
 
 

© University of Pretoria 

 

 

 

  

USING DEPTH INFORMATION TO AID 
STEREOSCOPIC IMAGE FORENSICS 

BY 

MARK-ANTHONY FOUCHÉ 

 

 

Submitted in partial fulfilment of the requirements for the degree 

Master of Science (Computer Science) 

 

in the 

 

Faculty of Engineering, Build Environment and Information Technology 

 

 

UNIVERSITY OF PRETORIA 

 

 

September 2014 



 
   
 

i 
  

SUMMARY 

USING DEPTH INFORMATION TO AID STEREOSCOPIC IMAGE FORENSICS 

by 

Mark-Anthony Fouché 

 

Supervisor:  Prof MS Olivier 

Department: Computer Science 

University:  University of Pretoria 

Degree:  Master of Science (Computer Science) 

Keywords:  Stereoscopic Image, Stereo 3D, Image Forensics, Splicing, Depth, 

Disparity Map, Forgery Detection 

 

With the advances in image manipulation software, it has become easier to 

manipulate digital images. These manipulations can be used to increase image 

quality, but can also be used to depict a scene that never occurred. One of the 

purposes of digital image forensics is to identify such manipulations. There is 

however a lack of research on the detection of manipulated stereoscopic images. 

Stereoscopic images are images which create an illusion of depth for the viewer by 

showing an image pair that correlates to a person’s left and right eye. 

 

This dissertation investigates how depth information can be used to detect 

stereoscopic image manipulations. Two techniques were developed and tested 

through experimentation.  

 

The first technique used disparity maps to highlight large areas without internal 

depth. These areas can be the product of non-stereoscopic to stereoscopic splicing 

techniques. Experimentation results showed that areas without internal depth can 

be detected. However, the detected areas can be the product of natural 

occurrences in images and not only non-stereoscopic to stereoscopic splicing.  Post 

investigation of detected areas is thus required to verify the results. 
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The second technique used a derived formula to determine the distance an area will 

lose internal depth. Experimentation results showed that the formula is fairly 

accurate. This information can be used to aid the detection of internal depth 

inconsistencies in stereoscopic images. These inconsistencies can arise due to 

stereoscopic image splicing or other image manipulation techniques that may 

modify the internal depth of a stereoscopic image.   
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CHAPTER 1 - INTRODUCTION 

1.1 INTRODUCTION 
Advances in image manipulation software have made it easy for users to manipulate 

digital images. Image manipulation can be used to improve image quality, but can 

also be used to depict a scene that never occurred. This creates a problem when 

digital images are used for media, scientific research or as evidence in a court of 

law. Digital image forensics is a field that explores this problem. By searching for 

inconsistencies in manipulated images, it is possible to determine whether an image 

has been manipulated. Inconsistencies include those found in lighting [1], shadows 

[2], geometric shapes [3], colour [4], focal blur [5] and compression [6]. The amount 

of existing research in digital image forensics can be seen from multiple surveys that 

have been compiled on the topic [7][8][9][10][11]. There is however a lack of 

research in detecting inconsistencies which are unique to stereoscopic images. 

 

A stereoscopic image is an image pair, which is often referred to as a 3D image. This 

image pair is created using the same scene but at slightly different viewpoints. 

These viewpoints correlate to a person’s left and right eye. Stereoscopic images are 

usually viewed by separating the image pair for the user’s eyes. Viewing 

stereoscopic images this way, creates the illusion of seeing a scene in 3D instead of 

a scene projected onto a flat surface. Stereoscopic images have become more 

convenient to create and view with the creation of autostereoscopic displays. There 

are existing digital cameras [12], digital video cameras [13], a mobile game console 

[14], mobile phones [15] and even a tablet [16], which allow for the creation and 

viewing of stereoscopic images. Stereoscopic images are widely used. Applications 

for stereoscopic images include entertainment [17], education [18], medical 

sciences [19], forensic sciences [20], astronomy [21], robotics [22] and 

advertisements [23]. 
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Stereoscopic images can be manipulated in a similar way as non-stereoscopic 

images. These manipulations can cause the same image inconsistencies found in 

normal manipulated images, which allow normal digital image forensics techniques 

to be used. Since stereoscopic images contain more information about a scene, it is 

possible that additional inconsistencies can arise from image manipulations. The 

more inconsistencies that can arise from image manipulations, the more detection 

techniques can be developed and the harder it becomes to create undetectable 

image forgeries. 

