images used in this study 

Mode 

Pixel size  
(original, radar geometry) 

Pixel size  
(after multi-looking, radar geometry) 

Pixel size  
(map geometry) Processing steps 

Rg x Az [m] Rg x Az [m] Rg x Az [m] 

PLR  9.37 x 3.59 9.37 x 25.13 25 x 25 1 look rg x 7 look az 

FBD 9.37 x 3.23 9.37 x 16.15 12.5 x 12.5 1 look rg x 5 look az 

FBS 4.68 x 3.23 4.68 x 6.46 6.25 x 6.25 1 look rg x 2 look az 

FBS Fine Beam Single Polarization mode; FBD Fine Beam Dual Polarization mode; PLR Polarimetry mode; Rg range 

direction; Az azimuth direction. 
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Durden (Freeman and Durden 1998) and Van Zyl (van Zyl 1989) were derived using a moving 

window of 5x5 pixels. The SAR images (backscatter intensities and polarimetric decomposition 

components) were then geocoded using a 20 m digital elevation model (DEM). The main steps of the 

geocoding procedure are: (i) generation of look-up table with position information of each pixel in 

SAR range-Doppler and DEM map geometry, (ii) generation of simulated SAR intensity image from 

DEM in a map geometry and transformation to SAR geometry, (iii) co-registration of simulated with 

real SAR intensity image in SAR geometry, (iv) look-up table refinement and (v) transformation of 

SAR range-Doppler to a map geometry (GAMMA 2008). The geocoding accuracy of the terrain 

corrected products were on average for all SAR products 12.3 m ± 11.4 m and 10.2 m ± 7.5 m in range 

and azimuth directions, respectively.  

In the next step the geocoded SAR parameters were normalized for topographic effects according to 

Castel et al. (2001) and Stussi et al. (1995) (Eq. 1). The topography corrected backscatter coefficients 

(σ
0

cor) were calculated using the linear backscattering coefficient (σ
0
), the true ground scattering area 

(Aslope), the ground scattering area for theoretically flat terrain (Aflat), as well as the incidence angle for 

flat terrain (θref) and the actual local incidence angle (θloc) (Castel et al. 2001; Stussi et al. 1995): 

     
    

     

      
(
       

       
)
 

 (1) 

The parameter n allows for an adaption of the angular adjustment according to the prevalent land cover 

and scattering processes. In this study, n was set to 1.  

The geocoded and terrain corrected SAR parameters with different pixel sizes were aggregated to 

specific spatial resolutions (25 m, 50 m, 125 m and 200 m) using a block averaging technique, e.g. to 

aggregate to 50 m spatial resolution a mean value was calculated by combining 16 pixels (4x4) for 

FBD data. The aggregation was done to analyze the influence of scale on the SAR and LiDAR woody 

cover relationships and to determine an optimal resolution for woody cover mapping. The aggregation 

of pixels reduces the influence of speckle noise in the SAR data and of the co-registration uncertainty 
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between LiDAR and SAR data (Saatchi et al. 2011). In order to evaluate the amplitude of speckle 

noise in the SAR data an equivalent number of looks (ENL) can be calculated using two approaches. 

Oliver and Quegan (2004) determined ENL over homogeneous areas by dividing the mean square 

backscatter intensity by variance (e.g., ENL=mean²/variance). Since South African savannas represent 

very heterogeneous areas, it is challenging to find a set of homogeneous areas over 4 ha (for data at 

200 m spatial resolution). Therefore, we preferred to estimate ENL using a theoretical approach (as 

opposed to a data-driven estimate) based on the nominal number of looks and signal to noise ratio 

(SNR) according to ESA (2007), and equation (2): 

 
    

      

(  
 
   )

  
(2) 

where Nr and Naz are the number of range and azimuth looks, respectively. An increase in the ENL 

with spatial aggregation indicates a reduction of speckle noise in the multi-looked SAR data (Table 3).  

Table 3: Equivalent number of looks (ENL) at different spatial resolutions. ENLs represent a mean value for HH 

and HV polarizations for FBD data and a mean value for HH, HV, VH and VV polarizations for PLR data   

 
ENL_25m ENL_50m ENL_125m ENL_200m 

FBS_03feb07 27.50 112.86 688.37 1580.77 

FBS_08feb09 27.30 111.08 693.65 1623.14 

FBS_27dec09 27.14 113.06 701.46 1593.24 

FBS_11feb10 27.58 112.24 694.14 1625.41 

FBD_06aug07 17.16 70.46 431.51 1025.32 

FBD_23sep08 17.06 69.97 425.79 1101.48 

FBD_11aug09 17.19 70.07 422.62 1065.63 

FBD_29sep10 17.12 69.86 428.40 1005.06 

PLR_14apr07 5.51 22.84 148.20 372.76 

PLR_19apr09 5.47 22.35 143.19 362.63 

 

H horizontal polarization; V vertical polarization; FBS Fine Beam Single Polarization mode; FBD Fine Beam Dual 

Polarization mode; PLR Polarimetry mode 

Multi-looking, radiometric calibration, geocoding as well as topographic normalization of all SAR 

parameters was done using GAMMA software (http://gamma-rs.ch). The calculation of polarimetric 
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decompositions was performed in PolSARPro 4.2.0. In total, 20 backscattering intensities in HH, HV, 

VH and VV polarizations corresponding to ten FBS, FBD and PLR PALSAR images and two 

polarimetric decompositions were analyzed (Table 1). 

