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Abstract 

 

Given the existence of non-normality and nonlinearity in the data generating process of real 

house price returns over the period of 1831-2013, this paper compares the ability of various 

univariate copula models, relative to standard benchmarks (naive and autoregressive models) in 

forecasting real US house price over the annual out-of-sample period of 1859-2013, based on an 

in-sample of 1831-1873. Overall, our results provide overwhelming evidence in favor of the 

copula models (Normal, Student’s t, Clayton, Frank, Gumbel, Joe and Ali-Mikhail-Huq) relative 

to linear benchmarks, and especially for the Student’s t copula, which outperforms all other 

models both in terms of in-sample and out-of-sample predictability results. Our results highlight 

the importance of accounting for non-normality and nonlinearity in the data generating process 

of real house price returns for the US economy for nearly two centuries of data. 
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1. Introduction 

 

The recent global financial crisis has resulted in a keen interest in both academic and policy 

circles on the role of asset prices, and in particular, housing prices on economic activity. As 

Leamer (2007) notes the housing market predicted eight of the ten post World War II recessions, 

acting as a leading indicator for the real sector of the economy. In fact, he goes as far as to state 

that “Housing is the Business cycle”. More recently Balcilar et al., (2014) provide evidence of 

the role of housing prices in causing even the “Great Depression.” Recently, several authors 

indicate that house prices can be instrumental in forecasting output. (Forni et al, 2003; Stock and 

Watson, 2003; Gupta and Das, 2010; Das et al, 2009; 2010; 2011; Gupta and Hartley, 2013). The 

housing construction sector represents a large part of total economic activity expressed in the 

GDP. Consequently, as it reflects a large portion of the overall wealth of the economy, house 

prices fluctuations can be an indicator of the evolution of GDP (Case et al, 2005). As it is the 

case with other assets, the movement of house prices can be also an indicator of the future 

direction of inflation as well (Gupta and Kabundi, 2010). Overall, accurate forecasting of the 

evolution path of house prices can be a useful tool both to housing market participants and 

monetary policy authorities.  

 

There is a vast literature regarding U.S. house prices forecasting, both at regional and national 

levels. Rapach and Strauss (2007) use an autoregressive distributed lag (ARDL) model 
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framework, containing 25 determinants to forecast real housing price growth for the individual 

states of the Federal Reserve’s Eighth District. They find that ARDL models tend to outperform 

a benchmark AR model. Rapach and Strauss (2009) extend the same analysis on the 20 largest 

U.S. states based on ARDL models examining state, regional and national level variables. Once 

again, the authors reach similar conclusions on the importance of combining forecasts of models 

with different lag structure. Gogas and Pragidis (2010) use the risk premium calculated as the 

difference between various long-term interest rates and the agents’ expectations about future 

short-term rates as an input variable in predicting the future direction of house prices. They 

conclude that investors and analysts can use effectively the information provided by the interest 

rate risk premium today in order to estimate the probability of obtaining a below-trend S&P CS-

10 index three months ahead.  

 

Gupta and Das (2010) also forecast the recent downturn in real house price growth rates for the 

twenty largest U.S. states. The authors use Spatial Bayesian VARs (BVARs), based only on 

monthly real house price growth rates, to forecast their downturn over the period 2007:01 to 

2008:01. They find that BVAR models are well-equipped in forecasting the future direction of 

real house prices, though they significantly underestimate the decline. They attribute this under-

prediction of the BVAR models to the lack of any information on fundamentals in the estimation 

process. Das et al., (2010) use small-scale BVARs, Bayesian Factor Augmented VARs 

(BFAVARs) and large-scale BVARs in forecasting house prices of the nine census regions. The 

authors use the standard Minnesota Bayesian prior in estimating the Bayesian models. They 

indicate that the BFAVARs are best-suited in forecasting the house price growth rates of the nine 

census divisions. Gupta et al., (2011) examine the explanatory power of small and large sets of 

economic variables, using atheoretical models such as VAR, BVAR, FAVAR, BVAR, 

BFAVAR, and forward-looking structural Dynamic Stochastic General Equilibrium (DSGE) 

models. Based on the average root mean-squared errors for the one-, two-, three-, and four-

quarters-ahead forecasts, they find that the small-scale Bayesian-shrinkage model fed with 10 

variables outperforms all the other models, however, the state-space-based DSGE model was the 

only model to predict the downturn. Similar observations, in terms of forecasting the downturn in 

house prices, have also been recently made by Zietz and Traian using state-space models as well.  