 

Two techniques are produced in this dissertation, which try to use stereoscopic 

depth information to aid the detection of stereoscopic image manipulation. One 

uses disparity maps, while the other uses triangulation. 

1.2 PROBLEM STATEMENT 
This dissertation investigates how stereoscopic depth information can be used to 

aid the detection of stereoscopic image manipulations. 

 

Stereoscopic depth information can be obtained from image disparity. Image 

disparity is the difference of a point in the left and right stereoscopic image parts. 

This disparity can be used to retrieve relative depth information in the form of 

disparity maps. If camera information is available, image disparity can be used to get 

precise depth information with the use of triangulation. Both disparity maps and 

triangulation will be looked at in order to detect stereoscopic image manipulations. 

 

There are many image manipulation techniques, but this dissertation will focus on 

image splicing. Image splicing combines two or more images to create a composite 

image. An example of image splicing is copying the head of one person onto the 

torso of another.  
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Two stereoscopic image manipulation detection techniques are created and tested. 

The first technique uses disparity maps to highlight areas without internal depth. 

Objects which are copied from non-stereoscopic images do not have internal depth. 

By detecting areas without internal depth it is possible to detect these objects. The 

second approach uses triangulation to determine the distance at which objects loses 

internal depth. Objects beyond a certain distance from the camera do not have 

internal depth, since these objects are represented by a limited amount of pixels. If 

an object is copied from a distance where it should have internal depth to a distance 

where it should not, it is possible that the object will still have internal depth and 

vice versa. The next section explains the experiment design of these two techniques. 

1.3 METHODOLOGY 
The first technique is tested with an experiment on a set of 50 non-stereoscopic to 

stereoscopic spliced images. A mask is created that shows which area has been 

copied. For each image, a disparity map is generated and an algorithm is used to 

highlight large areas with no internal depth. The detected areas are compared with 

the mask and the correct an incorrect amount of detected pixels are investigated. 

 

The second technique is also tested with an experiment. Using an existing formula 

for calculating the distance of objects, a new formula is derived to determine the 

distance at which an object loses internal depth. A set of stereoscopic images are 

captured with objects at different distances. The internal depth of the objects are 

calculated and compared with the derived formula, to confirm the correctness of 

the formula. An object with internal depth is then copied, scaled and moved to a 

position where it should not have internal depth and vice versa. The change in 

internal depth information is then investigated. 
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1.4 STRUCTURE OF DISSERTATION 
This dissertation is structured as follows: Chapter 2 provides an overview of digital 

image forensics and the research that has been done in the field. Chapter 3 provides 

information on stereoscopic images, to provide a better understanding of the topic. 

The connection between stereoscopic images and digital image forensics is also 

looked at in Chapter 3. Chapter 4 provides detailed information, results and 

discussion of the first detection technique tested. Chapter 5 provides detailed 

information, results and discussion of the second detection technique tested. 

Chapter 6 provides the conclusion for this dissertation. 
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CHAPTER 2 - DIGITAL IMAGE FORENSICS 

2.1 INTRODUCTION 
Digital images are widely used in today’s society in both printed and digital form. 

With recent developments in digital imaging software, it has become easier for 

anyone to modify these images. These modifications can be used to enhance the 

quality of an image, but it can also be used to depict a scene which never occurred. 

It has been shown that image manipulation of past public events can influence 

memory, attitudes and behavioural intentions [24]. Image manipulation can be seen 

as a problem for the media, law-enforcement and scientific research.  

