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ABSTRACT 

Asset and maintenance managers are often confronted with difficult decisions related to 
asset replacement or repair. Various analytical models, such as decision analysis and 
simulation, can assist a manager in making better decisions. This paper proposes that by 
combining renewal theory with decision analysis methods, the expected value (EV) of 
information for non-repairable components can be calculated. Subsequently, it is proposed 
that this method can be used to determine the expected replacement cost per unit time of 
predictive maintenance. It is argued that this predicted cost will give the maintenance 
decision-maker the ability to compare it to the cost of alternative maintenance strategies 
when choosing between strategies. Although this paper is limited to non-repairable 
components, the theory and methodology can also be applied to repairable systems. 

OPSOMMING 

Bate- en instandhoudingsbestuurders word dikwels gekonfronteer met moeilike besluite 
rakende die vervanging of herstel van fisiese bates. Verskeie analitiese modelle, soos 
besluitsanalise en simulasie, kan die bestuurder help om beter besluite te neem. Hierdie 
artikel stel voor dat deur hernubare teorieë te kombineer met besluitnemingsmetodes, die 
verwagte waarde van inligting vir nie-herstelbare komponente bereken kan word. Gevolglik 
word dit voorgestel dat hierdie metode gebruik kan word om die verwagte koste per tyd 
eenheid van voorspelbare instandhouding te bereken. Daar word geargumenteer dat hierdie 
beraamde koste die instandhoudings-besluitnemer die vermoë sal gee om die koste van 
verskeie instandhoudingstrategieë te vergelyk wanneer daar gekies word tussen strategieë. 
Hierdie artikel sal beperk word tot nie-herstelbare komponente, maar deur soortgelyke 
prosesse te volg, kan die teorie uitgebrei word na herstelbare stelsels. 
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1 INTRODUCTION 

The goal of maintenance practitioners is to ensure that equipment performs its function as 
required while minimising interruptions (downtime), maintenance costs, and negative 
impacts on safety, health, and the environment. Arguably, for most maintenance 
practitioners it is a challenge to balance these variables when deciding which strategies to 
implement on equipment in order to optimise its performance. Typical strategies that can 
be implemented are: run-to-failure (component is only replaced after it has failed), 
preventive maintenance (component is replaced preventively based on its age or use) and 
predictive maintenance (component is replaced preventively based on its condition and a 
predictive model).  
 
Several decision methods have been developed to aid maintenance practitioners in choosing 
between maintenance strategies. It is argued, however, that determining whether 
predictive maintenance is a long-term cost-effective strategy to implement is still a 
daunting task. Therefore, it is proposed that a combination of renewal theory and decision 
analysis methods be used to develop a model that can be used to determine whether it 
would be cost-effective to implement predictive maintenance. In this case, renewal theory 
is combined with the ‘value of information’ technique to illustrate how the long-term cost 
of predictive maintenance can be calculated. By comparing the long-term cost of predictive 
maintenance with alternative strategies, the decision-maker can decide which strategy will 
be the optimal one to implement. 

2 VARIABLES USED 

In order to simplify the referencing of variables used in this paper, this section defines all 
the variables used. 
 

U Laplace trend test value 

t Distinct time interval between failures measured in local time (time between two consecutive 

failures) 

T Distinct time interval between failures measured in global time (difference in time between 

the starting point of the first life cycle and the specific failure in question) 

i Failure number 

n Total number of failures 

β Shape parameter (parameter that influences the shape of the probability distribution function) 

η Scale parameter or ‘characteristic life’ (life at which 63.2 per cent of the population has 

failed) 

