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Abstract. In this paper we study a system of nonlinear Stochastic Partial Differential equations
describing the motion of turbulent Non-Newtonian media in the presence of fluctuating magnetic
field. The system is basically obtained by a coupling of the dynamical equations of a Non-
Newtonian fluids having p-structure and the Maxwell equations. We mainly show the existence
of weak martingale solutions and their exponential decay when time goes to infinity.

1. Introduction

Stochastic Partial Differential Equations (SPDEs for short) have now become very important
tools in Hydrodynamics. They are used in the mathematical investigation towards the under-
standing of turbulent motions of fluids. The SPDEs governing turbulent fluids are obtained by
adding noise terms to deterministic models. This approach is basically motivated by Reynolds’
work which stipulates that the velocity of a fluid particle in turbulent regime is composed of slow
(deterministic) and fast (stochastic) components. While this belief was based on empirical and
experimental data, Rozovskii and Mikulevicius were able to derive the models rigorously in their
recent work [43], thereby confirming the importance of this approach in hydrodynamic turbu-
lence. Indeed, it is pointed out in [43] (see also [32]) that some rigorous information on questions
in Turbulence might be obtained from stochastic versions of the equations of fluid dynamics.

The mathematical study of SPDEs for hydrodynamics was initiated in the early 1970’s in the
papers of Bensoussan and Temam [4], since then stochastic Navier-Stokes equations and SPDEs
in general have been the object of intensive research which has generated several important
results. We refer to, among others, [1], [8], [10], [11], [17], [19], [20], [43], [44],[50],[51], [52],
[53],[59],[61].

Magnetohydrodynamics (MHD) is a branch of continuum mechanics which studies the motion
of conducting fluids in the presence of magnetic fields. The system of Partial Differential Equa-
tions (PDEs) in MHD are basically obtained through the coupling of the dynamical equations
of the fluids with the Maxwell’s equations which are used to take into account the effect of the
Lorentz force due to the magnetic field (see for example [15]). Magnetohydrodynamics plays
essential role in Astrophysics, Geophysics, Plasma Physics, the magnetic confinement device
Tokamak in Thermonuclear Physics, and in many other branches of applied sciences. In these
areas turbulent magnetohydrodynamic flows which are usually due to magnetic-field fluctuations
are typical. Deterministic models of MHD have been the focus of investigation by many mathe-
maticians. Several important results have been obtained, for instance in [34], [69], [62], [22], [18],
[40], [41]; just to cite a few relevant papers. The reader can consult [23] for a recent and detailed
account in the mathematical investigation of hydrodynamic turbulence. Many scientists have
also considered stochastic models for MHD by adding noise terms to the dynamical equations
of the fluids and Maxwell equations representing the magnetic-field fluctuations. The stochastic
MHD equations were investigated in [67, 2, 60]. The authors in [67], [2] consider additive noises.
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Using Galerkin’s approximation and compactness method, the author in [60] proved the exis-
tence of martingale weak solutions for the stochastic MHD equations in the presence of nonlinear
multiplicative noise which do not satisfy the Lipschitz condition.

Due to the conventional belief that the Navier-Stokes equations are an accurate model for
the motion of incompressible fluids in many practical situations, the majority of the above work
have assumed that the fluids are Newtonian. However, there are a lot of conducting materials
appearing in many practical and theoretical situations that cannot be characterized by Newtonian
fluids. To describe these media one generally has to use (conducting) fluids models that allow
the stress to be a nonlinear function of the strain rate. Fluids in the latter class are called
Non-Newtonian fluids. We refer for example to the introduction of Biskamp’s book [6] for some
examples of these Non-Newtonian conducting fluids. These facts motivated us to consider in the
present manuscript a class of stochastic modified MHD equations which allows the constitutive
law of the conducting fluids to exhibit a nonlinear relationship between the stress tensor and the
strain rate. More precisely, for a final time T > 0 and a sufficiently smooth bounded domain Q
in Rn (n = 2, 3) we describe the motion of randomly forced Non-Newtonian conducting fluids in
a fluctuating magnetic field by the following system of stochastic partial differential equations:

du + (−div T + u · ∇u + µB× curl B +∇P ) dt = f1(u,B, t)dt+ g1(u,B, t)dW1,

dB + (S curl curl B + µu · ∇B− µB · ∇u) dt = f2(u,B, t)dt+ g2(u,B, t)dW2,

div u = div B = 0,

u = 0 on ∂Q× (0, T ),

B · n = curl B× n = 0 on ∂Q× (0, T ),

u(0) = u0, B(0) = B0,

(1)

where u = (ui; i = 1, . . . , n), B = (Bi; i = 1, . . . , n) and P are unknown random fields defined on
Q × [0, T ], representing, respectively, the fluid velocity, the magnetic field and the pressure, at
each point of Q× [0, T ]. S and µ are positive constants depending on the Reynolds numbers of
the fluid and magnetic fields, and the Hartman number. The terms fi(u,B, t) and gi(u,B, t)dWi

(i=1,2) are external forces depending on u and B, where Wi are cylindrical Wiener processes
evolving on two Hilbert spaces Ki. We assume they are mutually independent and identically
distributed. The quantities u0 and B0 are given non random initial velocity and magnetic field,
respectively. Finally, T designates the extra stress tensor of the Non-Newtonian fluid and we
suppose that there exists a potential Σ : Rn×nsym → R+

0 and constants ν1, ν2 such that for some

p > 1 and for all l, k, i, j = 1, 2, . . . , n, D,E ∈ Rn×nsym :

Σ(0) = 0,
∂Σ(0)

∂Dkl
= ∂klΣ(0) = 0, Tkl(D) = ∂klΣ(D), (2)

∂ij∂klΣ(D)EijEkl ≥ ν1(1 + D)p−2|E|2, (3)

∂ij∂klΣ(D) ≤ ν2(1 + |D|2)p−2. (4)

Here
Rn×nsym = {D ∈ Rn×n : Dij = Dji, i, j = 1, 2, . . . , n}.

The structure of the nonlinearity of problem (1) introduces a number of interesting features
which are not present in their Newtonian counterparts such as the basic MHD or the Navier-
Stokes equations; we refer for instance to the papers [36], [38], [39] which deal with interesting
mathematical questions arising in similar fluids in the deterministic case. Besides the usual
nonlinear terms of the MHD equations, (1) contains another nonlinear term of p-structure which
exhibits the non-linear relationships between the reduced stress and the rate of strain of the
conducting fluids. Because of this, the analysis of the behavior of the MHD model (1) tends to
be much more complicated and subtle than that of the Newtonian MHD equations.
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In the deterministic case, that is when g1, g2 ≡ 0, a variant of (1) (the tensor T is replaced
by the p-Laplacian) and its stationary version were initially investigated by Samokhin in [58],
[57], [55], and [56]. Later on Gunzburger and his coworkers in [24] and [25] considered a more
general model by taking a tensor T which satisfies the assumption we have made above. The
paper [25] dealt with the control of (1) and [58], [57], [55], [56], and [24] addressed the existence
and uniqueness results of weak solution of (1). To the best of our knowledge, there is no known
results for the stochastic equations (1). The purpose of the present paper is to prove some results
related to problem (1) which are the stochastic analog of some of those obtained in [58, 24] for
the deterministic case. The following two points are our main goals:

(1) We prove the existence of martingale weak solution for the stochastic system (1). We
consider a sufficiently general forcing consisting of a regular part and a stochastic part
both depending nonlinearly on the velocity of the fluids and the magnetic field, and we do
not require the functions involved in the forcing term to satisfy the Lipschitz condition.
The method for the proof uses a blending of Galerkin, compactness, and monotonicity
methods. We closely follow the article [24] and the book [42] but we do not use the usual
martingale representation argument.

(2) After obtaining the existence of a martingale weak solution of our model, we turn our
attention to the study of its asymptotic behavior as the time t is large. For this purpose,
we study the decay of the martingale weak solutions as time goes to infinity. We mainly
prove that under some conditions on the forcing terms fi and gi, i = 1, 2 the couple (u; B)
converges to zero almost surely exponentially. To prove this result we mainly follow the
idea in [13] and [14]

The stochastic Navier-Stokes and MHD equations for Newtonian fluids have been extensively
studied. In addition to the papers we cited earlier we would like also to mention the recent article
[45] in which the spatial domain is allowed to be unbounded, and the coefficients of the noise
depend multiplicatively on both the velocity field and its spatial derivatives. The key ingredients
of the proof of existence of martingale solutions in [45] (see also [11], [44]) are Galerkin method,
the use of Fréchet space, tightness criteria in nonmetrizable spaces and a version of the Skorokhod
Theorem in non-metric spaces. The framework of [45] is very general as it allows to treat the
stochastic Navier-Stokes, magneto-hydrodynamic (MHD) and the Boussinesq equations driven
by the sum of Wiener and Compensated Poisson random measure. However, the problem we
treat here do not fall into the general framework of [45] or previous work about stochastic Navier-
Stokes and MHD equations. The main reason is the presence of the additional nonlinear term
of p-structure which makes the mathematical analysis of (1) difficult and subtle. Our method
relies on Galerkin approximation and compactness described in the books [42, 47] and some other
papers such as [9] and [24]. We also rely heavily on Korn’s inequality which, to our knowledge,
only holds in bounded domain.

As far as we know the present article is the first to deal with (1). In this sense, many topics
and problems related to (1) still stand opened. Some examples of challenges we may address
in future research are the existence of weak solution for p ∈ (1, 2), the uniqueness of such weak
solutions. We may also want to study the existence and uniqueness of the invariant measure
(whenever it is possible) which, we believe, does not follow in an obvious and straightforward
way from the most recent results about ergodicity of SPDEs (see, for instance, [26] and [28]). In
fact, we do not know much about the long time behaviour of (1) even in the deterministic case.
These few examples of research topics are taken as an analogy of the problems still unsolved in
the mathematical theory of Non-Newtonian as reported in [3], [36] and [37]. The investigations of
these problems may lead to new and important results that will be useful for further development
in the theory of deterministic and stochastic PDEs. But due to the nature of the nonlinear terms
involved in (1) all of these questions are very difficult and beyond the scope of this paper, thus
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we will just limit ourselves with giving a suitable mathematical setting for (1) and partial results
related to the dynamics of the weak solutions. However, we hope that our work will find its
applications elsewhere or at least motivate further research in the study of stochastic model for
Non-Newtonian MHD.

The paper is structured as follows. In Section 2, we gather all the necessary tools and the
hypotheses. In section 3 we state the result for the existence of weak probabilistic solution and
we prove it by means of Galerkin methods and probabilistic and analytic compactness results.
The exponential asymptotic behavior of these weak solutions are studied in the last section.

2. Preliminary: Notations and hypotheses

In this section we introduce the necessary notations and most of the hypotheses relevant for
our analysis.

2.1. The deterministic framework. We introduce some notations and background following
the mathematical theory of hydrodynamic equations such as Navier-Stokes equations (NSE) or
MHD equations. For any q ∈ [1,∞), we denote by Lq(Q) and Wm,q(Q) the space of functions
taking values in Rn such that each component belongs to the Lebesgue spaces Lq(Q) and the
Sobolev spaces Wm,p(Q), respectively. For q = 2 we denote Wm,q(Q) by Hm(Q). We denote by
| · | the L2-norm, and by (., .) the L2-inner product. The norm of Wq,m(Q) is denoted by || · ||m,q.
We denote by C∞c (Q) the space of functions u ∈ C∞(Q) with compact supporrt. Let p ∈ (1,∞),
following [62] we introduce the following spaces

V1 = {u ∈ C∞c (Q) : div u = 0} ,
H1 =

{
u ∈ L2(Q) : div u = 0,u · n = 0 on ∂Q

}
,

V1,p =
{
u ∈W1,p : div u = 0,u = 0 on ∂Q

}
,

V1 =
{
u ∈ H1(Q) : div u = 0,u = 0 on ∂Q

}
.

We also set

V2 =
{
B ∈ C∞(Q̄) : div B = 0; B · n = 0 on ∂Q

}
,

H2 = the closure of V2 in L2(Q),

V2 =
{
B ∈ H1(Q) : div B = 0; B · n = 0 on ∂Q

}
.

Note that

H1 = H2.

The spaces Hi, i = 1, 2 are equipped with the scalar product and norm induced by L2(Q).
Thanks to Poincaré’s inequality we can endow the space V1,p with the norm ||u||1,p defined by

||u||p1,p =

∫
Q
|∇u|pdx.

This norm is equivalent to the usual W1,p-norm on V1,p.
We equip the space V1 with the norm || · ||1 generated by the scalar product

((u,v))1 =

∫
Q
∇u · ∇vdx.

Owing to Poincaré’s inequality, || · ||1 and the usual H1(Q)-norm are equivalent on V1.
On V2 we define the scalar product

((u,v))2 = (curl u, curl v),

which is equivalent to the usual scalar product of H1(Q).
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Let

V = V1,p × V2,

H = H1 ×H2.