 

The media has a strong influence on the general public, since it influences ideologies 

[25]. Magazine advertisements sometimes contain manipulated images of models 

that make them appear thinner [26]. These types of manipulated images have aided 

the ideology that a person needs to be thin in order to be attractive. Exposure to 

this ideology has been linked to psychological responses such as depression and 

eating disorders [27]. In March 2012, an Israeli law was created that bans the 

showing of overly thin models in local advertisements [28]. This new law also 

requires publishers to disclose when images have been manipulated to make 

models appear thinner.  

 

Another issue that involves the law and manipulated images is child pornography. In 

2006, Stafford Sven Tudor-Miles scanned photographs of adult porn stars and 

manipulated the images to make them look like young girls [29]. He was charged 

and found guilty of the possession of indecent pseudo-images of children, which is 

illegal in the UK. 
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Political parties often use the media to aid their political campaigns. Image 

manipulation of political candidates has been shown to influence voters’ preference 

[30]. Another politically related incident was the announced death of Osama bin 

Laden in 2011. Two images have been combined to create a composite image that 

supposedly showed his dead body. Only after it has been published in multiple 

newspapers, was it discovered that the image was actually a composite of two 

different images [31]. Neither of these two images confirmed the death of Osama 

bin Laden. 

 

Scientific research results are sometimes displayed with the use of images. 

Manipulating these images to fabricate or change results is a form of scientific 

fraud. An example can be found in the 2005 scientific article by Hwang et al. [32], 

which has been retracted by the publisher. In this article, images of 11 stem cells 

have been manipulated to fabricate positive results [33]. 

 

As seen in this section, there are many reasons why it can be useful to be able to 

determine whether an image really depicts the scene it claims to depict. Digital 

image forensics is a field which deals with the authenticity and credibility of digital 

images. This includes finding the device that produced the image and determining 

what types of modifications have been made to a digital image. This chapter 

provides an overview of some of the research done in digital image forensics. 

Section 2.2 discusses different techniques to determine the device that produced 

the image. Section 2.3 looks at various image manipulation techniques and methods 

to detect these techniques. Section 2.4 discusses techniques used to hide 

information in digital images as well as ways to determine whether an image has 

hidden data. 
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2.2 IMAGE SOURCE IDENTIFICATION 
There are different ways to create digital images. Images can be captured with a 

digital camera, scanned with a scanner, printed or even partially or fully created 

with the use of CGI (Computer-generated imagery). Knowing how an image was 

created can help determine the authenticity of the image. This is known as image 

source identification and will be looked at in this section.  

2.2.1 SOURCE CAMERA IDENTIFICATION 

There are a wide variety of digital cameras on the market. Most mobile devices also 

contain a digital camera. Before looking at the different methods of determining the 

source camera, it is important to know how images are captured. The image 

capturing process can be described as a pipeline [11]. Light enters through the 

camera lens. Some cameras then contain an extra filter, such as a filter that 

removes infrared or ultra-violet light. Colour cameras then contain a CFA (Colour 

Filter Array), such as a RBG Bayer Pattern filter or a CMYK subtractive colour filter. 

After the light has passed through the filters, it is captured with a sensor. Examples 

of sensors include a silicon CCD and CMOS. The captured light is then processed 

with the use of algorithms and hardware within the camera. Each of these steps 

adds anomalies to the image, which can be used to aid source camera identification. 

 

The goal of source camera identification is to determine which camera captured an 

image. Camera source identification can be divided into device class identification 

and specific device identification. With device class identification, the model and 

manufacturer of the device is determined. If there are two cameras from the same 

type and manufacturer, specific device identification is used to determine which of 

these two devices captured a specific image. 
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DEVICE CLASS IDENTIFICATION 

Most cameras use an EXIF header for images. In these headers information is stored 

that can be used to identify the device type that captured the image. These headers 

can however be maliciously modified and might not be available if the image is 

resaved or recompressed [34]. 