𝐶𝑡 Total cost per cycle 

𝐶𝑝 Cost of a preventive cycle 

𝐶𝑓 Cost of a failure cycle 

𝑡𝑝 Length of preventive cycle 

𝑡𝑓 Length of failure cycle 

𝑇𝑝 Time needed to make a preventive replacement 

𝑇𝑓 Time needed to make a failure replacement 

𝐿𝑒 Expected cycle length 

f(t) Probability density function 

F(t) Cumulative distribution function 

151 



R(t) Survival function, or complementary cumulative distribution function 

H(t) Hazard rate function 

A Outcome A 

Ā Opposite outcome of A 

“A” Predict outcome A 

“Ā” Predict opposite outcome A 

p Probability of occurrence of A 

x Probability of prediction x 

z Probability of prediction z 

C1 Consequence 1 

C2 Consequence 2 

C3 Consequence 3 

C4 Consequence 4 

D1 Decision 1 

D2 Decision 2 

EV Expected value 

 Decision 

 Uncertain event 

F Component fails 

S Component survives 

“F” Predict component failure 

“S” Predict component survival 

3 LITERATURE  

3.1 Decision-making in maintenance 

Maintenance managers and practitioners are often confronted with difficult decisions 
related to the replacement and repair of physical assets, taking into account the cost, risk, 
and performance of the assets [1]. So various methodologies have been developed for 
dealing with such decisions – particularly the decision about which maintenance strategy or 
tactic should be used for each maintenance-significant item of the total system. Decision 
analysis is one method that can assist the maintenance manager in making rational 
decisions in optimising maintenance cost under conditions of uncertainty. In maintenance 
management uncertainty relates to the failure times of items, repair or replacement times, 
and lead time for spare parts, to name a few. 
 
De Almeida and Bohoris [2] reviewed basic decision theory concepts and which steps could 
be applied in practice in the maintenance environment. They built a maintenance decision 
model and outlined its applicability in a case study of a power station. Backlund and Hannu 
[3] investigated the effect of different risk analyses approaches on the quality of 
maintenance decisions. These authors emphasised that risk analysis results should be 
analysed and interpreted carefully before making maintenance decisions.  
 
Walls et al. [4] proposed a decision science methodology for evaluating alternative 
maintenance strategies. This method uses decision diagrams and the ‘value of information’ 
framework to analyse maintenance decisions by considering the mean-time-between-failure 
(MTBF) and the cost of replacement. Labib [5] developed a decision-making grid to assist in 
choosing a specific maintenance strategy. This method aims to establish a Pareto analysis of 
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two important criteria: downtime and frequency of calls. Items are then mapped on a grid 
and a maintenance strategy is recommended based on their position on the map. 
 
Pintelon et al. [6] identified two categories in maintenance management where decision 
theory could be applied: decisions in a risk environment, and decisions in an uncertain 
environment. Decisions in a risk environment can be used if sufficient data is available to 
define a probability density function. Decision-making for this situation usually involves the 
optimisation of the expected value (EV). 
 
A naturalistic maintenance decision model is proposed by Grobbelaar and Visser [7]. This 
model suggests that maintenance decision-makers should use their intuition to select a 
maintenance strategy and then use analytical methods to confirm the accuracy of their 
decision. Many maintenance decisions require an analysis of several competing criteria. 
Triantaphyllou et al. [8] illustrate how the most important criteria can be determined for a 
multi-criteria decision-making application in maintenance. 

3.2 Renewal theory 

The application of renewal theory in maintenance and reliability management was 
introduced as early as 1939 [9]. This statistical method uses distribution functions – for 
example, the Weibull distribution function – to determine the optimal replacement 
intervals for components. Renewal theory assumes that replacement will take place 
directly after the failure has occurred, and that it can only be applied to non-repairable 
components that are discarded after their first failure [10,11]. Renewal theory is not 
applicable where the failure data indicates that the component’s or system’s reliability 
improves (failure rate decreases with each replacement) or deteriorates (failure rate 
increases with each replacement; typical of refurbished components) [10]. In these cases, 
repairable systems theory – for example, the non-homogeneous Poisson process model – 
should be used. This paper will be limited to failure data that can be modelled using 
renewal theory.  
 
Various probability distributions, such as the normal, lognormal, Weibull, and gamma 
distributions, can be used to model the time-to-failure of components of a system. In this 
paper, only the Weibull probability density function is considered. In cases where a 
component is replaced before it has failed, or where it has failed subsequent to a failure of 
another component that is not under investigation, the data is considered to be suspended. 
In these cases, the ranks of the data have to be adjusted. The data of a Weibull plot should 
form a straight line, but in some cases it appears curved. This can occur for various 
reasons, and is likely because the life of the component will always be more than a specific 
period. In these cases it is more appropriate to use the three-parameter Weibull 
distribution function [12]. This paper will not consider suspensions (replacements that took 
place before a failure occurred or due to the failure of another component) and will only 
use the two-parameter Weibull distribution function. Although this paper presents the 
process that was followed to develop a model for determining the value of predictive 
maintenance for specific conditions, the same process can be used to develop models under 
different conditions – such as when the failure data requires that a different distribution 
function be used. 