The space H has the structure of a Hilbert space when equipped with the scalar product

(Φ,Ψ) = (u,v) + (B,C), (5)

for Φ = (u; B),Ψ = (v; C) ∈ H.
The space V is a Banach space with norm

||Φ||V = ||u||1,p + ||B||2, (6)

for Φ = (u; B) ∈ V.

Remark 2.1. Note that this norm is equivalent to any norm of the form

[[Φ]]V = C1||u||1,p + C2||B||2, (7)

where the constants C1, C2 depend only on S,mes(Q), p. Here mes(Q) denotes the Lebesgue
measure of Q.

Throughout this work we set

||Φ||p,2V = ||u||p1,p + ||B||22.
For any Banach space X we denote by X∗ its dual space and 〈φ,u〉 the value of φ ∈ X∗ on

u ∈ X.
Let A2 be the bounded linear operator from V2 taking values into V∗2 (i.e., A2 ∈ L(V2,V∗2) )

defined by
〈A2B,C〉 = S((B,C))2, (8)

for any B,C ∈ V2.
For any u ∈W1,p we set

E(u) =
1

2

[
(∇u) + (∇u)T

]
.

Let us recall the following results whose proofs can be found in [36, Chapter 5, Theorem 1.10].

Lemma 2.2 (Korn’s inequalities). Let 1 < q <∞ and let Q ⊂ Rn be of class C1. Then there
exist two positive constants Ki

q = Ki
q(Q), i = 1, 2 such that

K1
q ||u||1,q ≤

(∫
Q
|E(u)|qdx

) 1
q

≤ K2
q ||u||1,q, (9)

for any u ∈ V1,q.

We introduce a nonlinear mapping Ap from V1,p into V∗1,p by setting

〈Apu,v〉 =

∫
Q

T(E(u)) · E(v)dx, (10)

for any u,v ∈ V1,p. Now we can define a nonlinear operator A from V into V∗ by

〈AΦ,Ψ〉 = 〈Apu,v〉+ 〈A2B,C〉, (11)

for any Φ = (u; B),Ψ = (v; C) ∈ V. We state very important properties of A in the following

Lemma 2.3. Let T and Σ satisfy (2)-(4) with p ≥ 2. Then,

(1) the operator A is monotone; that is,

〈AΦ1 −AΦ2,Φ1 − Φ2〉 ≥ 0, (12)

for any Φ1,Φ2 ∈ V.
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(2) There exists a constant ν̃ such that

〈AΦ,Φ〉 ≥ ν̃||Φ||p,2V , (13)

for any Φ ∈ V.
(3) Also, there exists a positive constant C such that

||AΦ||p
∗,2

V∗ ≤ C(1 + ||Φ||p,2V ), (14)

for any Φ ∈ V. Here
1

p
+

1

p∗
= 1,

and
||Ψ||p

∗,2
V∗ = ||ψ||2V∗2 + ||φ||p

∗

V∗1,p
,

for Ψ = (φ;ψ) ∈ V∗.

Proof. It is known from [37, Lemma 1.19, page 198] that for any p ≥ 2 there exist positive
constants νi, i = 3, 4, 5, such that for all D,E ∈ Rn×nsym :

T(D) ·D ≥ ν3(1 + |D|p−2)|D|2, (15)

|T(D)| ≤ ν4(1 + |D|)p−1, (16)

(T(D)−T(E)) · (D−E) ≥ ν5|D−E|2. (17)

Therefore, it follows from (17) that

〈Apu−Apv,u− v〉 =

∫
Q

[T(E(u))−T(E(v))] · [u− v] dx,

≥ν5

∫
Q
|E(u)− E(v)|2dx, (18)

for any u,v ∈ V1,p. It is easily seen that

〈A2B−A2C,B−C〉 ≥ S||B−C||22, (19)

for any B,C ∈ V2. Therefore, it follows from (18)-(19) that A is monotone.
Now it follows from (15) that

〈AΦ,Φ〉 =

∫
Q

T(E(u)) · E(u)dx+ S||B||22,

≥ν3

∫
Q

(
|E(u)|2 + |E(u)|p

)
dx+ S||B||22,

for any Φ ∈ V. Owing to Korn’s inequalities we infer from the last estimate that

〈AΦ,Φ〉 ≥ν̃3(||u||21 + ||u||p1,p) + S||B||22,
≥ν̃3||u||p1,p + S||B||22,

which implies that there exists a constant ν̃ such that (13) holds.
We have that

||A2B||2V∗2 ≤ S
2||B||22. (20)

Also,

||Apu||V∗1,p = sup
||v||1,p=1

|〈Apu,v〉|,

≤C sup
||v||1,p=1

(∫
Q
|T(E(u))|p∗dx

) 1
p∗
(∫
Q
|E(v)|pdx

) 1
p

.
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Thanks to Korn’s inequalities and (16) we have

||Apu||V∗1,p ≤ C sup
||v||1,p=1

(∫
Q
|T(E(u))|p∗dx

) 1
p∗

||v||1,p,

||Apu||p
∗

V∗1,p
≤ C

∫
Q

(1 + |E(u)|)pdx. (21)

By using Korn’s inequalities into (21), we can deduce from the resulting estimate and (20) that
(14) holds. �

For any p ≥ 2 and u,v,w ∈W1,p, we set

b(u,v,w) =

∫
Q
ui
∂vj
∂xi

wjdx, (22)

where summations over repeated indices are enforced. The trilinear form b(u,v,w) is continuous
on H1(Q)×H1(Q)×H1(Q). Moreover,

b(u,v,v) = 0, (23)

b(u,v,w) = −b(u,w,v), (24)

for any u ∈ V2, v, w ∈ H1(Q). Since V1 ⊂ V2 and V1,p ⊂ V2, then (23) and (24) are also valid
for any element u in V1 and V1,p. For the proofs of the above properties and more information
on the trilinear form b(., ., .), we refer, for instance, to [70, Chapter II, Subsection 1.2]. Set

B0(Φ1,Φ2,Φ3) = b(u1,u2,u3)− µb(B1,B2,u3) + µb(u1,B2,B3)− µb(B1,u2,B3), (25)

for any Φi = (ui; Bi) ∈ V, i = 1, 2, 3. It follows from (23) and (24) that

B0(Φ1,Φ2,Φ2) = 0, (26)

B0(Φ1,Φ2,Φ3) = −B0(Φ1,Φ3,Φ2), (27)

for any Φi ∈ V, i = 1, 2, 3. Following the idea in [35], we choose s > 1 + n
2 and set

W1,s = closure of V1 in Hs(Q),

={u ∈ Hs
0, div u = 0} (28)

W2,s = closure of V2 in Hs(Q), (29)

and

Ws = W1,s ×W2,s. (30)

The spaces Wi,s, i = 1, 2 will be equipped with the usual scalar product and norm of Hs(Q)
respectively denoted by ((·, ·))s and || · ||s. We also use these symbols to denote the norm and
scalar product of Ws. Identifying H with its dual, we have the following Gelfand chain

Ws ⊂ V ⊂ H ⊂ V∗ ⊂W∗s,

where each space is densely and compactly embedded into the next one.
Since s− 1 > n/2, ∂Φ/∂xi is an element of L∞(Q) for any Φ3 ∈Ws. Therefore

|B0(Φ1,Φ2,Φ3)| =| − B0(Φ1,Φ3,Φ2)|,
≤ C|Φ1||Φ2|||Φ||Ws , (31)

for any Φ1,Φ2 ∈ V and Φ3 ∈Ws. From this we infer the existence of a continuous bilinear form
B(·, ·) defined on V × V taking its values in W∗s. This bilinear mapping satisfies the properties
stated in the following
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Lemma 2.4. (i) For any Φ1,Φ2 ∈ V and Φ3 ∈Ws,

〈B(Φ1,Φ2),Φ3〉 = B0(Φ1,Φ2,Φ3) (32)

(ii) We have that
〈B(Φ1,Φ2),Φ2〉 = 0, (33)

for any Φ1 ∈ V and Φ2 ∈Ws.
(iii) There exists a positive constant C such that

||B(Φ1,Φ2)||W∗s ≤ C|Φ1||Φ2|, (34)

for any Φi ∈ V, i = 1, 2.

Proof. All of the statements in the lemma were proved above (see the lines between (26)-(31)). �

2.2. Stochastic setting and some hypotheses. Let T > 0 and (Ω,F ,P) be a complete
probability space. We endow the probability space (Ω,F ,P) with an increasing filtration (F =
Ft)t∈[0,T ]. The probability space satisfies the usual condition, that is :

(1) P is complete in (Ω,F),
(2) F0 contains all null sets of (Ω,F ,P),
(3) the filtration F is right-continuous.

The following definition is borrowed from [12, Definition 4.1]

Definition 2.5. Let (Ω,F ,P,F) be a filtered probability space and K be a real separable Hilbert
space. An F-adapted cylindrical Wiener process on K is a family W = (W(t))t∈[0,T ] of bounded

linear operators from K into L2(Ω,F ,P)1 such that

(1) for all t ≥ 0, and k1, k2 ∈ K, E[W(t)k1W(t)k2] = 〈k1,k2〉K,
(2) for each k ∈ K, t ≥ 0, W(t)k is a real valued F-adapted Wiener process.

For real separable Banach spaces U and H we denote by L(U, H) the space of continuous linear
mapping from U into H. By J2(U, H) we mean the subspace of L(U, H) consisting of Hilbert-
Schmidt operators when U and H are separable. In what follows we set J2(U) := J2(U,U). It is
known that J2(U, H) is a Hilbert space and its norm is denoted by ‖S‖J2 for any S ∈ J2(U, H).
Following [16, Proposition 4.11] (see also [12, Remark 4.2]) we can represent a cylindrical Wiener
process on K as a formal series

W(t) =
∞∑
i=1

wi(t)ϕi(t), t ≥ 0 (35)

where (wi)i∈N is a family of independent standard 1-dimensional Wiener processes, and (ϕi)i∈N
is an orthonormal basis of K. The above series does not satisfy any notion of convergence in
the Hilbert space K but it does on L2(Ω,F ,P;C(0, T ;U)) for any Hilbert space U such that the
embedding K ⊂ U is Hilbert-Schmidt. The series admits an U-valued continuous modification
P-almost surely.

Next, we recall the definition of a Q Wiener process by following [54] and [71]. For this let U
be a separable Banach space and Q : U∗ → U such that

〈Qu∗, u∗〉 ≥ 0,

〈Qu∗, v∗〉 = 〈u∗, Qv∗〉,
for any u∗, v∗ ∈ U∗. The range Ran(Q) of Q is a pre-Hilbert space when equipped with the scalar
product [·, ·]Q defined by

[Qu∗, Qv∗]Q = 〈Qu∗, v∗〉,∀u∗, v∗ ∈ Ran(Q).

1The space of real-valued square integrable random variables defined on (Ω,F ,P) is denoted by L2(Ω,F ,P)
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Let HQ be the completion of Ran(Q) with respect to [·, ·]Q. It is called the Reproducing Kernel
Hilbert Space (RKHS) associated with Q. Let i∗Q be the dual operator of the injection mapping
iQ : HQ → U. The operator Q admits the decomposition Q = iQi

∗
Q.

Definition 2.6. Let U be a separable Banach space and Q : U∗ → U be a symmetric and
nonnegative operator as above. An F-adapted stochastic process W is a Q-Wiener process
taking values in U if

(1) iQ : HQ → U is γ-Radonifying operator,
(2) W(0) = 0,
(3) W has continuous trajectories,
(4) W has independent increments,
(5) for any 0 ≤ s ≤ t the random variable Y = W(t) −W(s) is Gaussian with zero mean

and covariance (t− s)Q, that is, its characteristic function is of the form

ϕY(u∗) =E (exp[iYu∗]) ,

= exp

(
−1

2
[t− s]〈Qu∗, u∗〉

)
, u∗ ∈ U∗.

We refer, for instance, to [46] and [7] and references therein for more information about γ-
Radonifying operators and their use in the context of stochastic calculus.

Remark 2.7. When Q = Id and U is a separable Hilbert space we recover from the above
definition the concept of cylindrical Wiener process on U, see [54] for more details.

Remark 2.8. Let U and K be such two real separable Hilbert spaces that the canonical injection
J from K into U is Hilbert-Schmidt. Let us denote by J ∗ the adjoint of J . It is easy to see that
Q = JJ ∗ is a symmetric and nonnegative operator with trQ <∞. Thanks to [16, Proposition
4.11] we can view the cylindrical Wiener process W on K defined by (35) as a Q-Wiener process
with values in U and

Q
1
2 (U) = K.

Conversely, let W be a JJ ∗-Wiener processor with values in U. Let {ζj : j ∈ N} be an
orthonormal basis of U consisting of eigenfunctions of JJ ∗; that is, there exists an increasing
family {λj : j ∈ N} of positive numbers such that JJ ∗ζj = λjζj . Using the definition of

{ζj ; j ∈ N} we can easily check that {ϕj =
J ∗ζj√
λj

: j ∈ N} forms an orthonormal basis of K.