 

Watermarks can be used to store camera information in an image so that the device 

can later be identified. A watermark is information that can be imbedded in the 

image itself instead of the header. Watermarks are mostly designed to protect 

copyright and withstand attacks aimed to remove or destroy the watermark [35]. 

Watermarks can also be used to determine whether an image has been modified 

[36]. Any modifications applied to an image before the watermark has been added, 

will not be detected. The watermark thus needs to be added when the image is 

captured. There is however only a few cameras that contain a watermarking chip for 

this purpose. This method is thus more suited for cameras used to capture forensic 

evidence [37]. 

 

Another way to identify the type of camera used is to use a machine learning 

algorithm. Different image characteristics caused by cameras can be used to train an 

algorithm for classification. Kharrazi et al. [38] proposed 34 image properties that 

can be used for classification. These properties are based on the CFA configuration 

and demosaicing algorithm, as well as the colour processing and transformation 

performed by the camera. Choi et al. [39] used intrinsic lens radial distortions to aid 

classification. In the majority of cameras, manufacturers use spherical surfaces for 

lenses, to reduce manufacturing costs. These lenses have radial distortions, which 

can be used as a property in a machine learning algorithm for device class 

identification. Choi et al. used radial distortions to compliment the 34 properties of 

Kharrazi et al. Another detection method that uses machine learning was proposed 

by Long and Huang [40]. They used the inter-pixel correlation information, caused 
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by the demosaicing of the CFA, to train an artificial neural network. Filler et al. [41] 

showed that sensor pattern noise, which is used in specific device identification, can 

be used in device class identification. 

 

In general, the machine learning approach does have a flaw. Since manufactures 

sometimes use the same components in different cameras, some machine learning 

techniques will be limited in the number of devices that can be differentiated [11].  

SPECIFIC DEVICE IDENTIFICATION 

Like device class identification, image headers and watermarks can be used for 

specific device identification. Information like serial numbers can be stored in one of 

these ways. Unfortunately, headers and watermarks have the same problems as 

identified with device class identification. Headers can easily be removed and 

watermarks are not commonly used in devices. Another approach is to identify 

abnormalities introduced in images, which is unique to each device. 

 

During the manufacturing process of CCDs, different defects can be introduced. 

Geradts et al. [42] showed that these defects can be used to aid specific device 

identification. These include hot point defects, dead pixels, pixel traps and cluster 

defects as defined by manufacturers. Hot point defects are pixels with very high 

output voltages. Dead pixels are pixels with poor response to light, which causes 

dots on a captured image. Pixel traps is a problem with the charge transfer, which 

can cause a partial or complete line of white or dark pixels. Cluster defects are 

clusters of pixels that generally differ ±6-20% in responsiveness, in comparison to 

the mean value of all the pixels in the neighbourhood. The deciding numbers 

depend on the manufacturer. There are potential problems with using these 

defects. More expensive CCDs have fewer defects and some cameras remove these 

defects by post processing of images. 
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Image sensor defects also introduce pattern noise in captured image. Two main 

components of pattern noise are FPN (fixed pattern noise) and PRNU (photo-

response non-uniformity) noise. FPN is caused by dark currents, which primarily 

refer to the pixel-to-pixel difference when sensors are not exposed to light. This 

noise can be compensated for in cameras by subtracting a dark frame from every 

image that is captured [43]. PRNU is primarily caused by PNU (pixel non-uniformity), 

which is the non-uniformity of pixel sensitivity during the sensor manufacturing 

process. Even sensors of the same silicon wafer differ, because of PNU. Other 

factors of PRNU noise are low-frequency defects, like dust particles on sensors and 

zoom settings. Lukas et al. [44] proposed a method to use pattern noise to create a 

type of fingerprint for sensors, which can be used for specific device identification. A 

reference pattern noise was created for multiple cameras by averaging the noise 

obtained from multiple images, with the use of a denoising filter. Each reference 

pattern noise was then correlated to the noise residual of an image to identify the 

camera used. Goljan and Fridrich [45] created a more general approach to use 

pattern noise, by allowing images to be scaled and cropped. To show the viability of 

using pattern noise for specific camera detection, Goldan et al. [46] performed a 

large scaled test. In this test more than one million images were used, spanning 

6896 individual cameras covering 150 models. Results showed a false rejection rate 

of less than 0.0238% and a false acceptance rate below          %. The most 

important factor that contributed to missed detections was caused by the quality of 

the images used for fingerprint estimation. 