3.3 Laplace trend test 

Since this paper is limited to failure data to which renewal theory can be applied, the first 
step is to determine whether renewal theory provides an appropriate model of the failure 
data. In order to determine this, the Laplace trend test is used. This test (also referred to 
as the centroid test) is used to determine whether there is a trend in the chronologically- 
ordered failure data. The test statistic, U, is calculated by means of Equation 1 [13]: 
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If 1 ≥ U ≥ -1, there is no underlying reliability degradation or improvement, and thus 
renewal theory can be applied [11].  

3.4 Weibull probability density function 

The Weibull probability density function provides the probability of failure of a component 
at a given time, and can be determined by means of Equation 2 [12]: 

𝑓(𝑡) =  𝛽
𝜂
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𝜂
�
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e−�
𝑡
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3.5 Determination of parameters of distributions 

The parameters of a probability distribution (Weibull or other distribution) for a component 
can be determined from failure data, using various methods. One method is to use special 
probability graph paper. Failure times of the component are ordered and the cumulative 
probability of failure is estimated. This cumulative probability is plotted typically on the Y-
axis of the probability paper, and the failure time is plotted on the X-axis. If a straight line 
can be fitted through the data points, the distribution selected is an appropriate model for 
the failure behaviour. The parameters can also be determined by iterative methods and by 
a least squares fit of the cumulative distribution function of the failure data. Using the 
maximum likelihood method, the shape (β) parameter of the Weibull distribution function 
can be determined iteratively from the following equation [12]: 

1
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The value obtained for β can now be substituted in Equation 4 to obtain the value of the 
scale parameter (η) of the Weibull distribution [12]. 

𝜂 =  �∑ e𝑖
𝛽𝑛

𝑖=1

n
�
1
𝛽�
 (4) 

The probability distribution function, reliability function, and determination of the 
parameters of the distribution are used to develop the equations for the determination of 
the EV of information for non-repairable components. 

3.6 Optimal preventive replacement age of component 

Preventive maintenance of a component has the obvious benefits of reducing downtime and 
causing no sequential damage to other components of a system. However, making 
replacements too frequently increases the cost; there is therefore an optimum replacement 
interval that will provide an optimum (minimum) cost of maintenance. The maintenance 
cost per unit time for preventive maintenance is given by Equation 5 [14]: 

𝐶�𝑡𝑝� =  𝐶𝑡
𝐿𝑒

=  𝐶𝑝𝑅(𝑡𝑝)+ 𝐶𝑓�1−𝑅(𝑡𝑝)�

�𝑡𝑝+ 𝑇𝑝�𝑅�𝑡𝑝�+ ∫ 𝑡𝑓(𝑡)𝑑𝑡+𝑇𝑓�1−𝑅(𝑡𝑝)�𝑡𝑝
−∞

 (5) 

The optimal replacement cost per unit time will be where C(tp) has the lowest value for a 
series of 𝑡𝑝. The specific value of 𝑡𝑝 can be determined either through graphical inspection 
or differentiating the equation for C(tp), setting it equal to zero and solving for 𝑡𝑝 [10]. 

3.7 Decision analysis 

Basic decision analysis was developed as early as 1654 by Blaise Pascal and Pierre de 
Fermat, to calculate the probabilities of chance events [15]. The purpose of decision theory 
is to assist a decision-maker in making decisions. Clemen and Reilly [16] wrote the following 
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to indicate how useful the decision analysis technique is when difficult decisions have to be 
taken in business and projects: 
 
“Decision analysis provides structure and guidance for systematic thinking in difficult 
situations. However, it does not claim to recommend an alternative that must be blindly 
accepted.”  
 
Bunn [17] also emphasised that the goal of decision analysis is not to replace the intuition 
of the individual decision-maker, but rather to support the decision-maker in understanding 
the nature of a particular problem or situation. Raiffa [18] mentioned a common complaint 
about decision analysis: that it is often performed with imperfect input data. However, he 
added that it is better to make use of imperfect input data than using no input data at all. 
 