Thanks to [16, Theorem 4.3] W can be written as a formal series

W(t) =
∞∑
j=1

wj(t)
J ∗ζj√
λj
,

where {wj(t) =
√
λj〈W(t), ζj〉U; j ∈ N} is a sequence of independent real-valued standard Wiener

processes. Hence W defines a cylindrical Wiener process on K.

Now let Ki, i = 1, 2 be two fixed separable Hilbert spaces such that the canonical injections
Ii from Hi into Ki, for i = 1, 2, are Hilbert-Schmidt. For i = 1, 2 let {ẽk,i : k ≥ 1} be the

orthonormal bases of Ki consisting of the eigenfunctions of Q̃i = IiI∗i . The corresponding

eigenvalues of {ẽk,i : k ≥ 1} are {λ̃k,i : k ∈ N∩ [1,∞)}, i = 1, 2. Throughout we denote by {ek,i :

k ∈ N ∩ [1,∞)} another orthonormal basis of Hi such that ek,i =
I∗i ẽk,i√
λ̃k,i

for each k ∈ N ∩ [1,∞)

and i = 1, 2. Let W = (W(t))t∈[0,T ] and W = (W(t))t∈[0,T ] be two mutually independent
cylindrical Wiener processes on H1 and H2 respectively. We represent W and W as two formal
series W(t) =

∑∞
k=1Wkek,1 and W(t) =

∑∞
k=1 Wkek,2 where {W k = (Wk; Wk) : k = 1, 2, ...} is
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a sequence of mutually independent standard R2-valued Brownian motion. Now we denote by K
the cartesian product K1 ×K2 and set

W =

(
W
W

)
,

and

J2(K,H) = J2(K1,H1)× J2(K2,H2).

A new orthonormal basis of H is {ek = (ek,1; ek,2); k ≥ 1} and the space J2(K,H) is a Hilbert
space endowed with the natural scalar product of the cartesian product whose corresponding
norm is

||R||J2 =

(
2∑
i=1

||Ri||2J2,i

) 1
2

,

where J2,i = J2(Ki,Hi) for i = 1, 2. The stochastic processes W defines a cylindrical process
on H. By Remark 2.8 it can be considered as a Q-Wiener process taking values in K such that
W ∈ C(0, T ;K) P-almost surely. Here Q = II∗ where I is the canonical injection obtained from

the Hilbert-Schmidt embedding H ⊂ K. In terms of Ii and Q̃i, we have

I =

(
I1 0
0 I2,

)
and Q =

(
Q̃1 0

0 Q̃2

)
.

Thanks to Remark 2.8 we have Q
1
2 (K) = H. Furthermore, the cylindrical Wiener process W

admits the series representation

W =

∞∑
k=1

W k · ek.

Let X∗1 = V∗1,p and X∗2 = V∗2. Now we introduce the hypotheses on fi(u,B, t), gi(u,B, t) that
are relevant for the major part of the paper.

(F) We assume that fi : H× [0, T ]→ X∗i (i = 1, 2) are nonlinear mappings such that
(a) they are continuous with respect to t,
(b) (u; B) 7→ fi(u,B, t) are continuous for all t ∈ [0, T ]; there exists a positive constant

C such that

||fi(u,B, t)||X∗i ≤ C(1 + |u|+ |B|),

for any (u; B) ∈ H and t ∈ [0, T ].
(G) We suppose that gi : H× [0, T ]→ J2(Hi) are nonlinear mappings such that

(a) the gi-s are continuous,
(b) there exists a positive constant C such that

||gi(u,B, t)||J2,i ≤ C(1 + |u|+ |B|),

for any (u; B) ∈ H and t ∈ [0, T ].
Now we introduce the operators

f =

(
f1 0
0 f2

)
: H1 ×H2 × [0, T ]→ V∗. (36)

and

g =

(
g1 0
0 g2

)
: H1 ×H2 × [0, T ]→ J2(H). (37)
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Then, modulo divergence freeness, the problem (1) can be rewritten as

dy + [Ay + B(y,y)]dt = f(y, t)dt+ g(y, t)dW (38)

y(0) = y0 ∈ H, (39)

where y = (u; B) is a solution of (1) and y0 = (u0; B0). From now on, we will work with
(38)-(39).

Remark 2.9. Let W be a Wiener process taking values in a separable Hilbert space U and with
covariance operator Q̃ such that tr Q̃ <∞ and let H another separable Hilbert space. From [16]

the stochastic integral
∫ T

0 Ψ(t)dW (t) is well defined for any progressively measurable process Ψ

taking values in J2(Q̃(U), H) such that

E
∫ T

0
‖Ψ(t)‖2

J2(Q̃(U),H)
dt <∞.

In our framework, since Q
1
2 (K) = H (see Remark 2.8) the stochastic integral is well defined as

long as Ψ is progressively measurable, takes values in J2(H) and satisfies

E
∫ T

0
‖Ψ(t)‖2J2(H)dt <∞.

To close this section let us introduce additional notations frequently used throughout the work.
The mathematical expectation with respect to the probability measure P is denoted by E. Let
r ∈ [2,∞) and following [17, Section 3.1] Lr/2(Ω, Lp,2(0, T ;V)) the space of functions y = y (ω, t)
defined on Ω× [0, T ] with values in V such that:

(a) y (·, ·) is F × B([0, T ])-measurable,
(b) y (ω, t) ∈ V for almost all (ω, t) and

E
(∫ T

0
||y(s)||p,2V ds

) r
2

< C.

We also set

L2(Ω, Lp,2(0, T ;V)) = L2(Ω, Lp(0, T ;V1,p))× L2(Ω, L2(0, T ;V2)),

and

L2(Ω, Lp
∗,2(0, T ;V∗)) = L2(Ω, Lp

∗
(0, T ;V∗1,p))× L2(Ω, L2(0, T ;V∗2)),

where p∗ = p
p−1 .

3. Existence of martingale weak solution

In this section we state our first main result and give its proof. Before we proceed further we
explicitly define what we mean by a (martingale) weak solution of (38)-(39).

Definition 3.1. A weak solution of (38)-(39) is a system (Ω,F, {Ft : t ≥ 0},P,W,y) where

(i) (Ω,F,P) is a probability space, {Ft : t ≥ 0} is an increasing filtration satisfying the usual
conditions,

(ii) W is a cylindrical Wiener process wrt {Ft : t ≥ 0},
(iii) y is an element of Lr/2(Ω, Lp,2(0, T ;V)) for any r ∈ [2,∞),
(iv) the stochastic process y is predictable,
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(v) for any w ∈Ws,

(y(t),w) +

∫ t

0
(〈Ay(s) + B(y(s),y(s)),w〉) ds = (y0,w) +

∫ t

0
〈f(y(s), s),w〉ds

+

∫ t

0
(g(y(s), s),w)dW,

(40)

almost surely and for all t ∈ [0, T ].
(vi) The function y belongs to Lr(Ω, C(0, T ;H)), r ∈ [2,∞).

Before we proceed further we make the following remark.

Remark 3.2. We should note that we use the notation∫ t

0
(g(y(s), s),w)dW =

∞∑
k=1

∫ t

0
(g(y(s), s)ek,w)dW k.

Our first main result is stated in the following theorem.

Theorem 3.3. Let pmin = max
(
n, 1 + 2n

n+2 ,
n+2

4

)
. Let the conditions (2)-(4) hold with p ≥ pmin.

Let (F), and (G) be satisfied and y0 ∈ H. Then there exists at least a weak solution of (38)-(39)
in the sense of Definition 3.1.

The proof of this statement is given in the next section and it relies very much on Galerkin,
compactness and monotonicity methods.

3.1. Galerkin approximation and a priori estimates. In this subsection we introduce the
Galerkin approximation scheme of our problem and derive a priori estimates for the solution.

We introduce the family of eigenfunctions

((wj ,v))s = λ1
j (wj ,v),∀v ∈W1,s,

and
((Cj ,B))s = λ2

j (Cj ,B),∀B ∈W2,s.

Then, we can define a spectral problem on Ws by setting

Ψj = (Ψ1
j ; Ψ2

j ), Ψ1
j = wj , Ψ2

j = Cj , (41)

and

((Ψj ,w))s =
2∑

k=1

λkj (Ψ
k
j ,w

k), ∀w := (w1,w2) ∈Ws.

The last identity will be written in the following abstract form

((Ψj ,w))s = λj(Ψj ,w),∀w ∈Ws.

We assume that Ψj , j = 1, 2, 3, · · · form an orthonormal basis of Ws which is complete in V
and form an orthogonal basis of H. Let (Ω̄, F̄, P̄, W̄ ), (W̄ =

∑∞
i=1 W̄

i · ei is a cylindrical Wiener
process evolving on H) and m a positive integer. We equip the probability space (Ω̄, F̄, P̄) with
the natural filtration of W̄ which is denoted by F̄t. We set

Wm
s = Span{Ψj : j = 1, 2, . . . ,m}.

We look for a sequence of stochastic processes (ym : m = 1, 2, . . .) ⊂Wm
s such that

d(ym(s),Ψj) + 〈Aym(s) + B(ym(s),ym(s)),Ψj〉ds = 〈f(ym(s), s),Ψj〉ds

+
m∑
i=1

(g(ym(s), s)ei,Ψj)dW̄
i,

(42)
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ym(0) = ym0 ∈Wm
s , (43)

ym0 → y0 in H as m→∞. (44)

Note that,

ym(t) =
m∑
j=1

((ym(t),Ψj))sΨj

=
m∑
j=1

λj(y
m(t),Ψj)]Ψj :=

m∑
j=1

[
2∑

k=1

λkj (y
m(t),Ψk

j )]Ψj . (45)

Thanks Lemma 2.4 and Assumptions (F) and (G) the nonlinear maps B, f, and g are continuous
and locally bounded. Thanks to the fact that the potential Σ is of class C2 A : V 7→ V∗s is
hemicontinuous and monotone by Lemma 2.3. Therefore, we infer from [35, Chapitre II, page
171] and Lemma 2.3 that A is continuous from V into V∗ and locally bounded. It then follows
that the system (42)-(44) is a system of stochastic differential equations in a finite dimensional
Banach space with continuous and locally bounded coefficients. From the proof of existence
theorem in [65, Chapter 3, Section 3, page 59] (see also [27, Chapter IV, Section 2, pp 167-177]),
which do not require the Lipschitz condition on the coefficients, there exists on a short interval
[0, Tm] a sequence of continuous functions ym solving the system (42)-(44). It will follow from a
priori estimates that ym exists on [0, T ].

First we prove the following lemma.

Lemma 3.4. The sequence (ym : m = 1, 2, . . .) satisfies

Ē sup
s∈[0,T ]

|ym(s)|r < C, (46)

and

Ē
(∫ T

0
||ym(s)||p,2V ds

) r
2

< C, (47)

for any r ∈ [2,∞).

Proof. Let M be a positive integer. We define a sequence of stopping times τM by setting

τM = inf{s : |ym(s)|+
(∫ s

0
||ym(t)||p,2V dt

) 1
2

≥M} ∧ T. (48)

We shall use a modification of the argument used in [1]. Let t ∈ [0, T ∧ τM ]. By Itô’s formula,
we have

|ym(t)|2 + 2

∫ t

0
〈Aym(s),ym(s)〉ds = |ym0 |2 + 2

∫ t

0
〈f(ym(s), s),ym(s)〉ds

+

m∑
j,i=1

2∑
k=1

∫ t

0
λkj (g(ym(s), s)ei,Ψ

k
j )

2ds

+ 2

m∑
i=1

∫ t

0
(g(ym(s), s)ei,y

m(s))dW̄ i.

(49)

Since
m∑

j,i=1

2∑
k=1

λkj (g(ym(s), s)ei,Ψ
k
j )

2 ≤ ‖g(ym(s), s)‖2J2 ,
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it follows from (13) and (49) that

|ym(t)|2 + 2ν̃

∫ t

0
||ym(s)||p,2V ds ≤ |y0|2 + 2

∫ t

0
||f(ym(s), s)||V∗ ||ym(s)||Vds

+

∫ t

0
||g(ym(s), s)||2J2ds

+ 2

m∑
i=1

∫ t

0
(g(ym(s), s)ei,y

m(s))dW̄ i.

(50)

For any ε > 0, we easily check that

||f(ym(s), s)||V∗ ||ym(s)||V ≤ Cε||f(ym(s), s)||2V∗ + ε||ym(s)||p,2V + C(ε, p). (51)

Hence, owing to the assumptions on f and g, we can derive from the last estimate and (50) that

|ym(t)|2 + ν̃

∫ t

0
||ym(s)||p,2V ds ≤|y0|2 + C

∫ t

0
(1 + |ym(s)|2)ds

+ 2

m∑
i=1

∫ t

0
(g(ym(s), s)ei,y

m(s))dW̄ i.