3.3.2 Estimates of woody cover using LiDAR data 

From the raw discrete-return LiDAR point cloud data physical models of ground surfaces (DEM) and 

top-of-canopy surface models (CSM) were generated using the REALM (Optech Inc., Vaughn, 

Canada) and Terrascan/Terramatch (Terrasolid Ltd., Jyväskylä, Finland) software packages. A Canopy 

Height Model (CHM) was derived by subtracting the DEM from the CSM. During the acquisition of 

the LiDAR data, a concurrent field campaign was undertaken to validate the height information 

obtained. The heights of 883 trees and shrubs were measured using a graduated pole and a hypsometer 

and compared to the LiDAR-based woody plant height (R²=0.93, p<0.001, standard error=0.73 m) 

(Wessels et al. 2011). The correlation between the field-based and LiDAR-based heights was high. 

However, a number of woody plants below 2 m were not detected in the LiDAR CHM mainly due to i) 

the limited target cross section within 1.12 m pixels, ii) the user-defined thresholds for identifying 

ground returns and iii) the LiDAR reset time (ca. 0.71 m). The 1.12 m pixel size CHM was classified 

into woody and non-woody classes using a threshold of 1 m above ground. The threshold was 

considered a good trade-off between capturing the smallest woody plants (i.e. shrubs) and excluding 

tall herbaceous plants (Wessels et al. 2011). The percentage woody cover was calculated for a pixel 

size of 5x5 m and was aggregated to the same spatial resolutions (25 m, 50 m, 125 m and 200 m) 

generated with the SAR data. The aggregation of LiDAR-based woody cover was carried out by 

calculating a mean value of aggregated pixels. 

3.4 Relationships between SAR parameters and LiDAR-based woody cover 

In order to identify the most correlated SAR data to the LiDAR-derived woody cover data, for each 

SAR parameter a simple linear regression (Eq. 3) was applied at all investigated resolutions: 
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          (3) 

where   corresponds to the backscatter (in db scale) and   represents the woody cover (%). 

After the analysis of the relationships between the woody cover and SAR data, an optimal spatial 

resolution was determined for mapping the woody cover, representing a trade-off between the 

efficiency of the model (as assessed with R²) and the spatial details.  

3.5 Estimates of woody cover from SAR data 

The SAR-based models developed for predicting woody cover used the Random Forests (RF) 

algorithm (Breiman 2001), and were calibrated with the LiDAR-based woody cover maps. The RF by 

Breiman (2001) is a machine learning method and builds on the Classification And Regression Trees 

(CART) algorithm (Breiman et al. 1984). In contrast to CART many regression trees are generated in 

RF instead of one, which generally produce more accurate results (Avitabile et al. 2012). The trees are 

grown with a random selection of predictors at each node as well as with a random subset of samples 

for each tree with the aim of avoiding overfitting. In order to calculate a single estimate, the 

predictions of each regression tree are averaged (Breiman 2001). The RF is a computational efficient 

and robust non-parametric model and was successfully applied to map vegetation structure metrics 

(e.g., AGB, tree height) with high retrieval accuracy at large spatial scales (e.g., Avitabile et al. 2012; 

Baccini et al. 2008; Cartus et al. 2012). Our random forests were generated with 500 regression trees. 

To avoid autocorrelation we modeled woody cover using LiDAR and SAR samples placed at a 

distance of 50 m from each other. This was selected following analysis of semi-variogram on tree 

height, where Wessels et al. (2011) using the same dataset found that samples taken 50 m apart, or 

further, could be treated as independent (Beale et al. 2010). Then, randomly 60% of the LiDAR data 

were selected for model calibration and the remaining 40% were used for validation. 

We modeled woody cover using three scenarios: (1) a single date scenario (i.e., woody cover map 

based on a single SAR image), (2) a multi-seasonal scenario (i.e., woody cover map based on SAR 



19 

 

images from the same year and different seasons, based on key phenological difference), and (3) a 

multi-annual scenario (i.e., woody cover map based on SAR data from different years). For the single 

date models the SAR images with the strongest correlations were selected. The multi-seasonal model 

was applied only on the SAR data from the year with the greatest number of date available (2009). 

Finally, for the multi-annual model the eight datasets with the strongest correlations spanning over the 

four years were selected for the modeling and mapping of woody cover estimates. A linear regression 

between observed and predicted woody cover was calculated and the model performance was assessed 

with the coefficient of determination (R²), root mean square error (RMSE), relative RMSE (rRMSE), 

and estimation bias. 

Furthermore, as a spatially explicit reference dataset was available (LiDAR CHM), we tested how the 

number of samples used impact on the model prediction performance. For this, we applied a stratified 

sampling from the L1/L2 LiDAR data. We divided firstly the LiDAR data in three classes: sparse 

woody cover (<20%), moderately dense woody cover (20-50%) and dense woody cover (>50%). Then 

we extracted from each class 5, 10, 20, 30, 60, 90, 120, 150 and 180 samples, which resulted in a total 

number of samples of 15, 30, 60, 90, 180, 270, 360, 450 and 540. Using these samples we calibrated 

the RF models with the eight backscatters from the four FBD images acquired during the dry season. 