The decision theory in the next section was adopted from Clemen and Reilly [16], and will 
indicate how the EV of imperfect information can be calculated by using decision trees. 
3.7.1 Expected value (EV): 
In order to determine the value of a chance event, the EV method is used. This method can 
also be used to determine the EV of predictive maintenance. The general EV method is 
discussed first and then combined with renewal theory to determine the EV of predictive 
maintenance. The EV is determined as the weighted average of the possible outcomes. 
Decision trees illustrate the probability of occurrences, possible outcomes, and 
consequences. Decision trees comprise decision- or action–nodes as well as event- or 
chance-nodes.  
 
For a situation where there are two possible consequences resulting from an event, the 
problem can be illustrated through a probability tree, as shown in Figure 1 [16]: 

 

Figure 1: Typical probability tree 

The EV is then given by Equation 6: 

𝐸𝑉1 = 𝑝𝐶1 + (1 − 𝑝)𝐶2 (6) 

3.7.2 Expected value (EV) of information: 
Decision trees can also be used to illustrate how information (prediction of a possible 
outcome) can be used to choose between alternatives. Decision can help to indicate what 
the probability of a specific outcome is, given that a decision was made subsequent to a 
prediction. This method can be used to determine the EV of information. For example, it 
can be used to determine the value of a weather forecaster, given that the weather on a 
particular day will have a monetary influence. To illustrate such a problem, the decision 
tree is first illustrated in the normal format, as indicated in Figure 2. The ‘folded’ tree is 
illustrated in Figure 3, and then decision positions are added to the diagram, as given in 
Figure 4. This process is generic, and is taken from Clemen and Reilly [16]. However, the 
exact application is problem–specific, and the decision tree example provided below is 
specifically for the application in this paper. 
 
The EV for the decision tree in Figure 2 is given by the following equation: 
𝐸𝑉2 = 𝑝𝑥𝐶1 + 𝑝(1 − 𝑥)𝐶2 + (1 − 𝑝)𝑧𝐶3 + (1 − 𝑝)(1 − 𝑧)𝐶4 (7) 
 

A
p

1-p

C1

C2
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The EV of information can be calculated by subtracting the EV subsequent to a prediction, 
from the EV without a prediction. In the case of the weather forecaster, the EV of 
information can be determined by subtracting the expected monetary value of a specific 
day without using a weather forecaster from the expected monetary value when a 
forecaster, whose forecasting accuracy is known, is used. 

4 VALUE OF INFORMATION FOR NON-REPAIRABLE COMPONENTS 

In many cases it can be more cost-effective to replace a component preventively rather 
than reactively, especially if a failure causes damage to other equipment. Following this, a 
component can be replaced preventively based either on the time it has been used 
(preventive maintenance) or on its condition (predictive maintenance). The assumption in 
predictive maintenance is that failure age can be predicted based on some sort of 
measureable event or gradual deterioration. Thus in order to implement predictive 
maintenance, the condition of an asset has to be determined. If the condition is not 
satisfactory, repair or replacement has to be implemented. This type of maintenance is 
referred to as condition-based maintenance (CBM). Examples of such models can be found 
in Kaiser and Gebraeel [19], Swanson [20], and Ming-Yi et al. [21]. The purpose of this 
paper is not to prove that such predictive models exist nor that they are reliable; this paper 
assumes simply that they do exist and that their reliability can be defined in terms of a 
constant probability. Different condition monitoring techniques can be used, such as 
vibration measurement, temperature measurement, and oil analysis. The results from the 
condition measurement, in combination with a predictive model, can then be used to 
predict when a component will fail and whether the component should be replaced or not. 
The benefit of using predictive maintenance as a preventive maintenance strategy is that a 
component can be replaced based on its condition, and ideally just before it fails.  