(52)

In view of (52) we have

Ē sup
s∈[0,t∧τM ]

|ym(s)|2 + ν̃Ē
∫ t∧τm

0
||ym(s)||p,2V ds ≤ |y0|2 + CĒ

∫ t∧τM

0
(1 + |ym(s)|2)ds

+ 2Ē sup
s∈[0,t∧τM ]

∣∣∣∣∣
m∑
i=1

∫ s

0
(g(ym(τ), τ)ei,y

m(τ))dW̄ i

∣∣∣∣∣ .
(53)

We write the stochastic integral as follows

m∑
i=1

∫ t

0
(g(ym(s), s)ei,y

m(s))dW̄ i =
m∑
i=1

∫ t

0
X1,i(s)dW̄ i(s),

where

[X1,i(s); i = 1, . . .m] := [(g(ym(s), s)e1,y
m(s)), . . . , (g(ym(s), s)em,y

m(s))]

is a row matrix and we view the Brownian motion [W̄ i; i = 1, . . . ,m] as a column vector. The
Burkholder-Davis-Gundy’s inequality in the form given by [31, Chapter 3, Remark 3.30] enables
us to derive the the following estimates

2Ē sup
s∈[0,t∧τM ]

∣∣∣∣∣
m∑
i=1

∫ s

0
(g(ym(τ), τ)ei,y

m(τ))dW̄ i

∣∣∣∣∣ ≤ CĒ
(∫ t∧τM

0

m∑
i=1

(g(ym(s), s)ei,y
m(s))2 ds

) 1
2

≤ CĒ

(∫ t∧τM

0

m∑
i=1

|g(ym(s), s)ei|2 |ym(s)|2ds

) 1
2

≤ CĒ
(∫ t∧τM

0
||g(ym(s), s)||2J2 |y

m(s)|2ds
) 1

2

.
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From the last line and the assumption on g we deduce thanks to Cauchy’s inequality that

2Ē sup
s∈[0,t∧τM ]

∣∣∣∣∣
m∑
i=1

∫ s

0
(g(ym(τ), τ)ei,y

m(τ))dW̄ i

∣∣∣∣∣ ≤ CĒ
∫ t∧τM

0
(1 + |ym(s)|2)ds

+
1

2
Ē sup
s∈[0,t∧τm]

|ym(s)|2.
(54)

Now it follows from (53) and (54) that

Ē sup
s∈[0,t∧τM ]

|ym(s)|2 + 2ν̃Ē
∫ t∧τm

0
||ym(s)||p,2V ds ≤ |y0|2 + CĒ

∫ t∧τM

0
(1 + |ym(s)|2).ds (55)

Since the second term of the left hand side of (55) is positive, then it follow from Gronwall’s
lemma that

Ē sup
s∈[0,t∧τM ]

|ym(s)|2 < C, (56)

for any t ∈ [0, Tm]. Using (56) in (55), we get

Ē
∫ t∧τm

0
||ym(s)||p,2V ds ≤ C. (57)

Since the constants C in (56)-(57) do not depend on m and M , then we can show that τM ↗ T
P̄-almost surely as M → ∞. Therefore, Tm = T . We can conclude by passing to the limit in
(56) and (57) that

Ē sup
s∈[0,T ]

|ym(s)|2 < C, (58)

and

Ē
∫ T

0
||ym(s)||p,2V ds ≤ C. (59)

Now let r > 2. Thanks to Itô’s formula, we derive from (49) that

|ym(t)|r + r

∫ t

0
|ym(s)|r−2〈Aym(s),ym(s)〉ds ≤ |ym0 |r + C

∫ t

0
|ym(s)|r−2

[
〈f(ym(s), s),ym(s)〉

+ ||g(ym(s), s)||2J2
]
ds

+ r
m∑
i=1

∫ t

0
|ym(s)|r−2(g(ym(s), s)ei,y

m(s))dW̄ i.

(60)

Owing to (13), (51) and the assumptions on g and f we derive from the last estimate that

|ym(t)|r + rν̃

∫ t

0
|ym(s)|r−2||ym(s)||p,2V ds ≤ |y0|r + C

∫ t

0
|ym(s)|r−2

[
Cε(1 + |ym(s)|2

+ ε||ym(s)||p,2V + C(ε, p)) + C(1 + |ym(s)|2)
]
ds

+ r
m∑
i=1

∫ t

0
|ym(s)|r−2(g(ym(s), s)ei,y

m(s))dW̄ i.

(61)
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By an appropriate choice of ε we deduce from (61) that

|ym(t)|r + ν̃

∫ t

0
|ym(s)|r−2||ym(s)||p,2V ds ≤ |y0|r + C

∫ t

0
|ym(s)|r−2(1 + |ym(s)|2)ds

+ r
m∑
i=1

∫ t

0
|ym(s)|r−2(g(ym(s), s)ei,y

m(s))dW̄ i.

(62)

Making use of Young’s inequality it is not difficult to prove that there exists C > 0 such that

|ym(s)|r−2(1 + |ym(s)|2) ≤ C(1 + |ym(s)|r).
Thus, from (62) we see that

Ē sup
s∈[0,t]

|ym(s)|r + ν̃Ē
∫ t

0
|ym(s)|r−2||ym(s)||p,2V ds ≤ C(|y0|r, T, p) + CĒ

∫ t

0
|ym(s)|rds

+ rĒ sup
s∈[0,t]

∣∣∣∣∣
m∑
i=1

∫ s

0
|ym(τ)|r−2(g(ym(τ), τ)ei,y

m(τ))dW̄ i

∣∣∣∣∣ .
(63)

By using the Burkholder-Davis-Gundy’s inequality as we did in the proof Eq. (54) and the
assumptions on g we derive from the last estimate that

Ē sup
s∈[0,t]

|ym(s)|r + ν̃Ē
∫ t

0
|ym(s)|r−2||ym(s)||p,2V ds ≤ C(|y0|r, T, p) + CĒ

∫ t

0
|ym(s)|rds

+ CĒ
(∫ t

0
|ym(s)|2r−2(1 + |ym(s)|2)ds

) 1
2

.

(64)

As before we can check that the third term of the right hand side of (64) can be bounded from
above by

CĒ
∫ t

0
|ym(s)|rds+ C. (65)

We infer from (64) and (65) that

Ē sup
s∈[0,t]

|ym(s)|r + ν̃Ē
∫ t

0
|ym(s)|r−2||ym(s)||p,2V ds ≤ C(|y0|r, T, p) + CĒ

∫ t

0
|ym(s)|rds. (66)

Making use of Gronwall’s inequality in (66), it follows that

Ē sup
s∈[0,t]

|ym(s)|r < C,∀t ∈ [0, T ] and r > 2. (67)

Next recall that

|ym(t)|2+C

∫ t

0
||ym(s)||p,2V ds ≤ |y0|2+CT+C

∫ T

0
|ym(s)|2ds+

∣∣∣∣∣
m∑
i=1

∫ t

0
(g(ym(s)ei, s),y

m(s))dW̄ i

∣∣∣∣∣ .
(68)

Therefore, it is straightforward to check that

Ē
(∫ T

0
||ym(s)||p,2V ds

) r
2

≤ C(|y0|r, r, T ) + CĒ
(∫ T

0
|ym(s)|2ds

) r
2

+ CĒ sup
t∈[0,T ]

∣∣∣∣∣
m∑
i=1

∫ t

0
(g(ym(s), s)ei,y

m(s))dW̄ i

∣∣∣∣∣
r
2

.

(69)
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Using again the Burkholder-Davis-Gundy’s inequality as we did in the proof Eq. (54) and the
assumption on g we check that

Ē sup
t∈[0,T ]

∣∣∣∣∣
m∑
i=1

∫ t

0
(g(ym(s), s)ei,y

m(s))dW̄ i

∣∣∣∣∣
r
2

≤ CĒ
(∫ T

0

m∑
i=1

(g(ym(s), s)ei,y
m(s))2ds

) r
4

≤ CĒ
(∫ T

0
(1 + |ym(s)|4)ds

) r
4

≤ CT + CT Ē sup
t∈[0,T ]

|ym(t)|r,

where we have used Cauchy-Schwarz’s and Cauchy’s inequalities. From this last estimate, (67)
and (69) we derive that

Ē
(∫ T

0
||ym(s)||p,2V ds

) r
2

≤ C,∀r ∈ [2,∞). (70)

We easily conclude the lemma from (58), (59), (67) and (70). �

Now, we derive a crucial estimate on the difference ym(t+ θ)− ym(t) in W∗s.

Lemma 3.5. Let s ∈ R such that s − 1 > n
2 . We assume that t 7→ ym(t) is extended to zero

outside the interval [0, T ]. Then, there exists a positive constant C such that

Ē sup
|θ|∈(0,δ)

||ym(t+ θ)− ym(t)||p
∗

W∗s
≤ Cδ

p∗
p ,

for any t ∈ [0, T ], m ∈ N\{0} and δ ∈ (0, 1).

Proof. Noting that {(
√
λ1
jΨ

1
j ,
√
λ2
jΨ

2
j ) : k = 1, 2, j = 1, 2, . . .} forms a basis of W∗s, we introduce

the projector

Pm : W∗s → Span{(
√
λ1
jΨ

1
j ,
√
λ2
jΨ

2
j ) : k = 1, 2, j = 1, 2, . . . ,m},

defined by

Pmv =

m∑
j=1

λj〈v,Ψj〉Ψj , ∀v ∈W∗s.

The projector Pm satisfies (see also [35, Chapitre I, page 76]) the following estimate

||Pm||L(W∗s ,W∗s) ≤ 1, ∀m ≥ 1. (71)

In fact, let Φ ∈ Ws and v ∈ W∗s and πmΦ :=
∑m

j=1((Φ,Ψj))sΨj be the orthogonal projection

from Ws onto Span{(Ψ1
j ,Ψ

2
j ) : k = 1, 2, j = 1, 2, . . . ,m} ⊂ Ws. By using the definitions of Pm

and the special basis {Ψj ; j = 1, 2, . . .} we derive that for any Φ ∈Ws and v ∈W∗s

〈Pmv,Φ〉 =〈v,
m∑
j=1

λj(Φ,Ψj)Ψj〉,

=〈v, πmΦ〉
≤ ‖v‖W∗s‖πmΦ‖Ws

≤ ‖v‖W∗s‖Φ‖Ws ,

since supm≥1 ‖πm‖L(Ws,Ws) ≤ 1. In view of the fact that

‖Pmv‖W∗s = sup
Φ∈Ws‖Φ‖Ws=1

〈Pmv,Φ〉,



STOCHASTIC MODIFIED MAGNETOHYDRODYNAMIC EQUATIONS 18

we deduce that

‖Pmv‖W∗s ≤ ‖v‖W∗s .
From this last estimate we easily derive the estimate (71).

Now, arguing as in [35, Chapitre I, page 76] we can rewrite the system (42) in the following
form

ym(t) = ym0 −
∫ t

0
Pm[Aym(s) + B(ym(s),ym(s))]ds+

∫ t

0
Pmf(ym(s), s)ds

+

∫ t

0
Pmg(ym(s), s)eidW̄

i,

(72)

where, for the sake of simplicity, we have set∫ t

0
Pmg(ym(s), s)eidW̄

i :=

m∑
i=1

∫ t

0
Pmg(ym(s), s)eidW̄

i.

It follows from (72) that

ym(t+ θ)− ym(t) = −
∫ t+θ

t
Pm[Aym(s) + B(ym(s),ym(s))]ds+

∫ t+θ

t
Pmf(ym(s), s)ds

+

∫ t+θ

t
Pmg(ym(s), s)eidW̄

i,

(73)

for any θ ∈ (0, δ) and δ ∈ (0, 1). From (73) and (71) we infer that

||ym(t+ θ)− ym(t)||p
∗

W∗s
≤CI1(t, θ) + CI2(t, θ) + CI3(t, θ) + CI4(t, θ), (74)

where

I1(t, θ) =

(∫ t+θ

t
||Aym(r)||W∗sdr

)p∗
, I2(t, θ) =

(∫ t+θ

t
||B(ym(r),ym(r))||W∗sdr

)p∗
,

I3(t, θ) =

(∫ t+θ

t
||f(ym(r), r)||W∗sdr

)p∗
, I4(t, θ) =

∣∣∣∣∣
m∑
i=1

∫ t+θ

t
g(ym(r), r)eidW̄

i

∣∣∣∣∣
p∗

.

For I1(t, θ), we have

I1(t, θ) ≤ C
(∫ t+θ

t
||Aym(r)||V∗dr

)p∗
.

But, ∫ t+θ

t
||Aym(r)||V∗dr ≤ θ

1
p

(∫ t+θ

t
||Aym(r)||p

∗

V∗dr

)p∗
.

Therefore

I1(t, θ) ≤ Cθ
p∗
p

∫ t+θ

t
||Aym(r)||p

∗

V∗dr, (75)

and thanks to (14) we have

I1(t, θ) ≤Cθ
p∗
p

∫ t+θ

t
(1 + ||ym(r)||p,2V )dr.