After the model calibration we validated the RF models with another independent equivalent number 

of samples (i.e. between 15 and 540 samples). We ran the RF model 100 times for each number of 

samples, i.e., we selected calibration/validation data 100 times. Furthermore, we used all LiDAR 

samples for calibration and validation. For this, we extracted randomly 60% (6468 samples) and 40% 

(4312 samples) calibration/validation data 100 times. 

4. Results and discussion 

4.1 Relationships between SAR parameters and LiDAR-based woody cover map 

ALOS PALSAR datasets comprising various modes and polarizations (HH, HV, VH, VV), seasons 

(DRY season, MWET season and EWET season), as well as two polarimetric decompositions (by  
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Table 4: Coefficients of determination (R²) between SAR parameters and LiDAR derived woody cover at different 

spatial resolutions and for three seasons 

 

25 m 50 m 125 m 200 m 

D
R

Y 
FBD_HH_06aug07 0.3164 0.5915 0.6658 0.7130 

FBD_HH_23sep08 0.2233 0.5787 0.6141 0.6348 

FBD_HH_11aug09 0.2822 0.5993 0.6664 0.7104 

FBD_HH_29sep10 0.2893 0.4985 0.6122 0.6762 

    
  

FBD_HV_06aug07 0.3521 0.6184 0.6868 0.7250 

FBD_HV_23sep08 0.2458 0.5909 0.6087 0.6181 

FBD_HV_11aug09 0.3088 0.6197 0.6749 0.7159 

FBD_HV_29sep10 0.3088 0.5111 0.6086 0.6649 

  

M
W

ET
 FBS_HH_03feb07 0.2940 0.3437 0.4825 0.7095 

FBS_HH_08feb09 0.3241 0.3162 0.5241 0.4839 

FBS_HH_27dec09 0.1229 0.1874 0.5768 0.3720 

FBS_HH_11feb10 0.2347 0.2803 0.3947 0.4652 

  

EW
ET

 

PLR_HH_14apr07 0.0447 0.1551 0.2620 0.2974 

PLR_HH_19apr09 0.0757 0.2579 0.4510 0.5959 

PLR_VV_14apr07 0.0229 0.0861 0.1608 0.1913 

PLR_VV_19apr09 0.0577 0.2101 0.3826 0.5102 

  
   

  

PLR_HV_14apr07 0.0922 0.2759 0.4381 0.5099 

PLR_HV_19apr09 0.1200 0.3465 0.5362 0.6784 

PLR_VH_14apr07 0.0871 0.2629 0.4220 0.4888 

PLR_VH_19apr09 0.1169 0.3380 0.5272 0.6688 

  

EW
ET

 

Freeman_Vol_14apr07 0.1661 0.3512 0.4554 0.5190 

Freeman_Vol_19apr09 0.1992 0.4157 0.5448 0.6700 

VanZyl_Vol_14apr07 0.1647 0.3484 0.4525 0.5162 

VanZyl_Vol_19apr09 0.1997 0.4159 0.5447 0.6689 

 

DRY dry season; EWET end of wet season; MWET middle of wet season; H horizontal polarization; V vertical 

polarization; FBS Fine Beam Single Polarization mode; FBD Fine Beam Dual Polarization mode; PLR Polarimetry 

mode; Vol volume component. Cell are shaded with grey tones ranging from white to black corresponding to an 

increasing R² (R²≤0.5 white, 0.5<R²≤0.6 light grey, 0.6<R²≤0.7 medium grey, R²>0.7 black), in bold mean values 
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Freeman and Durden 1998; van Zyl 1989) were investigated and compared with LiDAR-derived 

woody cover reference data at various spatial resolutions (Table 4). 

4.1.1 Influence of seasonality  

The analyzed SAR data were acquired during three seasons (DRY, MWET and EWET), so that it was 

possible to determine the optimal season for mapping of woody cover in southern African savannas. 

Datasets in the HH polarization from the three respective seasons were compared with the LiDAR 

data, as this was the only polarization available for all investigated seasons (Fig. 3).  

 

Figure 3: PALSAR HH backscatter intensities from a) 23.09.08 (DRY: dry season), b) 03.02.07 (MWET: middle of wet 

season) and c) 19.04.09 (EWET: end of wet season) plotted against LiDAR-based woody cover at 50 m spatial resolution 

The highest correlations with the woody cover were observed from the DRY datasets (August-

September). During this time the grass layer is completely dry and most of the deciduous trees (mostly 

occurring in this landscape) are devoid of leaves, allowing the radar signal to fully penetrate the 

canopy and interact only with the woody parts. The higher and variable moisture level in the landscape 

in summer and autumn may have led to a larger spread of points around the regression line in the 

MWET and EWET data compared to the DRY data (Fig. 3). In the region most precipitation occurs in 

the form of short duration and high intensity thunderstorms (convective process), which lead to 

variable precipitation over relatively short distance. During the dry season there is almost no rainfall 

(Table 1), thus the soil moisture content is at its minimum resulting in a low mean backscatter (-22 dB) 

from bare surface, i.e. surface with 0% woody cover, and a high dynamic range of the backscatter. For 

MWET and EWET data (Fig. 3), the mean backscatter from bare surface is higher (-20 dB) and the 
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dynamic range of the backscatter is reduced compared to dry conditions. Furthermore, it was observed 

that the datasets from the MWET season (January-February) show a stronger correlation to the woody 

cover compared to the data from the EWET season (April-May) (Table 4, Fig. 3). This may be caused 

by a more homogeneous distribution of water in the landscape in the middle of the rainy season 

compared to the end of the rainy season. Most precipitations occur between December and March, 

with a peak in January-February corresponding to the period of highest vegetation productivity. 