 

Figure 2: Decision tree to illustrate influence of information 

 

Figure 3: ‘Folded’ decision tree that illustrates the probability of occurrence of an 
event, given a certain prediction 
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Figure 4: Decision tree that illustrates a decision that can be made, given a certain 

prediction 
 
However, determining the cost per unit time of predictive maintenance is an area that is 
reasonably unchartered in the maintenance literature. This means that it is difficult to 
determine the EV of predictive maintenance, and thus it is difficult to determine whether 
or not a specific method of predictive maintenance will be financially viable to implement. 
Since predictive maintenance is essentially a predictive exercise, the value of predictive 
maintenance can be determined by using the EV of information method as explained above, 
and replacing the probability of occurrence (p) with the probability of failure (in this case 
f(t)). The results of this argument are illustrated below. 

4.1 Main assumptions 

In order to simplify the development of the model for determining the EV of information for 
non-repairable components, the following assumptions were made: 
 
1. The failure data can be presented by a two-parameter Weibull probability density 

function. 
2. The user will take action according to the prediction made by a predictive 

maintenance model in combination with a CBM technique (in other words, if it is 
predicted that the component will fail, it will be replaced; however, if it is predicted 
that the component will survive, it will not be replaced). If this is not the case, the 
decision tree will have to be extended by another level. This scenario is possible to 
model, but it is outside the scope of this paper. 

3. The prediction can be perfect or imperfect. If the prediction is perfect, the 
probability of a prediction given an occurrence will be 1. If the prediction is 
imperfect, the probability of a prediction given an occurrence will be between 0 and 
1. The value of the probability of the prediction is determined by the reliability of the 
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predictive maintenance model. For instance, if the model is only correct 50 per cent 
of the time, then the probability will be equal to 0.5. 

4. The probability of a prediction given an occurrence will always remain constant (the 
reliability of the predictive maintenance model will always be the same). 

5. If, based on the results of the CBM technique, the predictive maintenance model 
predicts that the component will not fail and the component is subsequently not 
replaced, the associated maintenance cost is 0. 

 
In order to simplify referencing, the following variables will be modified as follows: 
 
p probability of occurrence, F 
z probability of prediction, “S” 
x probability of prediction, “F” 

4.2 Expected value (EV) of predictive maintenance 

Decision trees are used to illustrate how the EV of information technique is used in 
combination with renewal theory to determine the EV of predictive maintenance. The first 
step in the process is to illustrate the prediction scenario at any given time in terms of the 
EV of information, as indicated in the previous section. This process is illustrated below. 
 

 

Figure 5: Decision tree used to illustrate influence of information 

 

Figure 6: ‘Folded’ decision tree that illustrates probability of occurrence of an event, 
given a certain prediction 

At any given point in time, the EV will thus be: 

𝐸𝑉 =  𝐶𝑇 =  𝐶𝑝[𝑝𝑥 + (1 − 𝑝)(1 − 𝑧)] + 𝐶𝑓[𝑝(1 − 𝑥)] +  0[(1 − 𝑝)𝑧] (8) 

The expected cycle length for the example above is: 
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 𝐿𝑒 = (𝑡𝑝 +  𝑇𝑝)[𝑝𝑥 + (1 − 𝑝)(1 − 𝑧)] + (𝑡𝑓 +  𝑇𝑓)[𝑝(1 − 𝑥)] +  0[(1 − 𝑝)𝑧] (9) 

To determine the replacement cost per unit time, the total EV must be divided by the 
expected cycle length, as illustrated by Equation 10: 

𝐶𝑇 

𝐿𝑒
=  ∫ 𝐶𝑝[𝑝𝑥+(1−𝑝)(1−𝑧)]+ 𝐶𝑓[𝑝(1−𝑥)]+ 0[(1−𝑝)𝑧] 𝑑𝑡∞

−∞

∫ 𝑡𝑝 𝑑𝑡+ ∫ 𝑇𝑝[𝑝𝑥+(1−𝑝)(1−𝑧)] +𝑇𝑓
∞
−∞

∞
−∞ [𝑝(1−𝑥)]+ 0[(1−𝑝)𝑧]𝑑𝑡

 (10) 

and be simplified to: 

𝐶𝑇 

𝐿𝑒
=  ∫ 𝐶𝑝[𝑝𝑥+(1−𝑝)(1−𝑧)]+ 𝐶𝑓[𝑝(1−𝑥)] 𝑑𝑡∞

−∞

∫ 𝑡𝑝 𝑑𝑡+ ∫ 𝑇𝑝[𝑝𝑥+(1−𝑝)(1−𝑧)] +𝑇𝑓
∞
−∞

∞
−∞ [𝑝(1−𝑥)] 𝑑𝑡

 (11) 

