RESEARCH NOTE

FURTHER OBSERVATIONS ON THE ULTRASTRUCTURE OF EPHEMERAL FEVER VIRUS

G. LECATASAS, Veterinary Research Institute, Onderstepoort

Electron microscopic studies on ephemeral fever virus (EFV) have shown that the virus is cone-shaped having a basal diameter of approximately 176 μ and a height of about 88 μ (Lecatsas, Theodoridis & Erasmus, 1969). These workers have also shown that the virus has an envelope derived from the host cell membrane and that the internal electron-dense component consists of a spirally arranged material, probably ribonucleoprotein in nature. The length of the spiral is between 2 and 2.5 μ with a pitch of about 16.5 μ.

Further electron microscopic observations confirm previous results and provide new information on the ultrastructural nature of the electron-dense spiral. These are reported in the present communication.

The methods of preparation of material have been reported previously (Lecatsas et al., 1969) and consist basically of fixation of virus-infected BHK 21 cells with gluteraldehyde followed by osmium tetroxide, dehydration in ethanol and embedding in Epon 812. Thin sections were then double-stained with uranyl acetate and lead citrate and examined in Siemens Elmiskop 1A electron microscope.

Close examination of the arrowed portion of the virus particles in Plate 1 (1) reveals that the granular electron-dense material represents sectioned strands. It is also evident that the electron-dense material is helical in nature (arrows). Measurement of the individual strands gives an approximate thickness of 4 μ (40 A). An enclosed space between the strands is clearly visible in Plate 1 (3). The total diameter of limb “a” of the virus particle shown in Plate 1 (3) is 18.4 μ, and that of limb “b” in Plate 1 (4) is 16.8 μ. The sharp margin of both limbs suggests that the virus particles have been cut by a plane passing through the core axis. It is also evident that the helical nature of the strands and the space they enclose would give a value near 17 μ if two strands of 4 μ each make up the helix. Allowing for the relatively large space (8 μ) between the strands which is evident in Plate 1 (4), three or more strands would yield a larger total diameter. Plate 1 (3 and 4) suggests strongly that the strands form a double helix. The axial length of one complete turn of the helix is about 10 μ (100 A). Plate 1 (2) is a proposed model of the virus.

It is interesting to note that Dunnebacke & Klein­schmidt (1967) have shown that the total length of reovirus ribonucleic acid (RNA) is about 5 μ. The observations made in the present investigation suggest that the length of RNA in EFV lies between 4.5 and 6 μ.

It remains to be seen whether the RNA contained by each 4 μ strand is single or double stranded. Biochemical characterization of purified EFV RNA should provide further insight into the arrangement of the hereditary material in this unique virus.

REFERENCES


OBSERVATIONS ON THE ULTRASTRUCTURE OF EPHEMERAL FEVER VIRUS

Plate 1 (1) Virus particles in the cytoplasmic matrix. Arrows indicate areas where helical nature of electron-dense material is evident. Bar equals 80 nm.

Plate 1 (2) Proposed model of EFV. The space separating the individual strands is not shown in the model.

Plate 1 (3) Helical array of strands composing the electron-dense portion of EFV is indicated by the rectangle. Diameter of the limb "a" is 18.4 nm. Bar equals 80 nm.

Plate 1 (4) Demarcated portion of virus particle suggesting helical array of electron-dense strands. Space between strands is evident. Diameter of the limb "a" is 16.8 nm. Bar equals 60 nm.