Rainfall drops between April and May which is a period of transition during which the drying 

processes begin with different effects along catena and geological types (granite versus gabbro), 

resulting in an increase in the variability of moisture in the landscape (Venter et al. 2003). Following a 

time delay the annual senescence process starts, first with the grasses which are more directly 

dependent on moisture availability in the top soil, then with woody plants through yellowing and leaf 

shedding. This process been closely linked to water availability, and also to a lesser extent to species-

specific phenology (e.g. species such as Acacia nigrescens shed their leaves early compared to other 

species (Cho et al. 2012)), induces further variability in the landscape with the gradual change from a 

dominance of green - leaf-on patches to the dominance of non-green - leaf-off patches toward the dry 

season. Similar seasonal patterns were observed with RADARSAT-2 C-band data in the same region 

(Mathieu et al. 2013).  

Finally, we compared the backscatter intensities of each SAR image to the reference image acquired 

on the 23rd September 2008 (Fig. 4). The image was selected as reference because it was the only 

image acquired during the dry season and the same year of the LiDAR acquisition. We compared HH 

polarizations only, as MWET data were acquired in single polarization mode. The colors showed in 

Fig. 4 correspond to three classes of woody cover as measured by the LiDAR data: sparse woody 

cover (<20%, code s, yellow), moderately dense woody cover (20-50%, code md, green), and dense 

woody cover (>50%, code d, blue). Overall, when compared to the data from the dry season, the 

backscatters are consistent, well aligned the 1:1 line and with a reduced variability compared to EWET 

and MWET. This indicates high backscatter stability over the years, and suggests that modeling of 



23 

 

woody cover would be more robust using dry season data. Important positive offsets were observed for 

the EWET and MWET date, at which significant precipitation (>5 mm) was recorded four days prior  

 

Figure 4: Comparison of HH backscatters of the single SAR images with the reference backscatter image from the dry 

season 23.09.08. DRY: dry season, MWET: middle of wet season, EWET: end of wet season. The color corresponds to 

three classes of woody cover as measured by the LiDAR data: sparse woody cover (<20%, s, yellow), moderately dense 

woody cover (20-50%, md, green), and dense woody cover (>50%, d, blue). Bars indicate a mean value with a 

corresponding standard deviation per woody cover class, cross for sparse woody cover, circle for moderately dense woody 

cover, and triangle for dense woody cover. 
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to the image acquisition (03feb07, 14apr07, and 08feb09). Furthermore, the MWET and EWET data 

with low woody cover (yellow color) showed the highest positive offsets compared to the reference 

image. Sparse woody cover inherently presents many gaps through which the microwaves can reach 

the ground (soil and grasses) and be more affected by a higher soil moisture content compared to the 

winter season. Correlations for each dataset follow the order DRY>MWET>EWET. This seems to 

match a logical order of moisture and landscape heterogeneity pattern as mentioned above. 

4.1.2 Influence of polarization 

Polarization comparisons were only meaningful for images acquired during the same season. Co- (HH) 

and cross-polarized (HV) datasets from the dry season showed equally strong correlations with the 

LiDAR reference data (Table 4). Since the woody plants at this time period are mostly devoid of 

leaves, co- and cross-polarized waves interact primarily with the woody vegetation components (i.e. 

branches and trunks). In contrast, there is a weaker relationship for the co-polarized datasets (HH, VV) 

during the EWET season compared to the cross-polarized datasets (HV, VH, Table 4). The woody 

vegetation at this time period have leaves, resulting in an increase of the volume scattering. The latter 

is known to better correlate with cross-polarized intensities (Le Toan et al. 1992), and would contribute 

to improvement of correlations between the cross-polarized datasets and the woody cover. Moreover, 

the co-polarized datasets, being more sensitive to surface properties compared to cross-polarized 

datasets (Beaudoin et al. 1994), are likely to be more affected by moisture variability prevalent at the 

end of the wet season (drying season). 