Since the assumption of a Weibull probability density function was made, the probability of 
failure (p) can be replaced by the Weibull probability density function (f(t)). Thus at any 
given point in time: 

𝑝 =  𝑓(𝑡) =  𝛽
𝜂
�𝑡
𝜂
�
𝛽−1

e−�
𝑡
𝜂
�
β
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Subsequently, the following equation can be derived to calculate the EV of preventive 
maintenance per unit time: 

𝐶𝑇 

𝐿𝑒
=  ∫ 𝐶𝑝[𝑓(𝑡)𝑥+(1−𝑓(𝑡))(1−𝑧)]+ 𝐶𝑓[𝑓(𝑡)(1−𝑥)] 𝑑𝑡∞

−∞

∫ 𝑡𝑓(𝑡) 𝑑𝑡+ ∫ 𝑇𝑝[𝑓(𝑡)𝑥+(1−𝑓(𝑡))(1−𝑧)] +𝑇𝑓
∞
−∞

∞
−∞ [𝑓(𝑡)(1−𝑥)] 𝑑𝑡

 (13) 

If replacement time is negligible compared with failure time, this can be simplified to:  

𝐶𝑇 

𝐿𝑒
=  ∫

𝐶𝑝[𝑓(𝑡)𝑥+(1−𝑓(𝑡))(1−𝑧)]+ 𝐶𝑓[𝑓(𝑡)(1−𝑥)] 𝑑𝑡∞
−∞

∫ 𝑡𝑓(𝑡) 𝑑𝑡∞
−∞

 (14) 

To determine which maintenance strategy should be used, the difference between the EVs 
should be calculated. The maintenance strategy with the lowest cost is preferable. Most 
maintenance strategies cost money to implement. This cost can be added to the EV to 
calculate the total cost of the strategy. Again, the different strategies can be evaluated 
against each other to determine which strategy will be the most cost-effective to 
implement. 

5 EXAMPLE 

In order to illustrate how this model can assist with maintenance decision-making, a simple 
hypothetical example will be provided. Important to note is that the data was selected 
randomly, and that the aim is to illustrate the application of the process, and not to imply 
a preference for a specific maintenance strategy. In this example, the decision-maker will 
have to choose between implementing a run-to-failure, a preventive maintenance, or a 
predictive maintenance strategy. 

5.1 Hypothetical problem 

A maintenance practitioner has been contacted by a condition-monitoring consultant who 
argues that he/she can significantly reduce the maintenance costs of the maintenance 
practitioner’s company by implementing predictive maintenance on an electrical fan motor 
that is used continuously for 350 days per annum. Based on historical data, the 
maintenance practitioner has determined that a specific bearing within the assembly 
(including the electrical motor and the fan) determines the lifetime of the assembly. Thus, 
if the bearing survives, the assembly survives. However, if the bearing fails, it leads to 
consequential damage and the whole assembly has to be replaced. The maintenance 
practitioner has gathered failure data on the bearing, illustrated in Table 1, where t is the 
failure time of the ith failure and T is the cumulative value of the failure times. 
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Based on historical data, the maintenance practitioner has determined that if the bearing 
were replaced preventively, it would cost ZAR 650. However, if the bearing failed, the total 
replacement cost would amount to ZAR 60,000 (including replacement of the full 
assembly). The specific company uses 20 of these fan assemblies in similar conditions, for 
which the failure data is also similar. According to the CBM consultant, their predictive 
maintenance model will correctly predict 95 per cent of failures, and will never have give 
false alarms. The CBM consultant proposes to the maintenance practitioner that they can 
provide this predictive maintenance model (including the monitoring equipment) to their 
company at a total annual cost of ZAR 80,000.  

Table 1: Failure data for the bearing 

i t (days) T (days) 

1 134 134 

2 45 179 

3 189 368 

4 267 635 

5 89 724 

6 134 858 

7 146 1004 

8 170 1174 

9 94 1268 

10 153 1421 
 
The maintenance decision-maker decided that before the predictive maintenance strategy 
were implemented, it should be compared with other options. The maintenance decision-
maker decided that four strategies should be considered: 
 
• run-to-failure; 
• preventive maintenance based on the MTBF; 
• preventive maintenance based on the optimal preventive replacement age of the 

component; and 
• predictive maintenance. 