 

Dust particles on its own can be used for specific device identification. DSLR (digital 

single lens reflex) cameras have interchangeable lenses. When these lenses are 

changed, dust particles can enter the film chamber, stick to the rear of the lens and 

often make their way to the camera sensor. When images are captured with the 

camera, the dust particles leave artefacts on the image. Dirik et al. [47] proposed a 

method for DSLR camera identification based on sensor dust characteristics. Their 
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approach detects dust particles on an image, using intensity variations and shape 

features, to form the dust pattern of the DSLR camera. Olivier [48] proposed a 

matching techniques that uses grid overlay instead. Olivier also investigated several 

factors that affect the rendering of dust particles on images. These factors include 

different focal lengths, sensor speeds and apertures. Results showed promise for 

using the technique for specific device identification. 

2.2.2 SCANNER SOURCE IDENTIFICATION 

Similar to cameras, scanners can also capture images. Photographs captured on 

film, as well as documents, can be converted in this manner to digital images. Some 

of the techniques used in camera source identification can also be used for scanner 

source identification. 

 

As mentioned in the previous subsection, sensor pattern noise can be used to 

identify specific cameras. Similar techniques can be used for scanners, since 

scanners also use sensors to capture images. Gou et al. [49] used statistical noise 

features to determine the brand and model of a set of scanned images.  These 

statistical noise features include denoising algorithms, wavelet analysis and 

neighbourhood prediction. Khanna et al. [50] showed that improving the feature 

selecting process for denoising filters, accuracy of scanner source detection can be 

improved. Their results showed that specific scanners can be identified from 

scanned images at native resolution. For images scanned at lower resolutions, the 

make and model of scanners can be identified. Even images that have undergone 

JPEG compression with low quality factors, image sharpening and contrast 

stretching, performed well. 

 

Using sensor pattern noise is not the only method used for scanner source 

detection. Dirik et al. [51] used traces of dust, dirt and scratches on scanner platens. 

These platen impurities are captured on scanned images and are also referred to as 
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“trash marks”. It is shown that it is possible to identify the specific scanner that 

scanned an image, by comparing the scanner platens to the platen impurities found 

in scanned images. 

2.2.3 COMPUTER GENERATED IMAGES 

Images can be partially or fully generated with a computer application instead of 

being scanned or captured by a camera. Advances in computer generated images 

make it close to impossible for the human eye to distinguish natural photographic 

images from photorealistic computer generated images. Figure 1 shows an example 

of how realistic photorealistic computer generated objects can be. The image 

fragment is from a scene in the 2012 film Life of Pi and shows a digitally created 

Bengal tiger [52]. Techniques for detecting computer generated images can be 

categorized as using statistic wavelet features, physical models of images, or camera 

related characteristics [53]. 

 

 

Figure 1 - Photorealistic Computer Generated Bengal Tiger from Life of Pi 

Photographic and computer generated images have different wavelet statistics 

which can be used to distinguish the two from each other. Lyu and Farid [54] 

described a statistical model for photographic images that consists of first-order and 
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higher order wavelet statistics. For feature extraction, the images are decomposed 

into multiple scales and orientations. For colour images, the decomposition is 

applied to each colour channel (RGB) independently. For the statistical model, two 

sets of statistics are used. The first set is the first order statistics (mean, variance, 

skewness, and kurtosis) of the sub-band coefficient histogram at each orientation, 

scale and colour channel. The second set is based on the errors in a linear predictor 

of coefficient magnitude.  These statistic sets are used in a SVM classifier to 

differentiate photographic images from computer generated ones.  The model was 

tested on a database of 40 000 photographic and 6000 computer generated images. 

Approximately 67% of the computer generated images were correctly classified, 

while only 1% of the photographic images were misclassified. The rest of the images 

could not be classified.  Wang and Moulin [55] also used wavelet statistics, but 

improved the classifier to only require half of the feature extraction and testing 

time. Chen et al. [56] showed that classification using wavelet statistic can be 

improved by extracting features from the HSV colour space instead of the RGB 

colour space. 

 

There are physical differences between photographic images and computer 

generated images that can be used to distinguish the two. Ng et al. [57] proposed 

five different feature sets that uses some of these physical properties for 

classification. The first feature set is local fractal dimensions, which captures the 

surface complexity of objects. Real-world surfaces are generally more complex than 

computer-generated ones. The second feature set is local patch vectors, which 

captures characteristics of local edge profiles. The third feature set is surface 

gradient, which is influenced by gamma correction. Photographic images often go 

through gamma correction to enhance contrast, which is not needed for computer-

generated images. The fourth feature set is the second fundamental form, which 

uses the geometric properties of objects. Computer-generated images use polygons 

to represent objects. These polygons can cause sharper edges and corners than 
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those found in photographic images.  The fifth and last feature set is Beltrami flow 

vectors, which captures artefacts cause by the colour independence assumption in 

computer-graphics. Colour independence occurs when the light reflection 

properties are simplified for computer-generated objects.  Ng et al. [57] used the 

previously mentioned five feature sets as input for a SVM classifier to achieve 83.5% 

accuracy on a set of 3200 images. 

 

Camera characteristics used in device identification can be used to distinguish 

photographic from computer generated images. Dirik et al. [58] proposed using 

traces of two different properties to enhance detection accuracy, when detecting 

computer generated images. The first property is demosaicing. The colour filter 

array found in most cameras requires a demosaicing algorithm. This demosaicing 

algorithm leaves a Bayer pattern on images that are not present in computer 

generated images. Dirik et al. [58] showed 98.1% accuracy on a dataset of 3600 

images, when exploiting the demosaicing property. Gallagher and Chen [59] further 

exploited the demosaicing property by considering the weighted linear combination 

of neighbouring pixels. Gallagher and Chen tested their approach on Columbia’s 

ADVENT dataset [60] and achieved 98.4% accuracy. Using the demosaicing property 

relies on the quality of the images. Classification accuracy decreases with higher 

compressions. The second property proposed by Dirik et al. [59] is chromatic 

aberration. Chromatic aberration is anomalous colour shifts caused by variations in 

the optical glass formulation of camera lenses. Computer generated images do not 

require an optical lens and will not show traces of chromatic aberration. Dirik et al. 

[58] achieved 99.6% accuracy on a dataset of 3600 images. Unlike the demosaicing 

property, detection accuracy of chromatic aberration is consistent over a wide 

range of image compression values. 

 

Techniques for generating photorealistic images are constantly improving. The 

image classification techniques mentioned in this subsection might not perform so 
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well on more modern images. Images such as Figure 1, which are a mixture of 

photography and computer generated images, also causes problems for classifiers 

[53]. There are also anti-forensic techniques which can confuse classifiers even 

more. Anti-forensic techniques evolve as forensic techniques improve. Different 

anti-forensic techniques are discussed in the next subsection. 

2.2.4 SOURCE IDENTIFICATION ANTI-FORENSICS 

In digital forensics, there are attackers who will try to counter digital forensic 

techniques. For source identification, these attackers can try to change the detected 

image capturing device in order to frame someone. Anti-forensic techniques include 

changing statistical properties of images and re-imaging images. 

 

Statistical properties of images can be used for camera source identification.  As 

discussed in subsection 2.2.1, Lukas et al. [44] proposed a method to use pattern 

noise to create a type of fingerprint for camera sensors. This sensor fingerprint can 

be used for specific device identification. Gloe et al. [61] investigated an anti-

forensic technique that uses inverse flat fielding to change the sensor finger prints 

of images. Flat fielding is a method used to minimize pattern noise of images and is 

typically used in astronomy or in flatbed scanners to enhance image quality [44]. 