At fine spatial resolutions (25 and 50 m) the volume components of the Freeman-Durden and Van Zyl 

decompositions show a slightly higher correlation to the LiDAR-based woody cover than the co- and 

cross-polarized intensities (Table 4). This most likely stems from prior averaging of the backscatter 

values in polarimetric decompositions, as they were calculated using a moving window approach, 

which leads to the reduction of speckle noise. The performance of the volume components over the 

cross-polarized intensities was only marginally improved at coarser spatial resolutions (125 and 
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200 m) (Table 4). In general the result indicates that the volume components derived from the 

decomposition do not provide a significant benefit to the mapping of canopy cover compared to single 

cross-polarized bands. The three-component polarimetric decompositions of Freeman-Durden has been 

reported to overestimate the total volume scattering power, due to an assignment of all cross-polarized 

backscattered power to this component (van Zyl et al. 2008). Despite this observation, both the 

Freeman-Durden and Van Zyl volume components produced very similar results. In order to reduce 

the Freeman-Durden overestimation, some authors (e.g., Singh et al. 2013; Yamaguchi et al. 2005; 

Yamaguchi et al. 2011) suggested to introduce a fourth scattering component (helix scattering). 

However, the implementation of this fourth scattering component was found to be more relevant for 

describing artificial targets (Yamaguchi et al. 2005) and less effective in vegetated-dominated areas 

(Antropov et al. 2011). Other researchers (e.g., Antropov et al. 2011; Wentao et al. 2010) proposed 

alternative decomposition models, which implement a more accurate description of the volume 

component. Further investigation of L-band dry season polarimetric data (as overall in this season, 

SAR data showed the highest correlation to woody cover) with alternative polarimetric decomposition 

models (e.g., Antropov et al. 2011; Singh et al. 2013) should be encouraged. Since polarimetric 

decompositions did not provide significant benefits over single polarized bands, they were not used for 

the woody cover modeling. 

4.1.3 Impact of spatial aggregating 

The relationships between SAR data and LiDAR-based woody cover varied as a function of the spatial 

resolution or scale at which the analysis was performed. Fig. 5 shows the relationships between the HV 

backscatter from the 23
rd

 of September 2008 and the LiDAR woody cover at four different resolutions 

(25 m, 50 m, 125 m and 200 m). The averaging of pixels minimized the influence of speckle, co-

registration uncertainties, errors in the reference data, as well as the effect of landscape heterogeneity, 

leading to the reduction in the spread of points and an increase in the correlation between the two 

datasets (Saatchi et al. 2011). Similar trends were observed for all seasons (Table 4). A sharp increase 

in the significance of the relationship between the DRY SAR dataset and the LiDAR dataset was 



26 

 

detected at a spatial resolution of 50 m, after which the R² improved at a lesser rate for increasing 

scales of aggregation. 50 m was selected as a good trade-off between the smallest possible mapping 

unit and the achievable accuracy.  

 

Figure 5: PALSAR HV backscatter intensity from 23.09.08 (DRY: dry season) at a) 25 m, b) 50 m, c) 125 m and d) 200 m 

spatial resolution plotted against LiDAR-based woody cover (n from 176855 to 2371) 

4.2 Woody cover modeling and mapping 

4.2.1 Model assessment and map validation 

Based on the results presented in section 4.1, we selected three woody cover modeling scenarios, using 

SAR images acquired at a single date, during multiple seasons of the same year, or over the multiple 

years. For all three scenarios woody cover was modeled at a spatial resolution of 50 m. The single date 

scenario produced four models based on the HH and HV SAR backscatters from the dry season for the 

year 2007, 2008, 2009, and 2010 individually (Table 5). For the multi-seasonal model we selected four  
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Table 5: Retrieval errors for woody cover estimates based on three scenarios: single date (2007, 2008, 2009, and 

2010 individually), multiple season for a single year (2009 only, as this year with the greatest number of date 

available), and multiple years imagery (from 2007 to 2010) 

 
R² RMSE (%) rRMSE (%) Bias 

Single year DRY PALSAR (FBD_HH_06aug07, 
FBD_HV_06aug07) 

0.64 8.67 9.12 0.46 

Single DRY PALSAR  
(FBD_HH_23sep08, FBD_HV_23sep08) 

0.66 8.45 8.89 0.44 

Single DRY PALSAR  
(FBD_HH_11aug09, FBD_HV_11aug09) 

0.62 8.97 9.43 0.86 

Single DRY PALSAR  
(FBD_HH_29sep10, FBD_HV_29sep10) 

0.52 10.14 10.66 1.01 

Multi-seasonal DRY-MWET PALSAR  
(FBS_HH_08feb09, FBS_HH_27dec09, 
FBD_HH_11aug09, FBD_HV_11aug09) 

0.64 8.72 9.17 0.94 

Multi-annual PALSAR  
(FBD_HH_06aug07, FBD_HV_06aug07, 
FBD_HH_23sep08, FBD_HV_23sep08, 
FBD_HH_11aug09, FBD_HV_11aug09, 
FBD_HH_29sep10, FBD_HV_29sep10) 

0.71 7.88 8.29 0.9 

R² coefficient of determination; RMSE root mean square error; DRY dry season; MWET middle of wet season 

 

co- and cross-polarized SAR backscatter from 2009 (as this year had the highest number of date 

available) from two seasons DRY and MWET (note: PLR data from EWET were not used, as they 

cover a smaller area) (Table 5). For the multi-year model, eight co- and cross-polarized L-band 

backscatter intensity images from the dry season of 2007 to 2010 were used as predictor of the woody 

cover (Table 5). Regarding the single data models, the highest performance (R
2
=0.66, RMSE=8.45%) 

was observed with the DRY SAR image from 2008, corresponding to the same year as the LiDAR 

dataset. Performance decreased as the time difference between the SAR and LiDAR datasets increased, 

especially in 2010 which marks the largest time difference. The 2009 multi-seasonal model (MWET 

and DRY) produced a slightly higher performance than the 2009 single date DRY model (R
2
=0.64, 

RMSE=8.72% vs. R
2
=0.62, RMSE=8.97%) (Table 5). The best results (R

2
=0.71, RMSE=7.88%) were 

obtained for the multi-annual model. The results indicate that woody cover retrieval is possible with a 

reasonable accuracy using single PALSAR scene from the dry season. However, single dates can be 

affected by variability related to environmental conditions (e.g., soil moisture) or disturbances (e.g.,  
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fire). These can be reduced by using multi- to hyper-temporal datasets (Main et al. 2014; Santoro et al. 

2011), and here models were improved using a time series of scenes acquired during winter over 

multiple years despite the possibility of woody cover change between years, for instance changes of 

cover induced by large herbivores such as elephants (Asner and Levick 2012). Another source of 

uncertainty in the model is related to the timing of the acquisition of the LiDAR data. The LiDAR 

campaign was undertaken during the start of wet-dry transition season (April) after a relatively dry late 

summer. By far most tree canopies were still green and with leaves. However, this may have 

introduced some noise in the LiDAR woody cover maps, since the variability of water availability 

 

Figure 6: Comparison between the PALSAR-based woody cover map (left) and CAO LiDAR-based woody cover map 

(right) for the test sites L1 and L2. The PALSAR-based woody cover map was produced with a random forest algorithm, at 

a spatial resolution of 50 m, and from dry season images, HH and HV polarization, acquired in 2007, 2008, 2009 and 2010. 
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fire). These can be reduced by using multi- to hyper-temporal datasets (Main et al. 2014; Santoro et al. 

2011), and here models were improved using a time series of scenes acquired during winter over 

multiple years despite the possibility of woody cover change between years, for instance changes of 

cover induced by large herbivores such as elephants (Asner and Levick 2012). Another source of 

uncertainty in the model is related to the timing of the acquisition of the LiDAR data. The LiDAR 

campaign was undertaken during the start of wet-dry transition season (April) after a relatively dry late 

summer. By far most tree canopies were still green and with leaves. However, this may have 

introduced some noise in the LiDAR woody cover maps, since the variability of water availability 

across the landscape and species-specific phenology would lead to patches with variable senescence 

stages, resulting in a possible overall underestimation of the real woody cover. 

The visual comparison of the multi-annual SAR-based woody cover map (Fig. 6 left) with the LiDAR 

reference data (Fig. 6 right) shows a high degree of agreement. For instance, patterns of vegetation 

along the rivers (riparian forests) or the large bare patterns in the central section of L1 and L2 match 

 

Figure 7: SAR-based prediction of woody cover plotted against LiDAR-based observed woody cover. Red line is the 

regression line, and dotted line is the 1:1 line. 
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well the distribution of woody vegetation in the LiDAR data. The linear regression between the 

predicted SAR-derived woody cover values and the LiDAR-based woody cover observations for the 

multi-annual model is shown in Fig. 7 (R²=0.71, RMSE=7.88%, rRMSE=8.29% and bias=0.9). The 

low bias value points to a low difference between the modeled and measured values. However, the 

deviation of the linear regression from the 1:1 relationship indicates an overestimation of the 

prediction in the areas sparsely vegetated and an underestimation in the areas densely vegetated. This 

is also evident in the estimated bias calculated per class of woody cover (Table 6). In terms of R² the  

Table 6: Retrieval errors for sparse, moderately dense and dense woody cover estimates based on the multi-annual 

SAR scenario 

 R² RMSE (%) rRMSE (%) 
Estimated 

Bias 
N 

Sparse woody cover (<20%) 0.53 7.04 35.18 3.93 2020 

Moderately dense woody cover (20-50%) 0.24 7.81 26.05 -0.94 2117 

Dense woody cover (>50%) 0.21 14.74 32.71 -11.44 180 

R² coefficient of determination; RMSE root mean square error 

 

value for sparse wooded areas (<20% woody cover) was more than twice as high as for moderately 

dense (20-50% woody cover) and dense (>50%) wooded areas, showing a low variation at low woody 

cover with increasing spread of points at moderately dense and dense woody cover intervals. However, 

RMSE values at low and moderately dense woody cover were the lowest and similar, while estimated 

bias for moderately dense woody cover was the lowest. As the sensitivity of SAR signal in dense 

woody areas decreases (Fig. 3a), the highest uncertainties were produced for this woody cover interval. 

Despite that at low woody cover the SAR backscatter is mostly affected by surface scattering, sparsely 

wooded areas were mapped relatively accurately. Moderately dense vegetated areas showed a low R² 

mostly due to a large spread of points, while the rRMSE and the estimated bias for this interval are the 

lowest compared to the other woody cover ranges. These statistical metrics show 

under-/-overestimation patterns which are typical for regression tree-based models, as the predictions 
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of such tree-based models are computed as the average values of the regression trees within each node 

(Baccini et al. 2008). Mapping accuracy was similar to that reported in Mathieu et al. (2013) and 

Bucini et al. (2010), with R² of about 0.7 and RMSE of about 8%. However, the ALOS PALSAR data 

were used to produce maps with a higher level of spatial details at 50 m, vs. 90 m for Bucini et al. 