Thus,

Ē sup
θ∈(0,δ)

I1(t, θ) ≤Cδ
p∗
p (δ + Ē

∫ T

0
||ym(r)||p,2V dr).



STOCHASTIC MODIFIED MAGNETOHYDRODYNAMIC EQUATIONS 19

Owing to Lemma 3.4 we derive from this last inequality that

Ē sup
θ∈(0,δ)

I1(t, θ) ≤ Cδ
p∗
p . (76)

As above we can check that

I2(t, θ) ≤ Cθ
p∗
p

∫ t+θ

t
||B(ym(r),ym(r))||p

∗

W∗s
dr.

In view of (34) and Lemma 3.4, we have

Ē sup
θ∈(0,δ)

I2(t, θ) ≤ Cδ
p∗
p . (77)

It follows from the assumptions on f and Lemma 3.4 that

Ē sup
θ∈(0,δ)

I3(t, θ) ≤ Cδ
p∗
p . (78)

Let [X1,i(r); i = 1, . . . ,m] = [Pmg(ym(r), r)e1, . . . , Pmg(ym(r), r)em] ∈ H× . . .×H︸ ︷︷ ︸
m times

be a row

matrix whose entries are H-valued stochastic processes. Define the norm of [X1,i(r); i = 1, . . . ,m]
by

|X(r)|2H×m :=
m∑
i=1

|X1,i(r)|2.

We will view the stochastic integral in the definition of I4 as follows
m∑
i=1

∫ t+θ

t
g(ym(r), r)eidW̄

i :=

m∑
i=1

∫ t+θ

t
X l,i(r)dW̄ i(r).

We apply the Burkholder-Davis-Gundy’s inequality for Hilbert space-valued processes (see, for
instance, [30, Chapter 15, Theorem 15.7]) and derive that

Ē sup
θ∈(0,δ)

I4(t, θ) ≤CĒ

(∫ t+δ

t

m∑
i=1

|g(ym(r), r)ei|2dr

) p∗
2

,

≤CĒ
(∫ t+δ

t
‖g(ym(r), r)‖2J2dr

) p∗
2

.

By using the assumptions on g, we see from the last estimate that

Ē sup
θ∈(0,δ)

I4(t, θ) ≤CĒ
(∫ t+δ

t
(1 + |ym(r)|2)dr

) p∗
2

,

≤C

(
δ + δĒ sup

s∈[t,t+δ]
|ym(r)|2

) p∗
2

.

Thanks to Lemma 3.4 we have that

Ē sup
θ∈(0,δ)

I4(t, θ) ≤Cδ
p∗
2 . (79)

Now it follows from (74)-(79) that

Ē sup
θ∈(0,δ)

||ym(t+ θ)− ym(t)||p
∗

W∗s
≤ Cδ

p∗
p ,



STOCHASTIC MODIFIED MAGNETOHYDRODYNAMIC EQUATIONS 20

for any positive integer m, t ∈ [0, T ] and δ ∈ (0, 1). One can deal with the negative values of θ
using similar arguments. This completes the proof of the lemma. �

3.2. Tightness property and passage to the limit. Throughout this subsection we fix s ∈ R
such that s − 1 > n

2 . We set S1 = L2(0, T,H) ∩ C(0, T ;W∗s) ( resp., S2 = C(0, T ;K)) and we
denote by B(S1) (resp., B(S2)) its Borel σ-algebra. The family of laws of {ym : m ∈ N\{0}} is
denoted by {Π1,m : m ∈ N}. We will prove the tightness of the family of laws {Π1,m : m ∈ N},
in S1. For this purpose let us recall a result which will be needed in the sequel; we refer for
instance to the book of Métivier [42, Chapter VI, Lemma 2 & Lemma 3] for its proof.

Lemma 3.6. Let B, B0 and B1 be three reflexive Banach spaces satisfying the compact embeddings
B0 ↪→ B ↪→ B1. Let q ∈ (1,∞) and K be a subset of Lq(0, T ;B) which is included in a compact
set of Lq(0, T ;B1) and

sup
u∈K

∫ T

0
|u(s)|qB0

ds <∞.

Then K is relatively compact in Lq(0, T ;B).

We will apply this lemma on the cartesian product Lp,2(0, T ;V) which is equal to the space
of couples (u; v) such that u ∈ Lp(0, T ;V1,p) and v ∈ L2(0, T ;V2). It is a Banach space when
endowed with the norm

‖(u; v)‖Lp,2(0,T ;V) =
(
‖u‖2Lp(0,T ;V1,p) + ‖v‖2L2(0,T ;V2)

) 1
2
.

Now we state one of the main results of this subsection.

Lemma 3.7. The family Π1,m is tight on S1.

Proof of Lemma 3.7. We first prove the tightness in C(0, T ;W∗s). Thanks to (46) it is easy to
see that for any R > 0 we have

P̄(|ym(t)|H > R) ≤ 1

R2
Ē sup
s∈[0,T ]

|ym|2H ≤
C2

R2
,

for any t ∈ [0, T ]. Since, by the compact embedding H ⊂ W∗s, balls in H are compact for the
strong topology in W∗, then this implies that the family {ym(t) : m ∈ N} is relatively compact
in W∗s for any t ∈ [0, T ]. Thanks to this fact, Lemma 3.5 and [63, Lemma 1, p71] we derive that
the laws of the family {ym;m ∈ N} are tight in C(0, T ;W∗s).

The tightness of the laws of the family {ym : m ∈ N} in C(0, T ;W∗s) means that for any ε > 0
there exists a compact subset Kε of C(0, T ;W∗s) such that

P̄(ym ∈ Kε) ≥ 1− ε, m ∈ N.
Note that for any ε > 0, (47) implies that there exists a positive constant Lε such that

P̄
(∫ T

0
|ym(s)|p,2V ds ≤ Lε

)
≥ 1− ε, m ∈ N,

where
∫ T

0 |y
m(s)|p,2V ds =

∫ T
0 ‖y

m(s)‖pV1,p
+
∫ T

0 ‖y
m(s)‖2ds. The last inequality is equivalent to

P̄
(
‖ym(s)‖Lp,2(0,T ;V)ds ≤ Lε

)
≥ 1− ε, m ∈ N.

Now let
Kε = Kε ∩

{
u ∈ Lp,2(0, T ;V) : ‖u‖2Lp,2(0,T ;V) ≤ Lε

}
.

Since Lp,2(0, T ;V)∩C(0, T ;W∗) is continuously embedded in L2(0, T ;H)∩L2(0, T ;W∗), then Kε
satisfies the conditions of Lemma 3.6. Therefore Kε is a relatively compact set of L2(0, T ;H).
Moreover P(ym ∈ Kε) ≥ 1−2ε, m ∈ N. Thus the tightness of the laws of the family {ym : m ∈ N}
in L2(0, T ;H) is established. So the lemma is also proved. �
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Before we continue, we should note that it is possible to find a set Ω̄′ ∈ F̄ of measure zero such
that W̄ (ω̄) ∈ C(0, T ;K) for any ω̄ ∈ Ω̄\Ω̄′. The law of W̄ is denoted by Π2 andM(C(0, T ;K)) de-
notes the space of measures on (S2,B(S2)). For any m ∈ N, we construct a family of probability
laws on C(0, T ;K) by setting

Π2,m = Π2, ∀m ≥ 1.

Theorem 3.8. Let S = S1 ×S2 and B(S) its Borel σ-algebra. The family of laws of (ym; W̄ )
is tight on S.

Proof. Endowed with the uniform convergence, C(0, T ;K) is a Polish space, then it follows from
[5, Theorem 6.8] that M(C(0, T ;K)) endowed with the Prohorov’s metric is a separable and
complete metric space. By construction the family of probability laws {Π2,m : m = 1, 2, . . .} is
reduced to one element which is the law of W̄ and belongs toM(C(0, T ;K)). Therefore, invoking
[49, Chapter II, Theorem 3.2] we easily deduce that the family {Π2,m : m = 1, 2, . . .} is tight on
M(C(0, T ;K)). Owing to this fact along with Lemma 3.7 and [33, Corollary 1.3], the family of
laws of the joint processes (ym; W̄ ) is tight on S. �

Proposition 3.9. There exist a Borel probability measure µ on S and a subsequence of (ym)
such that its laws weakly converge to µ.

Proof. Thanks to the above theorem the laws of (ym, W̄ ) form a tight sequence on S. Since S
is a Polish space, we get the result from the application of Prohorov’s theorem (see [5, Theorem
I.5.1, page 59]). �

The following result relates the above convergence in law to almost sure convergence.

Proposition 3.10. There exist a complete probability space (Ω,F ,P) and a sequence (ȳm,Wm)
of S-valued random variables defined on (Ω,F ,P) such that its law is equal to the law of (ym; W̄ )
on S. Also, there exists an S-random variable (y;W ) defined on (Ω,F ,P) such that

Wm →W in C(0, T ;K) P-a.s., (80)

ȳm → y in L2(0, T ;H) P-a.s., (81)

ȳm → y in C(0, T ;W∗s) P-a.s.. (82)

Proof. This is just a consequence of Proposition 3.9 and Skorokhod’s Theorem in [5, I.6.7, page
70]. �

Proposition 3.11. Let Q = II∗ where I is the canonical injection, which is Hilbert-Schmidt,
from H into K. Then the stochastic process (W (t))t∈[0,T ] is a K-valued Q-Wiener process on

(Ω,F ,P). Furthermore, if 0 ≤ s < t ≤ T then the increments W (t) −W (s) are independent of
the σ-algebra Fs generated by y(r),W (r) for r ∈ [0, s].

Proof. We closely follow [9]. By Proposition 3.10 the laws of (ym, W̄ ) are equal to those of
(ȳm,Wm) on S and by Remark 2.8, W̄ is K-valued Q-Wiener process. Hence it is easy to check
that Wm form a sequence of Q-Wiener processes taking values in K. Moreover, for 0 ≤ s < t ≤ T
the increments Wm(t)−Wm(s) are independent of the σ-algebra generated by (ȳm(r),Wm(r)),
for r ∈ [0, s]. Now we will check that W is a K-valued Q-Wiener process by showing that its
finite dimensional distributions are Gaussian. For this purpose we use characteristic function.
Let k ∈ N and let s0 = 0 < s1 < · · · < sk ≤ T . For each u ∈ K, (t1, . . . , tk) ∈ Rk we have

E
[
ei

∑k
j=1 tj〈Wm(sj)−Wm(sj−1),u〉K

]
= e−

1
2

∑k
j=1 t

2
j (sj−sj−1)〈Qu,u〉K ,
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where i2 = −1. Thanks to (80) and Lebesgue dominated convergence theorem, we have

lim
m→∞

E
[
ei

∑k
j=1 tj〈Wm(sj)−Wm(sj−1),u〉K

]
= E

[
ei

∑k
j=1 tj〈W (sj)−W (sj−1),u〉K

]
= e−

1
2

∑k
j=1 t

2
j (sj−sj−1)〈Qu,u〉K

from which we infer that the finite dimensional distributions of W are Gaussian. Next we prove
that the increments W (t) −W (s), 0 ≤ s < t ≤ T , are independent of the σ-algebra generated
by (y(r),W (r)) for r ∈ [0, s]. To do so let us consider {φj : j = 1, . . . , k} ⊂ Cb(W∗s) and
{ψj : j = 1, . . . , k} ⊂ Cb(K), where

Cb(B) = {φ : B→ R, φ is continuous and bounded},
for any Banach space B. Let also 0 ≤ r1 < · · · < rk ≤ s < t ≤ T , ψ ∈ Cb(K). For each m ∈ N,
there holds

E
[( k∏

j=1

φj(ȳ
m(rj))

k∏
j=1

ψj(Wm(rj))

)

× ψ(Wm(t)−Wm(s))

]
= E

[ k∏
j=1

φj(ȳ
m(ri))

k∏
j=1

ψj(Wm(rj))

]
× E (ψ(Wm(t)−Wm(s))) .

Thanks to (80) and (82) and Lebesgue dominated convergence theorem, the same identity is true
with (y,W ) in place of (ȳm,Wm) �

Since (ȳm,Wm) and (ym, W̄ ) have the same law (see Proposition 3.10), it follows from Lemma
3.4 that ȳm satisfies the estimates

E sup
t∈[0,T ]

|ȳm(t)|r < C, (83)

E
(∫ T

0
||ȳm(t)||p,2V dt

) r
2

< C, (84)

for any r ∈ [2, ∞). Here E denotes the mathematical expectation with respect to P. Now arguing 
exactly as in [9, Proof of (4.12), page 20] we can prove that the stochastic process y satisfies the 
following property:

E sup
t∈[0,T ]

|y(t)|r < ∞, (85)

for any r ∈ [2, ∞). Thanks to Eberlein-Smulyan Theorem (see [72, Chapter 21, Proposition 21.23-
(h)]) we can extract a subsequence of y¯m denoted by y¯mk such that for any r ∈ (2, ∞)

ȳmk → y weakly in Lr/2(Ω, Lp,2(0, T ;V)), (86)

ȳmk(T )→ β weakly in L2(Ω,H). (87)

We will show in the course of the proof of Proposition 3.18 below that β = y(T ) in L2(Ω,H).
From the estimate (14) in Lemma 2.3 and the estimate (84) we infer that PmkAȳmk is bounded

in L2(Ω, Lp
∗,2(0, T ;V∗)). Therefore one can find Γ ∈ L2(Ω, Lp

∗,2(0, T ;V∗)) such that

PmkAȳmk → Γ weakly in L2(Ω, Lp
∗,2(0, T ;V∗)), (88)

for any r ≥ 2.
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Let r ≥ 2 and let us consider the positive increasing function φ(x) = x2r, defined on R+. The
function φ obviously satisfies

lim
x→∞

φ(x)

x
=∞.

Thanks to the estimates (83) we have

sup
m≥1

E(φ(||ȳmk ||rL2(0,T ;H))) <∞.

Thanks to uniform integrability criteria in [30, Chapter 3, Exercise 6] we see that ||ȳmk ||rL2(0,T ;H)

is uniform integrable with respect to the probability measure. Thanks to Vitali’s convergence
theorem (see, for instance, [30, Chapter 3, Proposition 3.12]) and (81), we obtain that for any
r ∈ [2,∞)

ȳmk → y strongly in Lr(Ω, L2(0, T ;H)). (89)

Thus modulo the extraction of a subsequence denoted again with the same symbols we have

ȳmk → y dP⊗ dt-a.e. in H. (90)

In view of (90), the continuity of Pmkf and the applicability of Vitali’s convergence theorem, we
derive that ∫ .

0
Pmkf(ȳmk(s), s)ds→

∫ .

0
f(y(s), s)ds strongly in L2(Ω, L2(0, T ;V∗)). (91)

Thanks to (34), (83), and (84) PmkB(ȳmk , ȳmk) belongs to a bounded set of L2(Ω,P;L2(0, T ;W∗s)).
Taking advantage of (86) and (89), we will show that

PmkB(ȳmk , ȳmk)→ B(y,y) weakly in L2(Ω,P;L2(0, T ;W∗s)). (92)

To this end let

D = {Φ = φ(ω)χ(t)Ψj : φ(ω) ∈ L∞(Ω,P), χ(t) ∈ C∞c (0, T ) and j = 1, 2, . . . },

where {Ψj ; j = 1, 2, . . . } is defined in (41). This set is dense in L2(Ω,P;L2(0, T ;Ws)). Owing to
[72, Proposition 21.23], the claim (92) is achieved if we prove that

E
(
φ(ω)

∫ T

0
〈B(ȳmk(s), ȳmk(s))− B(y(s),y(s)),Ψj〉χ(s)ds

)
→ 0,

for any Φ = φ(ω)χ(t)Ψj ∈ D. For this purpose, we rewrite the last identity in the following form

E
(
φ(ω)

∫ T

0
〈B(ȳmk(s), ȳmk(s))− B(y(s),y(s)),Ψj〉χ(s)ds

)
= I1 + I2.

where

I1 = E
(
φ(ω)

∫ T

0
〈B(ȳmk(s)− y(s), ȳmk(s)),Ψj〉χ(s)ds

)
,

I2 = E
(
φ(ω)

∫ T

0
〈B(y(s),y(s)− ȳmk(s)),Ψj〉χ(s)ds

)
.

For fixed Φ ∈ D and Ξ ∈ L2(Ω,P;L2(0, T ;V)) the mapping Υ 7→ E
(
φ(ω)

∫ T
0 〈B(Ξ,Υ),Ψj〉χ(s)ds

)
is a continuous linear functional on L2(Ω,P;L2(0, T ;V)). Hence by invoking (86) I2 converges
to 0 as m→∞. Next, we easily derive from (34) that∣∣∣∣E(φ(ω)

∫
0
〈B(ȳmk(s)− y(s), ȳmk(s)),Ψj〉χ(s)ds

)∣∣∣∣ ≤ C (E∫ T

0
|ȳmk(s)− y(s)|||ȳmk(s)||ds

)
×||Φ||L∞(Ω×[0,T ]×Q),
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which together with H¨older’s inequality and (84) imply that∣∣∣∣
0

( ∫E φ(ω) 〈B(y¯mk (s) − y(s), y¯mk (s)), Ψj 〉χ(s)ds
)∣∣∣∣ ≤ C 

(
E 
∫ T

0
|y¯mk (s) − y(s)|2ds

)1
2

×||Φ||L∞(Ω×[0,T ]×Q).

Thanks to (89) the left hand side of this last inequality will converge to 0 as m → ∞. Hence we 
have proved that I1 converges to 0 as m → ∞ which also shows that (92) holds.

Now for any t ∈ [0, T ] let

0

∫ t ∫ t
0
Pmk f(y¯mk (s), s)dsMmk (t) = y¯mk (t)−y¯0

mk 

+ and

0
M(t) = y(t) − y0 + [Γ(s) + B(y(s), y(s))]ds −

(PmkAy¯mk (s) + Pmk B(y¯mk (s), y¯mk (s))) 

ds− ∫ t ∫ t

0
f(y(s), s)ds.

With the convergence (85), (86), (88),(91), and (92) we see that

(93)Mmk → M weakly in L2(Ω, Lp
∗,2(0, T, V∗)). 

For any t ≥ 0 and k ∈ N, let

F˜
t := σ

(
(y¯mk (s), Wmk (s)); s ≤ t, k ∈ N

)
,

F˜
t := σ

(
(y(s), W (s)); s ≤ t

)
,

be the natural filtration generated by (y¯mk , Wmk ) and (y, W ), resp ively. Let ]N⋃be)the set of

null sets F. For any t ≥ 0 and k ∈ N, we denote by Ft
mk := s>t σ

ect([
F˜mks

⋂ ∨F˜
s N the join

of F˜mkt and F˜
t, i.e. the coarsest σ-algebra containing both of F˜mkt and F˜

t. We endow the new
probability system (Ω, F, P) with the filtration Fmk = {Ft

mk ; t ≥ 0}. Note that the Ws
∗-valued

stochastic processes y¯mk and y are adapted wrt this filtration. Thus, they are also predictable

in Ws
∗ because their sample paths are continuous in Ws

∗.

Remark 3.12. (i) Let s > 1 − n 2 . Since g : H × [0, T ] → J2(H) is continuous and both
H × [0, T ] and J2(H) are complete, then g is also Cauchy-continuous (i.e. it maps any 
Cauchy sequence of H × [0, T ] to a Cauchy sequence of J2(H)). Hence, by the density of
H × [0, T ] in Ws

∗ × [0, T ] we can apply [66, Theorem 5.5.3] to justify the existence of a
continuous map g˜ : Ws

∗ × [0, T ] → J2(H) which extends g and satisfies Assumption (G)
on Ws

∗ × [0, T ]. Thanks to this remark and the predictability of y¯mk and y, we can define 
the stochastic integrals

M̃mk (t) :=
0
Pmk g˜(y¯mk (r), r)dWmk (r),

˜M(t) :=
∫ t ∫ t

0
g˜(y(r), r)dW (r), t ∈ [0, T ].

(ii) Next we note that from (82) and (85), it follows that almost surely y ∈ C(0, T ; Ws
∗) ∩ 

L∞(0, T ; H). Hence we deduce from [68, Theorem 2.1] that P-a.s. y ∈ C(0, T ; Hw) where
C(0, T, Hw) denotes the space of weakly continuous functions u : [0, T ] → H. Investigating 

closely the proof of [68, Theorem 2.1], we infer from [68, Eq. (2.1), page 544] that P-a.s.
y(t) ∈ H for all t ∈ [0, T ]. The same argument is used to prove that P-a.s. y¯mk (t) ∈ H for all t 

∈ [0, T ]. Since almost surely y(t) ∈ H and y¯mk (t) for all t ∈ [0, T ] and g˜ is an exten-

sion of g : [0, T ] × H → J2
t
(H) then

m

w
k 

e can identify resp ∫ectiv
t 
ely the processes̃Mmk and

M̃ defined above with
∫

0 Pmk g(y¯ (r), r)dWmk (r) and 0 g(y(r), r)dW (r), t ∈ [0, T ].
Hereafter, we will make such identification.

The next proposition is very crucial for our purpose.
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Proposition 3.13. The following identity holds P-a.s.

M(t) =
∫ t

0
g(y(s), s)dW (s),

for any t ∈ [0, T ].

To prove this proposition we will need the next two lemmata.

Lemma 3.14. We have the following convergence

M1
mk 

(·) :=
∫ .

0
Pmk g(y¯mk (r), r)dWmk →

∫ .
0
g(y(r), r)dW (94)

in L2(Ω, L2(0, T ; H)).

Proof. We will show that M1
mk 

(t) converges in L2(Ω; H) to ∫ t0 g(y(r), r)dW (r) as mk → ∞. For

this aim let ε > 0 arbitrary and let N ∈ N such that the partition {rjN N= jT ; j = 0, 1, . . . , N} of

[0, T ] satisfies |rNj − rjN+1|< ε/2 for any j = 0, 1, . . . , N.

2Let s > 1− n and g˜ : Ws
∗×[0, T ] → J2(H) be a continuous extension of g satisfying Assumption

(G) on Ws
∗×[0, T ]. The justification of the existence of such extension was already done in 

Remark 3.12-(i). Thanks to the continuity of Pmk g˜ and (82), we can argue as in the proof of (90) 
to derive that

Pmk g˜(y¯mk (r), r) → g˜(y(r), r) strongly in J2(H) dP ⊗ dt- a.e.. (95) Since, by 
(95), (83) and Assumption (G), Vitali’s convergence theorem is applicable, we derive that

Pmk g˜(y¯mk (r), r) → g˜(y(r), r) strongly in L4(Ω, L4(0, T, J2(H))). (96)

Let

R1 = E

∥∥∥∥∫ t
0

[
Pmk g˜(y¯mk (r), r) −

N∑−1

j=0

Pmk g˜(y¯mk (rj
N), 
rj
N

)1(rNj ,r
N
j+1 ](r)

]
dWmk (r)

∥∥∥∥2

H
.

Since y¯mk ∈ L2(Ω, C(0, T ; Ws
∗)) and g˜ satisfies Assumption (G) on Ws

∗ × [0, T ], it follows that 
the map Pmk g˜(y¯mk (·), ·) ∈ L2(Ω, C(0, T ; J2(H))). Hence Pmk g˜(y¯mk (·), ·) ∈ C(0, T ; L2(Ω; 

J2(H))).
j
N ; j = 0, 1, . . . , N} that for any mk and r ∈ (rjN , rjNNow, it easily follows from the choice of {r +1]

we have

E‖Pmk g˜(y¯mk (r), r) − Pmk g˜(y¯mk (r
j
N ), rj

N )‖2J2 
≤

ε

4cT
. (97)

We also have the following chain of inequalities

R1 ≤ cE
∫ T

0
‖Pmk g˜(y¯mk (r), r) −

N∑−1

j=0

Pmk g˜(y¯mk (rj
N), 
rj
N

)1(rNj ,r
N
j+1](r)‖

2
J2 dr

≤ c
N∑E ∫ rj+1‖Pmk g˜(y¯mk (r), r) − Pmk g˜(y¯mk (rj

N), 
rj
N

)‖2J2 
dr. j=0 rj

From the last line and (97) we infer that for any ε > 0 there exists k0 such that for mk > k0 we have

R1 ≤
ε

4
. (98)

Set

R4 = E

∥∥∥∥∫ t
0

(Pmk g˜(y(r), r) − g˜(y(r), r)) dW (r)
∥∥∥∥2

H
.
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Using the Itˆo’s isometry for stochastic integral in the righthand side of the above estimate we
derive that ∫ T

0
R4 ≤ CE ‖Pmk g˜(y(r), r) − g˜(y(r), r)‖2J2 dr,

from which and (96) we infer that for any ε > 0 there exists k1 such that for mk > k1 we have

R4 ≤
ε

4
. (99)

Define

R2 = E

∥∥∥∥[ N∑−1

j=0

(
Pmk g˜(y¯mk (r

j
N ), rj

N)[Wmk (t ∧ rj
N
+1) − Wmk (t ∧ rj

N)]
)

−
N∑−1

j=0

(
Pmk g˜(y(rj

N), rj
N)[W (t ∧ rj

N
+1) − W (t ∧ rj

N)] )]∥∥∥∥2

H
.