Gupta (2013) uses dynamic factor and Bayesian shrinkage models in a large number of 

predictors (145 variables) and forecasts house prices for four U.S. census regions and for the 

aggregate economy. The results show that the BFAVAR models exhibit the best forecasting 

ability. Superior performance of factor models in forecasting housing prices have also been 

depicted by Bork and Møller (2012). Similar results were also obtained by Gupta and Kabundi 

(2010) and Aye and Gupta (forthcoming) using Bayesian predictive regressions in forecasting 

the overall US house price index.  

 

More recently, Balcilar et al., (forthcoming) compared the ability of nonlinear AR models in 

forecasting nominal house price growth rates of the four U.S. census regions and the aggregate 

economy, relative to an AR model. Interestingly, even though they could detect nonlinearity in the 

in-sample for all the 5 growth rates of house prices, when it came to out-of-sample point, interval and 

density forecasting, the evidence in favor of the nonlinear model was virtually non-existent. These 

results were in sharp contrast to earlier evidence on forecasting house prices using univariate 

nonlinear, as in Miles (2008) and Cabrero et al., (2011), but are similar to Barari et al., (2014). 

While, Plakandaras et al., (2014) combines Ensemble Empirical Mode Decomposition from the 

field of signal processing with the machine learning Support Vector Regression (SVR) 



methodology for forecasting house prices. Their results point to superior performance of the 

SVR methodology when compared to Bayesian models. Similarly, Bork and Møller 

(forthcoming) indicates superior forecasting performances from time-varying, hence nonlinear, 

multivariate (based on regional and national predictors) models for state-level house price 

forecasting. 

 

Clearly then, large number of models; linear and nonlinear, univariate and multivariate have 

been used in forecasting house prices, with results contingent upon not only the type of models 

chosen, predictors used and also periods under study.
1
 Against this backdrop, the objective of 

this paper is to compare the ability of various univariate copula models, relative to standard 

benchmarks (random walk and autoregressive models) in forecasting real US house price over 

the annual out-of-sample period of 1874-2013, based on an in-sample of 1831-1873. Note that, 

since we work with real housing returns, we loose the first observation (1830) related to real 

house price. The starting point of the out-of-sample period, over which our model is recursively 

estimated, is driven by the fact that the first structural break, based on the Bai and Perron (2003) 

test, in the real housing returns is obtained in 1874. Our study is unique, not only because it is the 

first study to use copula models in forecasting house prices, but also because our study uses the 

longest available house price series for the US economy and hence, allows us to capture best the 

evolution of the US housing market over time. Further note that the decision to use an univariate 

approach is not only governed by the lack of standard predictors of house prices over this 

prolonged period, but primarily because, with house prices shown to be a leading indicator for 

the US economy, it is more pragmatic to obtain house price forecasts independent of its so-called 

predictors.  

 

At this point, it is important to emphasize the reasons behind our decision to use copula models 

in forecasting house prices. First, copulas can be used to define nonparametric measures of 

dependence for pairs of random variables, which in our case happens to be the real housing price 

returns and its first lag. When fairly general and/or asymmetric modes of dependence are 

relevant, such as those that go beyond correlation or linear association, then copulas play a 

special role in developing additional concepts and measures. Also, statisticians or 

econometricians often possess more information about marginal distributions of related variables 

than their joint distribution. The copula approach is a useful method for deriving joint 

distributions given the marginal distributions, especially when the variables are non-normal. 

Finally, copulas are useful extensions and generalizations of approaches for modeling joint 

distributions and dependence that have appeared in the literature. As we show below based on 

statistical tests, not only does house price evolve in a nonlinear fashion,
2
 but is also nonlinearly 
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related to its past, but real housing price returns are also non-normal; clearly then, making the 

variable under consideration suitable for being modeled using copulas. The rest of the paper is 

organized as follows: Section 2 discusses the basics behind copulas, with Section 3 presenting 

the data and results. Finally, Section 4 concludes the paper.  

2. The Basics Copula Theory: 

In probability theory and statistics, a copula is a joint probability distribution for which the 

marginal probability distribution of each variable is uniform. Copulas are popular in high-

dimensional statistical applications as they allow one to easily model and estimate the 

distribution of random vectors by estimating marginals and copula separately. Copulas are used 

to describe the dependence between random variables, in our case the current and the lagged 

value of real housing returns. There are many parametric copula families available (as described 

below), which usually have parameters that control the strength of dependence. 

The theorem underlying copulas was introduced in a 1959 article by Sklar written in French; a 

similar article written in English followed in 1973 (Sklar, 1973). The idea of copula had 

previously appeared in a number of papers, most notably in Hoeffding (1940, 1941) who 

established best possible bounds for these functions and studied measures of dependence that are 

invariant under strictly increasing transformations. Relationships of copulas to other work is 

described in Nelsen (2006). 