5.2 Assumptions 

• the impact of stopping for 15 days of the year can be ignored; 
• all occurrences are failures, i.e., no suspensions; 
• all failures led to replacement of the complete assembly; and 
• in order to calculate the preventive maintenance cost of replacement at the MTBF, 

the preventive replacement age was set to the MTBF (i.e., tp = MTBF) and inserted 
into Equation 5. 

5.3 Calculations 

The first step was to determine whether renewal theory was applicable. In this case, U = -
0.041 and thus renewal theory could be used.  
 
Subsequently the Weibull shape and scale parameters can be estimated: 
 
β = 2.63 
η = 159.96 
 
The following constants were used: 
 
𝐶𝑝 = ZAR 650 
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𝐶𝑓  = ZAR 60,000 
z = 1 
x = 0.95 
 
The constants can then be inserted into Equation 14:  

𝐶𝑇 

𝐿𝑒
=  ∫

650[𝑓(𝑡) × 0.95+(1−𝑓(𝑡))(1−1)]+ 60 000[𝑓(𝑡)(1−0.95)] 𝑑𝑡∞
0

∫ 𝑡𝑓(𝑡) 𝑑𝑡∞
0

 (15) 

This equation can then be simplified to: 

𝐶𝑇 

𝐿𝑒
=  ∫

 �3 617.5𝑓(𝑡)� 𝑑𝑡∞
0

∫ 𝑡𝑓(𝑡) 𝑑𝑡∞
0

 (16) 

Using numerical integration, the cost of the various maintenance strategies can be 
calculated as shown in Table 2.  

Table 2: Scenario analysis for different strategies 

Maintenance strategy 
Replacement 

age (days) 
Replacement 

cost (ZAR/day) 
Replacement cost 

(ZAR/year) 

Run-to–failure N/A 422.15 147,753 

Preventive maintenance (based on 
MTBF) 142.1 259.81 90,933 

Preventive maintenance (based on the 
optimal replacement age) 26.7 44.29 15,502 

Predictive maintenance N/A 25.45 8,908 

5.4 Recommendations 

By implementing the predictive maintenance strategy, the total annual replacement cost 
saving for 20 fans is approximately ZAR 2,776,892. In this case, the predictive maintenance 
strategy should also be ZAR 131,882 per annum less than a preventive maintenance (based 
on the Weibull probability density function) strategy if implemented on all 20 fans. Thus at 
an annual fee of ZAR 80,000, the predictive maintenance strategy should be implemented. 

6 CONCLUSIONS AND RECOMMENDATIONS 

The benefit of CBM is that information about the condition of a component is available. 
With this information, in combination with a predictive maintenance model, a prediction 
can be made about whether a component will fail; subsequently it can be decided whether 
it should be replaced. This paper has illustrated how a model was developed to calculate 
the EV of information for non-repairable components that can be used to determine the 
replacement cost per unit time of a predictive maintenance strategy. This predicted cost 
can then be compared with the cost of alternative maintenance strategies, and thus be 
used to choose between maintenance strategies. 
 
Future research should focus on case study analyses to determine the practical application 
of this model, as well as to expand the theory to repairable systems. By confirming the 
practicality of this model, and by expanding its application area, it should become a very 
useful tool for maintenance decision-makers to use when choosing between maintenance 
strategies. 

REFERENCES 

[1] International Organization for Standardization. 2014. ISO 55001, Asset management - 
Management systems – Requirements. Retrieved from  

 http://www.iso.org/iso/catalogue_detail?csnumber=55089 (Accessed on 23 March 2015). 
[2] De Almeida, A.T. & Bohoris, G.A. 1995. Decision theory in maintenance decision making, 

Journal of Quality in Maintenance Engineering, 1(1), pp. 39-45. 

161 



[3] Backlund, F. & Hannu. J. 2002. Can we make maintenance decisions on risk analysis results? 
Journal of Quality in Maintenance Engineering, 8 (1), pp. 77-91. 