By using the Cauchy-Schwarz’s inequality, it is easy to see that

R2
2 ≤ C

( N∑−1

j=0

∥∥
E ∥∥[Pmk g˜(y¯mk (rj

N ), rj
N ) − Pmk g˜(y(rj

N ), r
j
N )][Wmk (t ∧ rj

N
+1) − Wmk (t ∧ rj

N)]

∥∥∥∥2

H

)2

+C

(
E
N∑−1

j=0

∥∥∥∥Pmk g˜(y(r
j
N ), rj

N)[W (t ∧ rj
N
+1) − W (t ∧ rj

N) − Wmk (t ∧ rj
N
+1) + Wmk (t ∧ rj

N)]

∥∥∥∥2

H

)2

≤ C
N∑−1

j=0

E‖Pmk g˜(y¯mk (rj
N

), rj
N) − Pmk g˜(y(rj

N
), rj

N )‖4J2E‖Wmk (t ∧ rj
N

+1) − Wmk (t ∧ rj
N )]‖4K

+CNE sup
r∈[0,T ]

‖Pmk g˜(y(r), r)‖4J2 [E sup
t∈[0,T ]

‖Wmk (t) − W (t)‖4K].

Since Wmk is a Q-Wiener process with values in K there exists C > 0 such that
E‖Wmk (r) − Wmk (s)‖

4
K ≤ C(r − s)2, 

for any 0 ≤ s < r ≤ T . Hence

R2
2 ≤ C

T

N
E
N∑−1

j=0

‖Pmk g(y¯mk (r
j
N ), rj

N) − Pmk g˜(y(rj
N), rj

N )‖4J2 (rj
N

+1 − rj
N )

+CNE sup
r∈[0,T ]

‖Pmk g˜(y(r
j
N ), rj

N)‖4J2 [E sup
t∈[0,T ]

‖Wmk (t) − W (t)‖4K]

T 
≤ C N

E
∫ T

0
‖[Pmk g(y¯mk (s), s) − Pmk g˜(y(s), s)‖4J2 ds

+CNE sup ‖Pmk g˜(y(r), r)‖4J2 [E sup‖Wmk (t) − W (t)‖4K].
r∈[0,T ] t∈[0,T ]

Thanks to (85) and the fact that g˜ also satisfies Assumption (G), we have

E sup
r∈[0,T ]

‖Pmk g˜(y(r), r)‖4J2 < ∞.

Since Wmk is a Q-Wiener process with values in K, then for any q ≥ 1 there exists C > 0 such that

E sup
t∈[0,T ]

‖Wmk (s)‖
q
K ≤ CT

q
2 .
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Therefore from the almost sure convergence (80), the applicability of Vitali’s theorem and (96)
we derive that for any ε > 0 there exists k2 ∈ N such that if mk > k2 we have

R2
2 ≤

ε2

16
. (100)

Let

R3 = E
∥∥∥∥∫ t

0

Pmk g̃(y(r), r)−
N−1∑
j=0

[Pmk g̃(y(rNj ), rNj )1(rNj ,r
N
j+1](r)]

 dW (r)

∥∥∥∥2

H
.

Arguing again as in the case for R4 we get that

R3 ≤ CE
∫ t

0
‖g̃(y(r), r)−

N−1∑
j=0

[g̃(y(rNj ), rNj )1(rNj ,r
N
j+1](r)]‖

2
J2ds,

from which along the same argument as in R1 we easily infer that for any ε > 0 there exists
k3 ∈ N such that if mk > k3 we have

R3 ≤
ε

4
. (101)

Noticing that

E
∥∥∥∥∫ t

0
Pmk g̃(ȳmk(r), r)dWmk(r)−

∫ t

0
g̃(y(r), r)dW (r)

∥∥∥∥2

H
≤ c

4∑
j=1

Rj (102)

We derive from (98), (99), (100) and (101) that for any ε > 0 there exists k̄0 ∈ N (for e.g.
k̄0 = max{k0, k1, k2, k3}) such that if mk > k̄0 we have

E
∥∥∥∥∫ t

0
Pmk g̃(ȳmk(r), r)dWmk(r)−

∫ t

0
g̃(y(r), r)dW (r)

∥∥∥∥2

H
≤ ε.

Since, by Remark 3.12-(ii), we have P-a.s. y(t) ∈ H and ȳmk(t) for all t ∈ [0, T ] and g̃ is an
extension of g : [0, T ] × H → J2(H) then we easily infer that for any ε > 0 there exists k̄0 ∈ N
such that if mk > k̄0 we have

E
∥∥∥∥∫ t

0
Pmkg(ȳmk(r), r)dWmk(r)−

∫ t

0
g(y(r), r)dW (r)

∥∥∥∥2

H
≤ ε,

from which we conclude the proof. �

Remark 3.15. Let w be real-valued Brownian motion defined on a filtered complete probability
space (Ω,F ,F,P) and φ be a predictable process such that φ ∈ L2(Ω × [0, T ];R). It is clear
that we can consider the stochastic integral

∫ ·
0 φ(s)dw(s) as a function I(φ,w) of the integrand

φ and the Brownian motion w. One can prove by making use of the BDG inequality that
I(·, w) : L2(Ω × [0, T ];R) 3 φ 7→

∫ ·
0 φ(s)dw(s) ∈ L2(Ω × [0, T ];R) is continuous. However, we

do not know whether I(φ, ·) have some continuity property wrt the variable w. And this is the
reason why we used the discretization method in the proof of Lemma 3.14.

Next we show that ȳmk is the solution of a finite dimensional SDEs on the new probability
system (Ω,F ,P) which is equipped with the filtration Fmk that was defined above.

Lemma 3.16. The following holds P-a.s

ȳmk(t) +

∫ t

0
PmkAȳmk(s) + PmkB(ȳmk(s), ȳmk(s))ds = ȳmk0 +

∫ t

0
Pmkf(ȳmk(s), s)ds

+

∫ t

0
Pmkg(ȳmk(s), s)dWmk ,

(103)

for any t ∈ [0, T ].
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Proof. For any t ∈ [0, T ] let Imk(t) =
∫ t

0 Pmkg(ȳmk(s), s)dWmk(s) and

Mmk(t) = ymk(t) +

∫ t

0
PmkAymk(s) + PmkB(ymk(s),ymk(s))ds− ymk0 −

∫ t

0
Pmkf(ymk(s), s)ds

−
m∑
i=1

∫ t

0
Pmkg(ymk(s), s)eidW̄

i.

First notice that the stochastic processes Mmk and Imk are finite dimensional. Next, since the
laws of (ymk , W̄ ) and (ȳmk ,Wmk) are equal on S and P̄-a.s. Mmk(t) = 0 for all t ∈ [0, T ], it
follows from [64, Lemma 139] that P-a.s. Mmk(t) = Imk(t) for any t ∈ [0, T ]. �

Now we prove Proposition 3.13.

Proof of Proposition 3.13. For any t ∈ [0, T ] let I(t) =
∫ t

0 g(y(s), s)dW . It follows from (94)

that Imk → I strongly in L2(Ω;L2(0, T,H)), and from Lemma 3.13 we derive that Mmk = Imk

in L2(Ω, Lp
∗
(0, T ;W∗s)) with s − 1 > n

2 . Hence we derive from (93) and the uniqueness of the

weak limit that M = I in L2(Ω, Lp
∗
(0, T ;W∗s)). This fact implies that for almost all t ∈ [0, T ]

and P-a.s. M(t) = I(t). Since M(t) and I(t) are W∗s-valued continuous functions which agree
for almost all t ∈ [0, T ], they must be equal for all t ∈ [0, T ]. This ends the proof of the
proposition. �

The stochatsic process y satisfies the property stated in the following proposition.

Proposition 3.17. For any r ∈ [2,∞) we have y ∈ Lr(Ω, C(0, T ;H)).

Proof. Thanks to Proposition 3.13 we have

y(t) = y0 +

∫ t

0
G(s)ds+

∫ t

0
S(s)W (s), t ∈ [0, T ],

where
G(·) := Γ(·) + B(y(·),y(·)) + f(y(·), ·)

and S(·) := g(y(·), ·). Thanks to (88), (92) and (91) we have G(·) ∈ L2(Ω, Lp
∗,2(0, T ];W∗s)).

Owing to (85) and Assumption (G) we obtain S(·) ∈ L2(Ω× [0, T ]; J2(H)). Now it easily follows
from [29, Chapter I, Theorem 3.2] that there exists Ω∗ ∈ F such that P(Ω∗) = 1 and for each
ω ∈ Ω∗ the function y(·) takes values in H, and it is continuous in H with respect to t. Now it
follows from the item (85) that y ∈ Lr(Ω, C(0, T ;H)). �

To complete the proof of Theorem 3.3 we need two additional results that we state as propo-
sitions.

Proposition 3.18. We have the following identity

Γ = Ay in L2(Ω, Lp
∗,2(0, T,V∗)).

Before we proceed to the proof of this proposition we state and prove the following lemma.

Lemma 3.19. Let p ≥ 2 and y := (u; B) ∈ Lr(Ω, C(0, T ;H)) ∩ Lr/2(Ω, Lp,2(0, T ;V)) for any
r ≥ 2. For any v ∈ Lp(Ω× [0, T ];V1,p) and C ∈ L2(Ω× [0, T ];V2) set

B1(y,y,v) = b(u,u,v)− µb(B,B,v),

B2(y,y,C) := µb(u,B,C)− µb(B,u,C).

Then, for any v ∈ Lp(Ω× [0, T ];V1,p) and C ∈ L2(Ω× [0, T ];V2)

(i) B1(y,y,v) ∈ L1(Ω× [0, T ]) provided that p ≥ max
(

1 + 2n
n+2 ,

n+2
4

)
,

(ii) B2(y,y,C) belongs to L1(Ω× [0, T ]) provided that p ≥ n.
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Proof. The case n = 2 is relatively easy and can be treated as, for instance, in [60, Page 918], so
we limit ourself to the case n ≥ 3.

The proof of ((i)) for the case p ≥ n is very similar to the proof of part ((ii)), so we will only

treat the case p < n. Let q = np
n−p , ρ = p(n+2)

n and θ = 2
n+2 ∈ (0, 1

2). By arguing as in [35,

Chapter 2, page 213] we have

Lp(0, T ;W1,p(Q)) ∩ L∞(0, T ;L2(Q)) ⊂ Lp(0, T ;Lq(Q)) ∩ L∞(0, T ;L2(Q)) ⊂ Lρ([0, T ]×Q),

and

‖v‖Lρ([0,T ]×Q) ≤ C‖v‖1−θLp(0,T ;W1,p(Q))
‖v‖θL∞(0,T ;L2(Q)), (104)

for any v ∈ Lp(0, T ;W1,p(Q)) ∩ L∞(0, T ;L2(Q)).
As above we can argue as in [35, Chapter 2, page 213] and derive that

L2(0, T ;H1(Q)) ∩ L∞(0, T ;L2(Q)) ⊂ L2(0, T ;L
2n
n−2 (Q)) ∩ L∞(0, T ;L2(Q)) ⊂ Lα([0, T ]×Q),

where α = 2(n+2)
n . Moreover, with the same θ as above

‖v‖Lα([0,T ]×Q) ≤ C‖v‖1−θL2(0,T ;H1(Q))
‖v‖θL∞(0,T ;L2(Q)), (105)

for any v ∈ Lp(0, T ;W1,p(Q)) ∩ L∞(0, T ;L2(Q)).
Now since b(u,u,v) = −b(u,v,u) for any v ∈ Lp(Ω×[0, T ];V1,p) and 1

p+ 2
ρ for any p ≥ 1+ 2n

n+2 ,

we derive by the Cauchy-Schwarz inequality that

E
∫ T

0
|b(u(t),u(t),v(t))|dt ≤CE

[
‖u‖2Lρ([0,T ]×Q)‖∇v‖Lp([0,T ]×Q)

]
,

≤CE
[
‖u‖2(1−θ)

Lp(0,T ;W1,p(Q))
‖u‖2θL∞(0,T ;L2(Q))‖v‖Lp(0,T ;V1,p)

]
.

Since (u; B) ∈ Lr(Ω, C(0, T ;H)) ∩ Lr/2(Ω, Lp,2(0, T ;V)) for any r ≥ 2 one can choose r1 such

that 2(1−θ)
r1

+ 2θ
r1

+ 1
p = 1 and

E
∫ T

0
|b(u(t),u(t),v(t))|dt ≤ C

[
E‖u‖r1

Lp(0,T ;W1,p(Q))

] 2(1−θ)
r1

[
E‖u‖2r1

L∞(0,T ;L2(Q))

] θ
r1

×
[
E‖v‖pLp(0,T ;V1,p)

] 1
p

.

With exactly the same argument we can prove the following estimate

E
∫ T

0
|b(B(t),B(t),v(t))|dt ≤ C

[
E‖B‖r1

L2(0,T ;H1(Q))

] 2(1−θ)
r1

[
E‖B‖2r1

L∞(0,T ;L2(Q))

] θ
r1

×
[
E‖v‖pLp(0,T ;V1,p)

] 1
p

,

which is valid as long as 1
p + 2

α ≤ 1, i.e. p ≥ n+2
4 . We conclude easily the proof of part ((i)) with

these last two estimates.
Proof of part ((ii)). Let

γ =
pn2

[(p− 2)n+ 2p](n+ 2)
,

1

q
= γ(

1

p
− 1

n
) + (1− γ)

1

2
.
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Note that n > n(n+2)
2(n+1) , γ ∈ (0, 1) and 1

q + 1
2 + 1

α ≤ 1 as long as p > n(n+2)
2(n+1) . Hence, by the

Cauchy-Schwarz and Gagliardo-Nirenberg inequalities we deduce that

E
∫ T

0
|B2(y(t),y(t),C(t))|dt ≤ CE

[∫ T

0
|u(t)|1−γ‖∇u(t)‖γLp(Q)‖B(t)‖Lα(Q)|∇C(t)|dt

]
.

We deduce from this inequality that

E
∫ T

0
|B2(y(t),y(t),C(t))|dt ≤ CE

[
‖u‖1−γ

L∞(0,T ;L2(Q))
‖∇u‖γLp([0,T ]×Q)

× ‖B‖Lα([0,T ]×Q)‖∇C‖L2([0,T ]×Q)

]
,

provided that γ
p + 1

2 + 1
α ≤ 1 which is true as long as γ ≤ n

n+2 , i.e. p ≥ n. As before we can

choose r1 and r2 such that 1−γ
r1

+ γ
2r1

+ 1−θ
r2

+ θ
2r2

+ 1
2 ≤ 1 and

E
∫ T

0
|B2(y(t),y(t),C(t))|dt ≤ E

[
‖B‖r2

L2(0,T ;H1(Q))

] 1−θ
r2

[
E‖B‖2r2

L∞(0,T ;L2(Q))
]
θ

2r2

×E
[
‖u‖rLp(0,T ;W1,p(Q))

] 1−γ
r
[
E‖u‖2r1

L∞(0,T ;L2(Q))
]
γ

2r1

×
[
E‖C‖2L2(0,T ;V2)

] 1
2

,

provided p ≥ n. This last estimate ends the proof of our lemma. �

Proof of Proposition 3.18. We will use the method of monotonicity (see, for instance, [47, Chapitre
3, Section 3, p 103 ] to prove Proposition 3.18.

Let {Ψj ; j = 1, 2, . . .} be the orthogonal basis of H defined on page 12. From Lemma 3.5 we
deduce that for any j = 1, . . . ,mk

(ȳmk(T ),Ψj) = (ymk0 ,Ψj)−
∫ T

0
〈PmkAȳmk(s) + PmkB(ȳmk(s), ȳmk(s)),Ψj〉ds

+

∫ T

0
〈Pmkf(ȳmk(s), s),Ψj〉ds+

∫ T

0
〈Pmkg(ȳmk(s), s),Ψj〉dWmk .

Thanks to (93) it follows that the righthand side the above equation converges weakly to
〈M(T ),Ψj〉 in L2(Ω,R) which is equal to (y(T ),Ψj) for any j ≥ 1. Hence, we have just es-
tablished that

β = y(T ) in L2(Ω,H).

Now, it follows from Eq. (12) of Lemma 2.3 that for any v ∈ L2(Ω, Lp,2(0, T,V))

2E
∫ T

0
〈Aȳmk(s), ȳmk(s)〉ds ≥ 2E

∫ T

0
〈Aȳmk(s),v(s)〉ds+ 2E

∫ T

0
〈Av(s), ȳmk(s)− v(s)〉ds.

By assumption p ≥ max
(

1 + 2n
n+2 ,

n+2
4 , n

)
, hence thanks to Lemma 3.19 we can apply Itô’s

formula given in [48, Theorem I.3.3.2, page 147] and we derive that

2E
∫ T

0
〈Aȳmk(s), ȳmk(s)〉ds = |ymk0 |

2 − E|ȳmk(T )|2 + 2E
∫ T

0
〈Pmkf(ȳmk(s), s), ȳmk(s)〉ds

+E
∫ T

0
‖Pmkg(ȳmk(s), s)‖2J2ds,
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and

2E
∫ T

0
〈Γ(s),y(s)〉ds = |y0|2 − E|y(T )|2 + 2E

∫ t

0
〈f(y(s), s),y(s)〉ds+ E

∫ t

0
||g(y(s), s)||2J2ds.

From these last three estimates we infer that

2E
∫ T

0
〈Aȳmk(s),v(s)〉ds− 2E

∫ T

0
〈Γ(s),y(s)〉ds+ 2E

∫ T

0
〈Av(s), ȳmk(s)− v(s)〉ds ≤

4∑
i=1

J i,k

+E(|y(T )|2 − |ȳmk(T )|2),
(106)

where

J1,k :=|ȳmk0 |
2 − |y0|2

J2,k :=2E
∫ T

0
〈f(y(s), s),y(s)− ȳmk(s)〉ds

J3,k :=2E
∫ T

0
〈f(y(s), s)− Pmkf(ȳmk(s), s), ȳmk(s)〉ds

J4,k :=E
∫ T

0
‖Pmkg(ȳmk(s), s)‖2J2ds− E

∫ T

0
‖g(y(s), s‖2J2ds.

It follows from (43), (86), (91) and (96) that limk→∞
∑4

i=1 J
i,k = 0, and since ȳmk(T ) → y(T )

weak in L2(Ω,H) we also infer that

lim inf
k→∞

E(|y(T )|2 − |ȳmk(T )|2) ≤ 0.

We easily infer from these last two remarks and by passing to the limit in (106) that

2E
∫ T

0
〈Γ(s)−Av(s),v(s)− y(s)〉ds ≤ 0

for any v ∈ L2(Ω, Lp,2(0, T,V)). Let Ψ ∈ L2(Ω, Lp,2(0, T,V)) and θ > 0. By taking v = y ± θΨ,
we derive from the last estimate that

2E
∫ T

0
〈Γ(s)−A(y(s)± θΨ(s)),±Ψ(s)〉ds ≤ 0,

from which along the hemicontinuity of A we conclude the proof of the proposition. �

Proposition 3.20. Let N be set the null sets of F- Let F = {Fs : s ∈ [0, T ]}, where the σ-algebra
Fs is defined by

Fs := σ (σ (y(r),W (r); r ∈ [0, s]) ∪N ) .

The stochastic process W is a F-cylindrical Wiener process on H.

Proof. This follows from Proposition 3.11 and Remark 2.8. �

Now we will end the proof of our first main result.

Proof of Theorem 3.3. Now from Proposition 3.13, Proposition 3.17, Proposition 3.18 and Propo-
sition 3.20 we infer that the system {(Ω,F ,F,P), (y,W )} is a martingale solution to (38)-(39) in
the sense of Definition 3.1. This ends the proof of the existence theorem. �
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4. Exponential decay of the weak solution

In the present section, we are interested in the asymptotic behavior of weak probabilistic
solutions of (38)-(39) so we will assume the existence of such solution.

First, note that

〈Ay,y〉 =〈Apu,u〉+ 〈A2B,B〉
≥ν̃3(||u||21 + ||u||p1,p) + ||B||22
≥ν̃3P|u|2 + P|B|2,

where P is the constant in Poincaré’s inequality. Setting µ̃ = min(ν̃3P,P), then

〈Ay,y〉 ≥ µ̃|y|2. (107)

Throughout this section we suppose that there exist positive constants θ,Mα,Mβ, Cf , and two
integrable functions α(.) β(.) satisfying

0 < α(t) ≤Mαe
−θt, 0 < β(t) ≤Mβe

−θt (108)

and

〈f(y, t),y〉 ≤ α(t) + (Cf + β(t))|y|2, (109)

for any t ∈ [0,∞) and y ∈ H.
We also assume that there exist positive constants ζ, Mδ, Mγ and two positive functions

γ(.), δ(.) such that

δ(t) ≤Mδe
−θt, γ(t) ≤Mγe

−θt, (110)

and

||g(y, t)||2J2 ≤ γ(t) + (ζ + δ(t))|y|2, (111)

for any t ∈ [0,∞) and y ∈ H.
We also suppose that

2µ̃ > 2Cf + ζ. (112)

Theorem 4.1. Under the conditions (108)-(112) any weak solution to (38)-(39) converges to
zero almost surely exponentially.

Proof. Recall that

y(t) = y0 −
∫ t

0

[
Ay(s) + B(y(s),y(s))

]
ds+

∫ t

0
f(y(s), s)ds+

∫ t

0
g(y(s), s)dW,

from which and Itô’s formula (see, for instance, [48, Theorem I.3.3.2, page 147] )we derive that

|y(t)|2 = |y0|2 − 2

∫ t

0
〈Ay(s)− f(y(s), s),y(s)〉ds+

∫ t

0
||g(y(s), s)||2J2ds

+2

∫ t

0
(g(y(s), s),y(s))dW.

Since 2µ̃ > 2Cf + ζ we can choose a constant a ∈ (0, θ) such that 2µ̃ > 2Cf + ζ + a. Hence, Itô’s
formula implies

eat|y(t)|2 = |y0|2 − 2

∫ t

0
〈easAy(s)− f(y(s), s),y(s)〉ds+

∫ t

0
eas||g(y(s), s)||2J2ds

+a

∫ t

0
eas|y(s)|2ds+ 2

∫ t

0
(g(y(s), s),y(s))dW.
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Since the mathematical expectation of the last term of the right hand side of this equation
vanishes, then

eatE|y(t)|2 = |y0|2 − 2

∫ t

0
E〈easAy(s)− f(y(s), s),y(s)〉ds+

∫ t

0
easE||g(y(s), s)||2J2ds

+a

∫ t

0
easE|y(s)|2ds

(113)

Therefore, we can derive from (113) and (107) that

eatE|y(t)|2 ≤
∫ t

0
(2Mβ + 2Mδ)e

(a−θ)s|y(s)|2ds+ (2Cf + ζ + a− 2µ̃)

∫ t

0
eas|y(s)|2ds

+|y0|2 +

∫ t

0
(2Mα + 2Mγ)e(a−θ)sds.

(114)

By invoking Gronwall’s lemma we can infer the existence of M0 = M0(|y0|2) such that

E|y(t)|2 ≤M0e
−at, (115)

for any t ≥ 0.
Now let N be a positive integer. Itô’s formula yields

|y(t)|2 = |y(N)|2 − 2

∫ t

N
〈Ay(s)− f(y(s), s),y(s)〉ds+

∫ t

N
||g(y(s), s)||2J2ds

+2

∫ t

N
(g(y(s), s),y(s))dW.

Owing to Burkhölder-Davis-Gundy’s, Cauchy-Schwarz’s and Cauchy’s inequalities we have

E sup
N≤t≤N+1

∣∣∣∣∫ t

N
(g(y(s), s),y(s))dW

∣∣∣∣ ≤ η1E
(∫ N+1

N
|y(s)|2||g(y(s), s)||2J2ds

) 1
2

,

≤ η1E

(
sup

N≤t≤N+1
|y(t)|2

∫ N+1

N
||g(y(s), s||2J2ds

) 1
2

,

≤ η2

∫ N+1

N
E||g(y(s), s)||2J2ds+

1

2
E sup
N≤t≤N+1

|y(t)|2,

where η1, η2 > 0. From this we deduce that

E sup
N≤t≤N+1

|y(t)|2 ≤ 2

∫ N+1

N

[
α(s) + (Cf + β(s))E|y(s)|2

]
ds

+E|y(N)|2 − 2µ̃

∫ N+1

N
E|y(s)|2ds

+(1 + η2)

∫ N+1

N
E||g(y(s), s)||2J2ds.

(116)

The assumptions on f and g imply

E sup
N≤t≤N+1

|y(t)|2 ≤ E|y(N)|2 + (−2µ̃+ 2Cf + ζ)

∫ N+1

N
E|y(s)|2ds

+

∫ N+1

N
[2α(s) + (1 + η2)γ(s)]ds

+

∫ N+1

N
[2β(s) + η2(ζ + δ(s))]E|y(s)|2ds.

(117)



STOCHASTIC MODIFIED MAGNETOHYDRODYNAMIC EQUATIONS 34

Thanks to (115) there exists a positive constant M1 = M1(|y0|2) such that

E sup
N≤t≤N+1

|y(s)|2 ≤M1e
−aN .

Finally, the results follows from Borel-Cantelli’s lemma. �

Remark 4.2. The conditions (108)-(111) correspond to a modified MHD system driven by
external forces that decay exponentially with time. This situation is very difficult to find in
practical experiment, and hence it is not very realistic. A set of conditions which could be more
realistic than (108)-(111) is the following.
Assume that there exist positive constants Mα,Mβ,Mγ ,Mδ such that

〈f(y),y〉 ≤Mα +Mβ|y|2,
and

‖g(y, t)‖2J2 ≤Mγ +Mδ|y|2,
for any y ∈ H. Under these new conditions one can prove that Theorem 4.1 remains true provided
that µ̃ > Mα + Mβ + Mβ + Mδ. A situation which correspond to these new assumptions is the
case where we have a damping-like term (i.e., f(y) = Mβy) and additive noise of the form QdW
where Q ∈ J2(H).
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[7] Z. Brzeźniak. On stochastic convolutions in Banach spaces and applications. Stoch. Stoch. Rep. 61:245-295,

1997.
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