 

Succinctly stated, copulas are functions that connect joint distributions to their one-dimensional 

margins. If F is an m-dimensional cumulative distribution function (cdf ) with one-dimensional 

margins F1 , . . . , Fm , then there exists an m-dimensional copula C such that F (y1 , . . . , ym) 

=C(F1(y1), . . . , Fm(ym)).  

 

Sklar's Theorem states that any joint joint distribution can be written in terms of univariate 

marginal distribution functions and a copula which describes the dependence structure between 

the variables. 

                                                                                                                                                                                           
explanations for intrinsic nonlinearity in house prices exist. First, as noted above, households respond 

asymmetrically over the business cycle. Abelson et al. (2005) argue that households more likely buy when prices 

rise, because they expect further rises and try to avoid higher payments. Households will less likely buy or sell, 

however, due to loss aversion with falling house prices. Seslen (2004) argues that households exhibit forward-

looking behavior and a higher probability of trading up, during expansions, since equity constraints prove less 

binding. During the downswing of the housing market cycle, households less likely trade, implying downward 

rigidity of house prices. Loss aversion during the downswing more likely reduces the mobility of households as well 

as trading activity. Further, Muellbauer and Murphy (1997) note that the presence of lumpy transaction costs in the 

housing market can also cause non-linearity. Given these issues, it makes sense to test for non-linear housing price 

movements. 
 



Some examples of popular copulas are Gaussian and t copulas. A particular group of copulas that 

has proved useful in empirical modeling is the Archimedean class. Archimedean copulas are 

popular because they are easily derived and are capable of capturing wide ranges of dependence. 

Some examples in the Archimedian class are the Gumbel, Frank, Joe, Clayton, Ali Mikhail Huq. 

In this paper, we considered the following types of copulas: 

Gaussian (Normal) copula: The normal copula takes the form 

C(u1, u2; θ) = ΦG (Φ
−1

(u1), Φ
−1

(u2); ρ) , where Φ is the cumulative distribution function of the 

standard normal distribution, and ΦG (u1, u2; ρ) is the standard bivariate normal distribution with 

correlation parameter ρ restricted to the interval (−1 , 1).  The value of ρ=0, corresponds to 

independence. 

 

 Student’s t-copula: An example of a copula with two dependence parameters is that for the 

bivariate t-distribution with ν degrees of freedom and correlation ρ, takes the form 

C
t
(u1, u2; ρ) = TG (T

−1
(u1), T

−1
(u2); ρ) , where T is the cumulative distribution function of the t 

distribution with ν degree of freedom, and TG (u1, u2; ρ) is the bivariate t distribution with ν 

degree of freedom with correlation parameter ρ restricted to the interval (−1 , 1).  The value of  

ρ=0,  like the Gaussian copula, corresponds to independence. 

 

The Clayton copula  (Clayton, 1978) copula, also referred to as the Cook and Johnson (1981) 

copula, originally studied by Kimeldorf and Sampson (1975), takes the form: 

C(u1, u2 ; ρ) = (u1
−ρ 

 1 + u2 
−ρ 

 − 1)
−1/ρ  

with the dependence parameter ρ restricted on the region 

(0, ∞). As ρ approaches zero, the marginals become independent. The Clayton copula cannot 

account for negative dependence.  

 

The Frank copula (1979) takes the form:  

C(u1, u2 ; ρ) = −ρ 
−1

 { log 1 + (e
−ρ u1

 − 1)(e
−ρ u2

 − 1)/ (e
−ρ 

 − 1)}, the dependence parameter may 

assume any real value (−∞, ∞). Value 0 corresponds to independence.  

 

The Gumbel copula (1960) takes the form: 

C(u1, u2  ; ρ) = exp −({-log(u1)}
 ρ
  + {-log(u2)}

ρ
 )

1/ρ
  , 



The dependence parameter ρ is restricted to the interval [1, ∞). Value of 1 corresponds to 

independence. 

 

The Joe copula (Nelson, 2006) takes the form: 

C(u1, u2 ; ρ) = 1 −{  (1-u1)
 ρ

 + (1-u2)
 ρ

 − (1-u1)
 ρ

 (1-u2)
 ρ

}
 ρ 

 .The dependence parameter  ρ is 

restricted to the interval [1, ∞). Value of 1 corresponds to independence. 