[4] Walls, M.E., Thomas, M.E. and Brady, T.F. 1999. Improving system maintenance decision: A 
value of information framework, The Engineering Economist, 44(2), pp. 151-167. 

[5] Labib, A.W. 2004. A decision analysis model for maintenance policy selection using a CMMS, 
Journal of Quality in Maintenance Engineering, 10(3), pp. 191-202. 

[6] Pintelon, L.M., Gelders, L.F. & Van Puyvelde, F. 1997. Maintenance management. Belgium: 
Uitgeverij Acco. 

[7] Grobbelaar, S. & Visser, J.K. 2010. Evaluating strategic maintenance decision making, 
Conference Proceedings: Euromaintenance International Maintenance Conference. Verona, Italy, 
May 12-14, pp. 105-109. 

[8] Triantaphyllou, E., Kovalerchuk, B., Mann, L. & Knapp, G.M. 1997. Determining the most 
important criteria in maintenance decision making, Journal of Quality in Maintenance 
Engineering, 3(1) pp. 16-28. 

[9] Rueda, A. & Pawlak, M. 2004. Pioneers of the reliability theories of the past 50 years, Reliability 
and Maintainability Annual Symposium – RAMS, pp. 102-109. 

[10] Coetzee, J.L. 1997. Maintenance. Hatfield: Maintenance Publishers. 
[11] Vlok, P.J. 2012. Introduction to elementary statistical analysis of failure time data: long term 

cost optimization and residual life estimation. Published as part of the Quality Management 444 
course presented at the Department of Industrial Engineering, University of Stellenbosch. 

[12] Evans, M., Hastings, N. & Peacock, B. 2000. Statistical distributions, 3rd edition, New York: John 
Wiley & Sons. 

[13] O’Connor, P.D.T. 2008. Practical reliability engineering, 4th edition, West Sussex, England: John 
Wiley & Sons, Ltd. 

[14] Jardine, A.K.S. 1973. Maintenance, replacement and reliability. New York, USA: Pitman 
Publishing. 

[15] Buchanan, L. & O’Connell, A. 2006. A brief history of decision making, Harvard Business Review, 
84(1), pp. 32-41. 

[16] Clemen, R.T. & Reilly, T. 2001. Making hard decisions with decision tools, USA: Duxbury. 
[17] Bunn, D. 1984. Applied decision analysis, New York: McGraw-Hill. 
[18] Raiffa, H. 2002. Decision analysis: A personal account of how it got started and evolved, 

Operations Research, 50(1), pp. 179-185. 
[19] Kaiser, K.A. and Gebraeel, N.Z. 2009. Predictive maintenance management using sensor-based 

degradation models, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and 
Humans, 39(4), pp. 840-849. 

[20] Swanson, D.C. 2001. A general prognostic tracking algorithm for predictive maintenance, IEEE 
Proceedings from the Aerospace Conference, 6, pp. 2971-2977. 

[21] Ming-Yi, Y., Lin, L., Guang, M. & Jun, N. 2010. Cost-effective updated sequential predictive 
maintenance policy of continuously monitored degrading systems, IEEE Transactions on 
Automation Science and Engineering, 7(2), pp. 257-265. 

162 


	DETERMINING THE COST OF PREDICTIVE COMPONENT REPLACEMENT IN ORDER TO ASSIST WITH MAINTENANCE DECISION-MAKING
	S. Grobbelaar0F  & J.K. Visser21F(

	ABSTRACT
	OPSOMMING
	1  INTRODUCTION
	2 VARIABLES USED
	3 LITERATURE
	3.1 Decision-making in maintenance
	3.2 Renewal theory
	3.3 Laplace trend test
	3.4 Weibull probability density function
	3.5 Determination of parameters of distributions
	3.6 Optimal preventive replacement age of component
	3.7 Decision analysis
	3.7.1 Expected value (EV):
	3.7.2 Expected value (EV) of information:


	4 VALUE OF INFORMATION FOR NON-REPAIRABLE COMPONENTS
	4.1 Main assumptions
	4.2 Expected value (EV) of predictive maintenance

	5 EXAMPLE
	5.1 Hypothetical problem
	5.2 Assumptions
	5.3 Calculations
	5.4 Recommendations

	6 CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES

