
RESEARCH ARTICLE

Estimating the Basic Reproductive Number
(R0) for African Swine Fever Virus (ASFV)
Transmission between Pig Herds in Uganda
Mike B. Barongo1,2*, Karl Ståhl3, Bernard Bett2, Richard P. Bishop2, Eric M. Fèvre2¤a,
Tony Aliro4, Edward Okoth2, Charles Masembe5, Darryn Knobel6¤b, Amos Ssematimba2,7

1 Department of Academic Registrar (ICT Division), Makerere University, Kampala, Uganda, 2 International
Livestock Research Institute, Nairobi, Kenya, 3 Department of Disease Control and Epidemiology, National
Veterinary Institute, Uppsala, Sweden, 4 Ministry of Agriculture, Animal Industry and Fisheries, Entebbe,
Uganda, 5 Department of Biological Sciences, College of Natural and applied Sciences, Makerere
University, Kampala, Uganda, 6 Department of Veterinary Tropical Diseases, Faculty of Veterinary Science,
University of Pretoria, Pretoria, South Africa, 7 Department of Mathematics, Faculty of Science, Gulu
University, Gulu, Uganda

¤a Current address: Institute of Infection and Global Health, University of Liverpool, Leahurst Campus,
Neston, United Kingdom
¤b Current address: Center for Conservation Medicine and Ecosystem Health, Ross University School of
Veterinary Medicine, Basseterre, St Kitts and Nevis
* mbarongo@acadreg.mak.ac.ug

Abstract
African swine fever (ASF) is a highly contagious, lethal and economically devastating hae-

morrhagic disease of domestic pigs. Insights into the dynamics and scale of virus transmis-

sion can be obtained from estimates of the basic reproduction number (R0). We estimate R0

for ASF virus in small holder, free-range pig production system in Gulu, Uganda. The esti-

mation was based on data collected from outbreaks that affected 43 villages (out of the 289

villages with an overall pig population of 26,570) between April 2010 and November 2011.

A total of 211 outbreaks met the criteria for inclusion in the study. Three methods were

used, specifically; (i) GIS- based identification of the nearest infectious neighbour based on

the Euclidean distance between outbreaks, (ii) epidemic doubling time, and (iii) a compart-

mental susceptible-infectious (SI) model. For implementation of the SI model, three ap-

proaches were used namely; curve fitting (CF), a linear regression model (LRM) and the SI/
N proportion. The R0 estimates from the nearest infectious neighbour and epidemic dou-

bling time methods were 3.24 and 1.63 respectively. Estimates from the SI-based method

were 1.58 for the CF approach, 1.90 for the LRM, and 1.77 for the SI/N proportion. Since all

these values were above one, they predict the observed persistence of the virus in the pop-

ulation. We hypothesize that the observed variation in the estimates is a consequence of

the data used. Higher resolution and temporally better defined data would likely reduce this

variation. This is the first estimate of R0 for ASFV in a free range smallholder pig keeping

system in sub-Saharan Africa and highlights the requirement for more efficient application

of available disease control measures.
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Introduction
African Swine Fever (ASF) is a highly contagious, lethal and economically devastating haemor-
rhagic fever of domestic pigs. The disease is of high economic importance both globally and in
sub-Saharan Africa where demand for animal protein including pork has greatly increased in
the last two decades [1,2].

The disease is caused by African Swine Fever virus (ASFV), a large double-stranded DNA-
virus and sole member of the family Asfarviridae [3]. ASFV isolates vary in their virulence,
from highly virulent isolates that kill up to 100% of the pigs to moderately or low virulence vi-
ruses with mortalities ranging between 30–70% [4,5]. ASF produces clinical signs that range
from peracute, acute, sub-acute and chronic forms depending on the virulence of the strain, in-
tensity of exposure and pig breed [6,7]. The disease is characterised by high fever, loss of appe-
tite, haemorrhages in the skin and internal organs, and death. Pigs that apparently recover
from the disease become virus carriers [5].

ASF has spread and is now established in many sub-Saharan countries since its discovery in
Kenya in 1921 [8]. Initially it was reported from countries in East and Southern Africa but has
now spread through Central and West Africa, and Indian Ocean islands with Chad becoming
the most recent country to be affected [9]. The disease first spread outside the African conti-
nent to Portugal in 1957. From 1968–1995, ASFV in the p72 genotype I was present in Europe-
an countries including Malta, Sardinia, Italy, France, Belgium and the Netherlands. The
prevalent genotype in Gulu district is genotype IX. It was eradicated in all these countries ex-
cept Sardinia where it remains endemic and poses a continuous risk of re-introduction and
spread in Europe [10,11]. ASF was accidentally introduced into the Caucasus in 2007 from
where it spread rapidly and widely within the Russian Federation. Outbreaks were reported
more recently in Poland, Lithuania, Latvia and Estonia [12,13].

This virus is stable at a wide range of temperatures and pH and is capable of remaining in-
fective in faeces, tissue and environment for many days [10]. The incubation period in domes-
tic pigs varies from 5 to 15 days depending on the virus genotype [5]. ASFV is maintained in
two main cycles: a sylvatic cycle that involves natural hosts, namely warthogs and soft ticks
(Ornithodoros moubata) and a domestic cycle that may not involve the soft ticks [14]. In the
domestic cycle, ASFV can be transmitted by direct contact with infected animals, indirect con-
tact through fomites, and tick vectors. Transmission in the domestic cycle is exacerbated by so-
ciocultural factors such as pig movement networks (traders, butchers, boar service),
superstition and beliefs (e.g. that a carcass cannot be buried), use of untreated swill, lack of con-
finement of pigs and low biosecurity adoption [15,16].

There is currently no available vaccine against ASF and the available control strategies focus
on preventing and controlling the spread of the virus although in better-resourced parts of the
world, “stamping out” of pigs within infected farms and surrounding areas is used [10,17].

This study was based on data from confirmed outbreaks that occurred in Gulu district,
northern Uganda, in the period 2010–2011. The main economic activity in the district is sub-
sistence agriculture which engages up to 90% of the population, with 9% of the households in-
volved in pig farming. The pig production systems practiced in the study area are
predominantly traditional free ranging and tethering, supplemented by very limited semi-in-
tensive and intensive farming with virtually no biosecurity measures in regular use. In addition
to the roaming of free ranging pigs, movements in the area occur for purposes of restocking,
breeding, and trading [2,16]. Moving of apparently asymptomatic pigs to neighbouring villages
when an outbreak is suspected is an additional factor that may promote virus transmission.

Estimates of the basic reproductive number (R0) are fundamental in underpinning rational
control strategies based on disease modelling. R0 is the average number of secondary cases
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arising from a single infectious individual in a wholly susceptible population throughout its in-
fectious period [18–23]. This parameter can be estimated using a variety of mathematical tech-
niques [17,20,24]. This estimate provides a means to better understand the dynamics of
infectious disease outbreaks and to assess the potential efficacy of disease control measures
[25]. It is frequently used as a threshold parameter to quantify the spread of disease and is
therefore a quantitative indicator of both the risk of an epidemic and the effort required to con-
trol it in a particular population. In order to control an infectious disease, it is necessary to re-
duce R0 to below unity (S1 Text) [25,26]. This parameter can predict the speed and scale of
disease spread and the level of herd immunity required to contain the disease [17].

In many resources-constrained small holder communities, such as in East Africa, informa-
tion on transmissibility of diseases like ASF is often lacking and usually limited to daily counts
of new cases [27,28]. Additionally, decisions about the best control strategies to implement
during an epidemic are complex, usually involving technical, political, sociocultural and eco-
nomic issues. ASF outbreaks are not reported quickly enough to allow collection of all the re-
quired empirical data for the estimation of disease parameters. To overcome this constraint,
indirect methods can be used to estimate these parameters, including R0. There are a number
of approaches available for estimating R0. Some methods are purely analytical, and not very re-
liable [29], while others are mathematical expressions involving multiple population parame-
ters that have to be estimated separately [25,30] using outbreak data [20,24,31]. Ward et al.
[20], Bett et al. [24] and Li et al. [29] describe different methods for estimating R0 from out-
break data for a number of diseases across different geographical regions. In this study, we esti-
mate R0 for ASF transmission between herds of pigs based on data from confirmed outbreaks
using some of these methods as described next.

Materials and Methods
This is to certify that any sampling of live or dead pigs described within the manuscript
PONE-D-14-46309 Estimating the basic reproductive number (R0) for African swine fever
virus (ASFV) transmission between pig herds in Uganda by Barongo et al, was conducted in
close collaboration between the District veterinary office in Gulu District and scientists from
Uganda, Kenya and Sweden as part of disease investigations for African swine fever, and
funded through a collaborative research project. Disease surveillance and disease investigations
lie within the mandate of the District veterinary office. The district veterinarian thus holds a
general permission to sample animals for this purpose. Data from these disease investigations
were reported to the National Animal Disease Diagnostic and Epidemiology Centre, NAD-
DEC, under the ministry of Agriculture Animal Industry and Fisheries in Entebbe. The data
also formed part of the basis for international reporting to the OIE. No samples were collected
specifically for the manuscript submitted to PLOS ONE.

Data source
We used data collected during previous research activities from villages in Gulu District with
laboratory confirmed outbreaks of ASF (material described in [32,33]). Outbreaks included in
this study occurred between April 2010 and November 2011. In brief, villages that reported
outbreaks of disease characterized by fever and mortality in pigs to the district veterinary au-
thorities were visited. Within each village, samples (blood and serum) were collected from clin-
ically diseased and/or apparently healthy pigs from all affected households. Samples were kept
cool awaiting transportation to the Molecular Biology Laboratory at Makerere University Insti-
tute of Environment and Natural Resources (MUIENR) in Kampala for storage at -20°C until
further processing. In the laboratory, outbreaks were confirmed by detection of ASFV nucleic
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acids using a commercially available real-time PCR (Tetracore Inc., Rockville, Maryland) in ac-
cordance with the instructions of the manufacturer [34]. During a second visit to all villages
with laboratory confirmed outbreaks, additional data was collected using semi-structured ques-
tionnaires from a total of 211 households. The data collected included farm location (GPS co-
ordinates), start month of the confirmed outbreak, number of pigs that had died, number that
were still alive, disposal mechanism of carcasses, feed source and production system practiced.

A herd, here defined as a collection of all pigs in a pig-keeping household, was taken to be
the epidemiological unit of interest [20]. Thus, our estimates of R0 reflect spread between
herds. All outbreaks in the district during the period of study are assumed to have been re-
ported. Additionally, it was assumed that all herds in the district were susceptible during the
study period and the pigs from different herds were homogeneously mixing [2]. The exact
number of herds present during the period of the study could not be directly determined and
we estimated from the National Livestock Census Report (2008) on distribution of livestock in
Uganda that there were 6,200 pig herds (mean herd size of 4.3) distributed over the 289 villages
in Gulu district.

Data Analysis
Three methods, adapted from previous studies, were used in the estimation of R0. These meth-
ods are nearest infectious neighbour, epidemic doubling time and compartmental susceptible-
infectious (SI) method [20].

Nearest infectious neighbour method
In this method, we used the GPS coordinates of affected herds to determine location and used
the month when the first death was reported to determine its period of occurrence. To identify
potential sources of infection for subsequent outbreaks, cases were ordered by month. Euclide-
an distances between the outbreak of interest and potential sources of infection were calculated
using the spherical law of cosines [35]. The infection source for each outbreak of interest was
identified as the outbreak that had occurred in the previous month and was closest by Euclide-
an distance. This was repeated until each herd was associated with an infection source [20]. A
set (S), consisting of the number of outbreaks attributed to each infection source was con-
structed. A statistical technique, bootstrapping, was used to randomly select (with replacement)
1000 samples of size n(S) from S. The frequency distribution of sample means generated and
the mean of this distribution was taken as the estimate of R0. Microsoft Excel 2010 was used to
implement bootstrapping and to generate the mean distribution with the associated confidence
interval (CI), within which we are 95% sure that the mean of the number of outbreaks attribut-
ed to each infection source lie. The CI was obtained by adding the margin of error (d) to the
computed mean to obtain the upper bound (UB) and subtracting d from the mean for the
lower bound (LB) where d is returned by software.

Epidemic doubling time method
During the initial phase of an epidemic, the number of secondary cases increases exponentially,
with each infection producing R0 new infections per generation assuming a constant doubling
time (td) [20]. Anderson and May [21] defined a relationship between doubling time (td) and
R0 as R0 = 1+(T / td)�loge2 where T is the herd infectious period. For the outbreaks studied
here, the herd from which the first case of death was reported was considered the index case.
Each herd that was subsequently infected was considered to present a new outbreak. Outbreaks
were ordered by month and the average time for the number of outbreaks to double (td) for all
possible combinations during this phase were computed using Microsoft Excel 2010. We
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assumed an infectious period of one month because data was aggregated at a monthly scale
and as mentioned there is evidence from the literature that herds can remain infectious for a
prolonged period [36]. We then used the doubling time and infectious period to estimate R0

from the above equation.

SI modelling method
This method has been described and used in a number of studies [20,24,25,31]. We describe
three approaches for estimating R0 using a simple deterministic SI model of the epidemic pro-
cess. First we estimated the transmission rate, β, from epidemic data using a linear regression
model (LRM) following an approach as described by Eblé et al. [37] and Gulenkin et al. [17].
The regression model was defined as log (−log (1−E(C) / S)) = log (β) + log (IΔt / N), where C, S,
I are respectively the number of newly-infected herds, susceptible herds and infectious herds at
the start of the time interval Δt. We used Microsoft Excel 2010 to run the regression model.
These estimates were bootstrapped and their mean taken as an estimate of β. R0 was then esti-
mated from the product of β and T where T is the infectious period of the herd.

Secondly, a curve fitting (CF) approach was used to fit a Susceptible-Infectious-Removed
(SIR) model to the epidemic data in order to estimate β and the removal rate γ. This approach
was used as described by Gulenkin et al. [17]. Curve fitting was implemented using a modelling
software package Berkeley Madonna ver. 8.3.18. These two parameters were then used to com-
pute an estimate for R0 from (S0 � β) / γ, where S0 is the size of the susceptible population.

Lastly, we estimated β using an approach that describes disease transmission between epide-
miological units in a Susceptible-Infectious (SI) model [20,24]. Here we assumed that all newly
infected herds (C) were infected via contact with infectious herds (I) during the period of inter-
est. Repeated infections reported from the same herd were considered to represent distinct out-
breaks if they occurred in a period of more than two months of each other. Stegeman et al. [31]
and Bett et al. [24] have shown that the number of new cases/outbreaks C is given by βSI / N
from which β can be estimated given N as the total number of herds. The basic reproductive
number R0 is calculated as the product βT, where T is the infectious period. Microsoft Excel
2010 was used to estimate the monthly β which was then analysed using bootstrapping tech-
niques [24].

Sensitivity analysis was performed to assess whether the initial number of susceptible herds
(N) had an effect on the estimate of R0, assuming N lies between (3 100–12 400) [38]. Due to
the poor temporal resolution of the data arising from the reporting timescale, it was not possi-
ble to perform a sensitivity analysis of R0 to variation in the infectious period.

Results
During the study period, ASF resulted in a total of 1141 deaths in 211 herds in 43 villages in
Gulu district. We present the distribution of infected herds per month in Fig 1. Table 1 summa-
rises all the parameters obtained using each of the method.

Estimate of R0 from the nearest infectious neighbour method
Based on our inclusion criteria, a total of 58 herds were identified to be sources of infection for
at least one other herd. Fig 2 shows the distribution of source herds according to the number of
secondary infections they presumably caused. S1 Fig shows the generation tree of ASF trans-
mission following the nearest infectious neighbour route.

The number of secondary infections per infection source ranged from one to 13 with 22
herds presumed to have caused only one secondary infection and three herds resulted in 13 sec-
ondary infections each. The number of secondary outbreaks was bootstrapped (n = 1000),

R0 for ASFV Transmission between Pig Herds

PLOS ONE | DOI:10.1371/journal.pone.0125842 May 4, 2015 5 / 13



generating the frequency distribution shown in Fig 3. The bootstrap distribution had an overall
mean value of 3.24. This method therefore estimated R0 = 3.24 (95%CI: 3.21–3.27).

Estimate of R0 from the epidemic doubling time method
During the initial period of study (April—November 2010), the number of outbreaks increased
exponentially as depicted in Fig 4. The computed average doubling time (td) during the initial
phase was 1.106 (95%CI: 0.97–1.25) months. Using this doubling time, we estimated R0 to be
1.63 (95%CI: 1.56–1.72).

Fig 1. Number of African swine fever infected herds per month in Gulu District, Uganda, April 2010—
November 2011.

doi:10.1371/journal.pone.0125842.g001

Table 1. Summary of the parameters estimated using the different methods.

Method Parameter estimates Confidence Interval

β td γ R0 LB UB

Nearest infectious neighbour - - - 3.24 3.21 3.27

Epidemic doubling time - 1.106 - 1.63 1.56 1.72

SI model LRM 1.90 - - 1.90 1.87 1.94

CF 0.0059 - 0.8236 1.58 - -

SI/N 1.77 - - 1.77 1.74 1.81

doi:10.1371/journal.pone.0125842.t001
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Estimate of R0 from the SI modelling method
Linear regression approach. Using the linear regression model approach the estimate for

β was 1.90 (95% CI: 1.87–1.94) herds per infected herd per month resulting in an R0 of 1.90
(95%CI: 1.87–1.94) since the infectious period is one month.

Curve fitting approach. Using the curve fitting approach an SI model was fitted to the ep-
idemic data and the results are as shown in S2 Fig. Here β was estimated to be 0.0059 herds per
infected herd per month while γ was 0.8236 per herd per month. We were not able to compute
the confidence interval using this approach. Nonetheless these two parameters were used to es-
timate R0 = 1.58.

SI/N proportion approach. In Table 2, we show how the proportion SI/N, the number of
newly infected households (C), the number of infected households (I) and the transmission
rate (β) varied during the period of study. The monthly βi estimates were bootstrapped (S3 Fig)
giving an overall β of 1.77 herds per infected herd per month and using this β value; R0 was esti-
mated to be 1.77 (95%CI: 1.74–1.81). Monthly R0 estimates were found to be robust with re-
gard to variation in the initial number of susceptible herds (S4 Fig).

Fig 2. Distribution of secondary cases of African swine fever per infection source, Gulu District, April 2010—November 2011.

doi:10.1371/journal.pone.0125842.g002
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Discussion
In this study, three methods were used to estimate R0 from ASF epidemic data in a predomi-
nantly free-ranging pig production system in northern Uganda. The mean estimates for R0 ran-
ged between 1.58 and 3.24. Considering the estimates from all the methods used, the nearest
infectious neighbour method yielded the highest estimate when compared to estimates from
doubling time and the SI model methods. This discrepancy could partly be a consequence of
the assumptions made pertaining to the characteristics of the population system.

The assumed period of infectiousness of herds is plausible given the existing factors that
may favour prolonged infectiousness specifically pig agistment, increased sales and home
slaughtering of sick animals [16]. Increased survival of some of the shedding animals may also
favour a prolonged infectious period, as does the likely survival of the pathogen, which is a
highly stable DNA virus, in the environment outside its host [11,36].

Under-reporting of outbreaks has been reported to influence transmission parameters esti-
mates specifically leading to underestimation of R0, yet in most epidemics, a significant fraction
of outbreaks may go unreported [20]. However, for the purposes of this analysis, we assumed
that all outbreaks during the study period were reported. This assumption is supported by the
fact that, in the study area, farmers were primed to report outbreaks due to the ongoing re-
search activities. There were frequent information dissemination exercises by the research
team which we expect to have minimized the rate of reporting failures. In the event that some
outbreaks were unreported, then our analyses may have underestimated R0.

Since R0 is known to be both population- and pathogen- specific [39] due to its sensitivity to
production system, contact structure and environmental factors, it is interesting that our R0 es-
timates from the nearest infectious neighbour and doubling time methods are in close agree-
ment with those of Gulenkin et al. [17] and Iglesias et al. [40] who estimated R0 to range from 2
to 3 and 1.58 respectively at the between-farm level. This could be just a matter of coincidence

Fig 3. Distribution of bootstrapped number of secondary outbreaks per infection source.

doi:10.1371/journal.pone.0125842.g003
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Fig 4. Exponential curve fitted to the data from the first phase (April—November 2010) of the African swine fever outbreaks in Gulu District,
Uganda.

doi:10.1371/journal.pone.0125842.g004

Table 2. Estimated monthly SI/N, β and R0 during African Swine Fever outbreaks.

Month # Herds C I SI/N β(CN/SI) R0

Apr-10 6198 2 0 0 - -

May-10 6196 2 2 2 1.00 1.00

Jul-10 6190 6 2 2 3.00 3.00

Aug-10 6180 10 6 6 1.67 1.67

Sep-10 6171 9 10 10 0.90 0.90

Oct-10 6138 33 9 9 3.70 3.70

Nov-10 6103 35 33 32 1.08 1.08

Dec-10 6091 12 35 34 0.35 0.35

Jan-11 6079 12 12 12 1.02 1.02

Feb-11 6061 18 12 12 1.53 1.53

Mar-11 6056 5 18 18 0.3 0.28

Apr-11 6054 2 5 5 0.41 0.41

May-11 6034 20 2 2 10.28 10.28

Jun-11 6027 7 20 19 0.36 0.36

Jul-11 6024 3 7 7 0.44 0.44

Aug-11 6016 8 3 3 2.75 2.75

Oct-11 5992 24 8 8 3.10 3.10

Nov-11 5989 3 24 23 0.13 0.13

doi:10.1371/journal.pone.0125842.t002
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since, for example, estimation approaches that ignore the latent period of an infection tend to
underestimate its R0 [41–43]. Therefore comparison of estimates from different studies and
geographical areas should be made with caution. The true value of R0 for most epidemics may
be difficult to quantify for a number of reasons. The source of each outbreak is usually un-
known, reporting time-scales are frequently inconsistent and obtaining good contact tracing
data is further complicated by the existence of multiple indirect routes of infection, farming
systems and the role of human behaviour in transmission of ASFV and other pathogens [28].
Human behavioural factors such as poor handling and processing of pork and pork products
at slaughter slabs, butchers and pork joints (i.e., makeshift kiosks where pork is roasted and
eaten), farmers’ attitudes and cultural beliefs regarding handling of sick and dead animals, and
use of swill are known risk factors for ASF transmission that may have influenced our estimates
[16].

Gulenkin et al. [17] have identified road network density and pig density as significant risk
factors for disease spread. The spatial distribution of ASF infected herds (April 2010—Novem-
ber 2011) shown in S5 Fig confirms that road network density and pig population density are
key risk factors that may have also influenced our estimates. Their effect on our estimates
needs to be investigated further and quantified. Despite these uncertainties, empirical data
from epidemics can be a valuable source for estimating epidemiological parameters.

De Carvalho Ferreira et al. [11] assert that controlling an ASF outbreak is highly dependent
on measures implemented by veterinary authorities, such as ‘stamping out’ (slaughter) of in-
fected herds and quarantining affected areas. However, such measures are only feasible in
countries which have economic means to compensate farmers. In resource constrained coun-
tries such as Uganda, the only feasible measures focus on preventive mitigation, including en-
hanced biosecurity, and early detection and response. Estimates of R0 can inform the efficient
application of these measures.

Generally, few if any attempts have been made to estimate R0 from field data in the endemic
regions of Africa. Here we have estimated R0 for ASF in a predominantly free-ranging produc-
tion system, a system that is common in many parts of East Africa. All the mean estimates
were above one which is consistent with the observed persistence of disease in the population.
This is indicative of the inadequacy of the existing control measures in curbing ASF dissemina-
tion thereby requiring enhanced effort in devising new strategies or improving adherence to ex-
isting ones. In conclusion, we recommend that more epidemiological studies be designed to
collect daily outbreak data from the field this will enable the relaxation of several assumptions
made in this work and result in more accurate estimates of R0.

Supporting Information
S1 Data. The data that was used in all the computations and Figures.
(ZIP)

S1 Fig. Generation tree following the nearest infectious neighbour route.Nearest infectious
neighbour generation tree also known as a transmission network. Epidemic is suspected to
have been introduced at herd/ node 1 coloured red (bottom extreme left). The critical node at
which the disease could have been stopped from further spread as highlighted in green in the
generation tree. (Designed in network analysis tool ORA)
(TIFF)

S2 Fig. The SIR model used to simulate outbreak data of African swine fever, Gulu District,
Uganda, April 2010—November 2011.
(TIFF)

R0 for ASFV Transmission between Pig Herds

PLOS ONE | DOI:10.1371/journal.pone.0125842 May 4, 2015 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125842.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125842.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125842.s003


S3 Fig. Distribution of bootstrapped monthly transmission rate coefficient β estimates.
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S4 Fig. Sensitivity of basic reproduction number R0 to variation in initial number of herds.
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S5 Fig. Spatial distribution of ASF infected herds (April 2010—November 2011).
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S1 Text. Philosophical underpinning of R0.
(PDF)
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