 

The Ali-Mikhail-Huq (AMH) copula (Nelson, 2006) takes the form  

C(u1, u2 ; ρ) = u1 u2 /{1 −ρ(1-u1)(1-u2)}, the dependence parameter ρ is restricted to the interval [-

1,1). Value of 0 corresponds to independence. 

 

3. Data and Results 

The data examined correspond to inflation-adjusted, (i.e., real) house price returns for the 

aggregate US economy covering the period of 1831-2013. The real returns are computed as 

percentage change in the natural logarithmic values of the real house price, which in turn starts 

from 1830. Since, we work with returns, we lose the first observation. Our decision to work with 

returns, rather than levels, emanates from the need to use stationary data. The unit root tests have 

been reported in Table A1 of the Appendix. The data is sourced from Winans International, and 

the index measures real values of price of new homes going back to 1830. Figures 1a and 1b 

displays the (natural) logged time series and is corresponding returns (in percentage) version, 

respectively. Table 1 provides a set of summary statistics for the real house price returns. As can 

be seen, the Jarque-Bera test rejects the null of normality and hence, provides one of the 

motivation to use Copula. Further, when Brock et al., (1996; BDS) test of nonlinearity is 

performed, as reported in Table 2, on the real rates of return, the residuals obtained from a 

regression involving the real rates of return with just a constant (Naive), and the residuals from 

an autoregressive model of order one (AR(1)) for the real rates of return, we overwhelmingly 

reject the null hypothesis that the series are i.i.d., implying nonlinearity in the data generating 

process. Consequently, these results involving non-normality and nonlinearity, motivate our use 

of Copula models. 



 

 

 

 

 

 

 

 



Table 1. Summary Statistics for the Real House Price Returns: (1831-2013) 

Observations 183 

Mean 3.28 

Median 4.68 

Maximum 53.03 

Minimum -63.23 

Std. Dev. 17.80 

Skewness -0.49 

Kurtosis 4.72 

Jarque-Bera 29.85*** 
Notes: Std. Dev.: Standard Deviation; *** indicates the rejection of the null of normality at 1 percent level of 

significance. 

Table 2. BDS (1996) Test of Nonlinearity 

Dim 

Real 

House 

Price 

Returns 

RW 

Residuals 

AR (1) 

Residuals 

2 0.0000 0.0000 0.0000 

3 0.0000 0.0000 0.0000 

4 0.0000 0.0000 0.0000 

5 0.0000 0.0000 0.0000 

6 0.0000 0.0000 0.0000 

Notes: Dim stands for dimension. Table reports the p-values of the BDS test. 

To decide on the length of our in-sample and out-of-sample, we carried out direct tests of 

multiple structural breaks on the real house price returns using the Bai and Perron (2003) tests. It 

must be pointed out that, we estimate the various copula models as well as the benchmark Naive 

and AR(1) models recursively over the out-of-sample period. Based on the Bai and Perron 

(2003) tests of structural breaks, with a maximum number of breaks set to 5 and an end point 

trimming of 5% of the observations, we detected 5 breaks for the real house price returns series 

(regressed on a constant and its first lag), at the following dates: 1874,  1883,  1920,  1933,  

1946. The break point tests have been reported in Table A2 of the Appendix. Note that, even if 

there is additional structural breaks within the 5 % trimming areas, for instance the recent 

subprime crisis, they would be captured by the nonlinear modeling of the copula within the in-

sample and the recursive estimation of all the models over the out-of-sample. Given that the first 



break occurred in 1874, our full-sample is split into 1831-1873 as the in-sample and the 1874-

2013 as the out-of-sample. 

Table 3 reports the in-sample and out-of-sample predictive ability of the models, based on the 

Akaike Information Criteria (AIC) and the mean squared error (MSE) metric, respectively. 

Turning first to the in-sample fit of the model, the Student’s t copula
3
 produces the lowest AIC 

value followed by Normal copula. The fits of the rest of the copula models are virtually the 

same. The AR(1) and the Naive model produces the worst fit, with the latter coming in last in the 

rankings. When we focus on out-of-sample forecasting of one year-ahead forecasts, the results 

are slightly different. Again, as with the in-sample results, the Student’s t copula produces the 

lowest MSE, followed by the Normal Copula. Barring the AMH copula which produces the 

highest MSEs, it is difficult to distinguish between the Clayton, Frank, Gumbel and Joe Copula 

models. Again, the Naive and AR(1) models perform poorly in comparison to all the copula 

models in terms of the MSEs. However, unlike in terms of the AIC for the in-sample fit, the 

AR(1) model is now ranked below the Naïve model. Further, based on the, the Diebold and 

Mariano (1995) test statistic of equal forecast accuracy,  the Student’s t-copula  model not only 

significantly outperforms the Naive and the AR(1) model, but also the next-best performing 

Normal copula model at one percent level of significance. All in all, our results provide 

overwhelming evidence in favor of the copula models, and especially the Student’s t copula, both 

in terms of in-sample and out-of-sample predictability results.     