(2010) and 105 m for Mathieu et al. (2013).  

4.2.2 Impact of number of samples on model prediction performance 

The impact of number of samples on the model prediction performance is expressed in the statistical 

metrics of the prediction accuracy and showed in Fig. 8. The mean R² values for the different number 

of samples used were relatively similar (Fig. 8). However, the greater the number of samples was, the 

smaller the variability of the R² value. With an increasing number of samples the mean RMSE and 

rRMSE decreased as well as their corresponding variability. The variations of estimated bias also 

decreased with an increasing number of samples. The RF models using a small number of samples 

(e.g., 15 or 30) can achieve high prediction accuracy; however, the performance of these models is 

more variable compared to those based on a higher number of samples. Overall, for all statistical 

metrics the mean stabilizes and the variability is minimum at 180 samples and beyond (or 360 if 

considering the number of samples required for calibration and validation of the models). Furthermore, 

Figure 8 also shows the statistic results based on the complete LiDAR dataset. Using all LiDAR 

samples with a random sampling RMSE, rRMSE, bias and their variability still decreased 

significantly. In comparison, most of the published studies which have estimated AGB with remote 

sensing data used less than 100 field samples, with a significant number of those using only 30 to 50 

field samples (Fassnacht et al. 2014). This number is typical for researchers based on field sampling, 

and are generally explained by the costs and sometimes logistical complexities involved in acquiring 

large sample. Here we show that airborne LiDAR data provide a good alternative to address these 

limitations, and increase the stability and robustness of prediction performance.  
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Figure 8: Impact of the number of LiDAR samples used on the woody cover model prediction performance (coefficient of 

determination R², Root Mean Squared Error (RMSE), Relative Root Mean Square Error (Rel. RMSE) and bias). The model 

used a random forest algorithm with four dry season FBD ALOS PALSAR images, acquired in 2007, 2008, 2009 and 2010. 

The models were calibrated with a varying number of samples between 15 and 540, selected using a stratified approach as 

well as using all LiDAR samples, and further validated with independent equivalent number of samples (also varying from 

15 to 540). Models were run 100 times and the error bars indicate one standard deviation of the metric performance. 
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Figure 9: Woody cover map derived from selected PALSAR backscatter intensities at 50 m spatial resolution, overlaid 

with broad land use classes (Kruger National Park, private Sabi Sands Game Reserve, and communal lands of 

Bushbuckridge), and basalt substrates. The PALSAR-based woody cover map was produced with a random forest 

algorithm with dry season images, HH and HV polarization, acquired in 2007, 2008, 2009 and 2010. 

4.2.3 Woody cover statistics and spatial patterns 

The woody cover map produced with the multi-annual ALOS PALSAR data matches well known 

patterns in the area. A contrast line between the two main regional geologies (granite vs. gabbro/basalt) 

is represented as the mark A in Fig. 9. Terrain characteristics and woody cover on both geologies are 

well expressed in the maps, with the granite landscapes being characterized by more densely wooded 

hilly terrain with a well-developed drainage network (Levick et al. 2010), and basalt landscape as 

sparse woodlands with flatter terrain and a weakly developed stream network (Bucini et al. 2010; 

Wessels et al. 2011). Fine-leaved woodlands with dense thickets (Acacia welwitschii) (mark B) also 
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are observed on the ecca shale geology between the basalts and granites. The dense vegetation patterns 

occurring in the rocky outcrops of the Lebombo mountains with rhyolite geology (marks C and D) are 

well identified. On the western side of the image, fence line contrasts associated with diverse land uses 

and management practices are reflected in the woody vegetation distribution. Two examples are shown 

at mark E and F. The sector north of the SSGR boundary was, for a few decades, a pasture research 

station, and maintained a relatively high woody cover through rotational grazing scheme (mark E). The 

mark F indicates the fence location between SSGR and communal lands dominated by medium density 

savannas used by the local communities as source of fuel wood and grazing lands. On the private 

reserve side, historic control of the shrubby layer for improving game viewing led to an open 

landscape with a few scattered tall trees. Bordering SSGR in the south-west part of the image the mark 

G corresponds to orchards with dense rows of planted citrus trees. Finally, the mark H shows the main 

rest camp of KNP, Skukuza, where the high woody cover, compared to surrounding areas, results from 

irrigation of gardens, fire control and a reduced impact of mega-herbivores (elephants) on trees. 

The average woody cover was calculated at 24.2% ± 16.5% in the KNP section of the study area. The 

average woody cover for the Sabi Sand Game Reserve and the communal lands of the Bushbuckridge 

Municipality was similar and slightly higher than that of the KNP with 27.9% ± 13.4% and 28.2% ± 

15.3% respectively. Despite differences linked to land use and management the east-west cover 

gradient remains coherent with the increasing mean annual precipitation towards the Drakensberg 

slopes to the West of the study area. The differences in the distribution of woody vegetation also 

reflect contrasted geological substrates, especially between granite and basalt/gabbro (Fig. 9) (Bucini 

et al. 2010; Eckhardt et al. 2000). The average woody cover value in granitic landscapes was 29.4% ± 

13.3% while in contrast, woody cover values in basalt/gabbro landscapes were less than 1/3 of this 

value with an average of 8.1% ± 8.9%. These values are slightly higher than those of Eckhardt et al. 

(2000), who analyzed aerial photographs along nine transects to estimate woody cover in KNP. The 

transects were mostly representative of similar vegetation types to our study, essentially Mixed 

Combretum spp./Terminalia sericea woodland and Sclerocarya birrea/Acacia nigrescens savanna 



35 

 

between the Sabie River in the South (southern limit of our ALOS PALSAR images) and the Olifants 

River in the North (about 60 km North to the northern limit of our ALOS PALSAR images). The study 

reported for granite and basalt landscapes (photographs taken in 1998) woody cover values ranging 

between 16.4% and 28.8% (mean 22.1%) and 3.6% and 9.4% (mean 4.3%) on granite and basalt 

substrates, respectively. We expected our SAR estimates to be higher than Eckhardt’s values 

(assuming no change between 1998 and 2007-2010, this study) since our data are representative of the 

southern half of the area where most 1998 transects were located and where conditions are generally 

wetter. We also compared our woody cover estimates with the first wall-to-wall woody cover map for 

the park produced by Bucini et al. (2010), considering the common extent between our study area and 

Bucini et al. (2010) KNP map. Bucini’s maps was derived from JERS-1 L-band HH SAR and Landsat 

ETM+ imagery acquired between 1995 and 2001 and was assessed with field data collected in 2006, 

under the assumption that no major changes would have occurred during this period. Bucini’s map 

produced overall woody cover estimates 12.8% higher than this study (37% vs. 24.2%), 13.2% (42.6% 

vs. 29.4%) higher when only considering granites and 12.8% (19.9% vs. 8.1%) higher when only 

considering basalts. These discrepancies could result from differences in datasets and methods used to 

derive the two products (including the validation protocol), as well as from temporal dynamics in the 

region, for instance considering the high rate of big tree loss recently reported in the park (Asner and 

Levick 2012; Levick and Asner 2013). Since both products are based on multi-temporal data with 

different time span, i.e. 11 year span (1995-2006) in Bucini et al. (2010) and 3 year span (2007-2010) 

in our study, and with different methods, the inference of temporal dynamics of woody cover was not 

possible. However, the lower estimates produced by Eckardt et al. (2000) using aerial photographs 

during a similar period (1998) compared to Bucini’s map (1995-2001) may suggest that the latter 

estimates could generally be overestimated.  

5. Conclusion 

This work investigated the relationships between satellite-borne ALOS PALSAR L-band data and 

airborne LiDAR derived woody cover in savanna landscapes of the Kruger National Park region, 
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South Africa. To the author’s knowledge, this is the first comprehensive assessment of the suitability 

of ALOS PALSAR L-band data for mapping woody cover in these biomes. Discrete-return LiDAR 

data were used as reference for the calibration and validation of SAR models. Correlation analysis 

between the two datasets yielded the following conclusions: (1) best relationships were obtained 

during the dry season, followed by the wet season, and the end of the wet season, (2) co- and cross-

polarized backscatters (HH, HV) from the dry season correlated equally well with the reference data, 

(3) the volume components from polarimetric decompositions (Freeman-Durden, Van Zyl) showed 

similar correlations to the LiDAR data, when compared to cross-polarized intensities from the same 

season, (4) relationships improved with the degradation of the scale at which datasets were compared, 

50 m was found to be the optimal spatial scale. A multi-annual model was developed using a 

combination of 2007-2010 dry season HH and HV ALOS PALSAR data for predicting and mapping 

woody cover. The validation of the woody cover product showed a good relationship between 

predicted and observed values at a resolution of 50 m with R² of 0.71 and RMSE of 7.88%. A woody 

cover map based on a single SAR acquisition (2008 dry season HH and HV) achieves only a slightly 

lower accuracy (R²=0.66, RMSE=8.45%) as multi-annual SAR data, suggesting that a single SAR 

scene from the dry season can also be used for woody cover mapping. Furthermore, we examined the 

impact of the number of samples used for model calibration on the model prediction performance. 

Considering statistical metrics (R², RMSE, rRMSE, bias) the SAR-based models achieved stability and 

robustness of the prediction performance with 180 calibration samples and beyond, which is not 

common for studies based on field sampling (Fassnacht et al. 2014). The availability of a large number 

of calibration/validation data was an important advantage. In this study the calibration/validation data 

covered ca. 3% (11,250 ha) of the total mapped area (365,000 ha). Our investigation showed that L-

band backscatter is sensitive to woody cover in savannas and can be used for large-scale mapping in 

the South African Lowveld. Furterhmore, the study shows that a combination of SAR and LiDAR is 

relevant for large area mapping, and suggest that the method can be applied to monitor woody cover 
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changes over entire Kruger National Park, especially bearing in mind new or potentially forthcoming 

L-band sensors (ALOS-2, DESDynI-R, TanDEM-L, NISAR, SAOCOM). 
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