Table 3. In-sample and Out-of-sample Forecasting Results 

Models AIC (1831-1873) MSE (1874-2013) 

Naive 9.36 257.78 

AR(1) 9.24 273.81 

Gaussian (Normal) copula 1.45 31.63 

Student’s t copula 0.60 24.97{-5.67***}[-6.21***](-

3.33***) 

Clayton copula 2.00 68.57 

Frank copula 2.01 68.56 

Gumbel copula 2.00 68.56 

Joe copula 2.00 68.56 

AMH copula 2.00 217.48 

                                                           
3
 The best-fit student’s t copula model had degrees of freedom equal to 20. 



Notes: AIC: Akaike Information; MSE: Mean squared error; AMH: Ali-Mikhail-Huq copula; Bold-italic entries 

corresponds to the minimum values for the AIC and the MSE corresponding to a specific model; {***}[***](***) 

indicates that the Student’s t copula significantly outperforms the {RW} [AR(1)] (Gaussian (Normal) copula) model 

at 1% level of significance based on Diebold and Mariano (1995) test of equal forecast accuracy. The corresponding 

p-values were: {1.424E-08}[5.39E-10](0.0009). 

4. Conclusions 

The recent global financial crisis has resulted in a keen interest in both academic and policy 

circles on the role of asset prices, and in particular housing prices, on economic activity. Also, 

there exists evidence that house prices lead inflation and output of the US economy. Hence, 

accurate forecasting of the evolution path of house prices can be a useful tool both to housing 

market participants and monetary policy authorities. There is a vast literature regarding U.S. 

house prices forecasting, both at regional and national levels, with large number of models; 

linear and nonlinear, univariate and multivariate frameworks used in forecasting house prices, 

with results contingent upon not only the type of models chosen, predictors used and also periods 

under study.  

Against this backdrop, the objective of this paper is to compare the ability of various univariate 

copula models, relative to standard benchmarks (naive and autoregressive models) in forecasting 

real US house price over the annual out-of-sample period of 1859-2013, based on an in-sample 

of 1831-1873. Our study is unique, not only because it is the first study to use copula models in 

forecasting house prices, but also because our study uses the longest available house price series 

for the US economy. Our decision to use a wide variety of copula models, namely Normal, 

Student’s t, Clayton, Frank, Gumbel, Joe and Ali-Mikhail-Huq, is to account for non-normality 

and nonlinearity in the data generating process of the real housing price returns. Overall, our 

results provide overwhelming evidence in favor of the copula models relative to linear 

benchmarks, and especially for the Student’s t copula, which outperforms all other models both 

in terms of in-sample and out-of-sample predictability results. Our results highlight the 

importance of accounting for non-normality and nonlinearity in the data generating process of 

real house price returns for the US economy for nearly two centuries of data.     
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APPENDIX 

 

Table A2. Multiple Break Points 

Tests    

Bai-Perron (2003) tests of 1 to M globally determined 

breaks  

Sample: 1830 2013    

Included observations: 182    

Breakpoint variables: C RRHP(-1)   

Break test options: Trimming 0.05, Max. breaks 5, Sig. level 0.10 

Allow heterogeneous error distributions across breaks  

      
      Sequential F-statistic determined breaks:  2  

Significant F-statistic largest breaks:  5  

UDmax determined breaks:   1  

WDmax determined breaks:   4  

      
        Scaled Weighted Critical  

Breaks F-statistic F-statistic F-statistic Value  

      
      1 * 6.314863 12.62973 12.62973 11.02  

2 * 5.349608 10.69922 11.25051 10.48  

3 4.432756 8.865511 10.16628 9.61  

4 * 5.975551 11.95110 14.64974 8.99  

5 * 5.008740 10.01748 12.98737 8.50  

      
      UDMax statistic*  12.62973 Critical value**  11.69 

WDMax statistic*  14.64974 Critical value**  12.33 

      
      * Significant at the 0.10 level.   

** Bai-Perron (Econometric Journal, 2003) critical 

values.  

      

Estimated break dates:    

1:  1881     

2:  1881,  1946     

3:  1881,  1930,  1946    

4:  1881,  1920,  1933,  1946    

5:  1874,  1883,  1920,  1933,  1946   

      
       