Once an image’s noise pattern has been suppressed by flat fielding, a different 

pattern noise can be added to the image with inverse flat bedding. The noise 

pattern added to an image can be an approximation of flat field frames from 

multiple images of a targeted device. Gloe et al. [61] showed that inverse flat 

bedding can be used to successfully forge the camera fingerprint of images. This 

technique can also be used to add pattern noise to computer generated images, to 

add confusion to photographic and computer generated image classifiers. Goljan et 

al. [62] discovered that planting a sensor fingerprint with inverse flat fielding will 

leave a trace. Planting a sensor fingerprint without a trace is thus more difficult than 

previously thought.  
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Many source identification techniques use properties unique to image capturing 

devices for device identification. An anti-forensic technique which exploits this fact, 

is the re-imaging of images.  A simple re-imaging technique is to take a photograph 

of an existing image. This technique can be used to confuse classifiers for 

photographic and computer generated images. Ng et al. [57] showed that re-

imaging can be partially addressed by adding re-imaged images in the dataset used 

to train classifiers. Yu et al. [63] showed that the specularity of images can be used 

to detect re-photographed images. Specularity of an object is the brightest point on 

that object, caused by the direct reflection of a light source towards the viewer. Yu 

et al. [63] discovered that the specular ratio’s gradient distribution in natural images 

was found to be Laplacian-like, while that of re-captured images is Rayleigh-like. The 

Rayleigh-like distribution is caused by the mesostructure of the photo surface. 

2.3 DETECTING MANIPULATED IMAGES 
Advances in image manipulation software have made it easy for users to manipulate 

digital images. These manipulations can be used to enhance image quality or depict 

a scene that never occurred. The latter is important when the image is used as 

evidence in a court of law. In this section different image manipulation techniques 

are discussed as well as techniques which can detect manipulated images.  

2.3.1 IMAGE MANIPULATION TECHNIQUES 

Recent image manipulation software provides many tools for digital image 

manipulation. These tools can be used to enhance the quality of images or modify 

the image to depict a scene that never occurred. Multiple image manipulation 

techniques can be used on a single image to enhance the end result. The author 

used Adobe Photoshop CS5.1 at time of writing, but there are free alternatives like 

Gimp. In Photoshop CS5.1 image manipulation techniques include transformations, 

colour manipulation, image filters, cloning and splicing. Text, drawings and images 
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can also be combined to create a composite image. Examples of such a composite 

images can be found on magazine covers. 

 

Transformation techniques modify the structure of an image or image part. These 

modifications include scaling, rotating, skewing, distorting, warping and flipping. 

Photoshop CS5.1 has an advance transformation technique called “Puppet Warp”, 

which is similar to warping but allows more control of warped areas. Figure 2 shows 

a few transformation techniques. 

 

 

Figure 2 - Examples of Image Transformations 

For colour manipulation, different colour models can be used. Digital images consist 

of pixels. One way to represent these pixels is with the red, green and blue (RGB) 

colour model that corresponds to the primary colours of light. A computer monitor 

pixel displays the RGB coloured lights separately, but the viewer sees the 

combination of the lights. Viewing a white monitor pixel through a magnifying glass 

can reveal the three separate colours. By modifying the light intensities of the RGB 

values, different colours are perceived by a viewer.  If a pixel has an RGB value of (0, 

0, 0) it will appear black, since there will be no light. If we assume the RGB values 

are stored in three bytes, a pixel with an RGB value of (255, 255, 255) will appear 

white. The RGB colour model is ideal for displaying images on a monitor, but makes 

colour modification difficult. It is hard to estimate which RGB values are needed to 

create a certain shade of colour. It is also hard to estimate the RGB values of a given 

colour. For this reason image manipulation software may also support a different 

colour model, like one that makes use of hue, saturation, and value (HSV) or 
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lightness (HSL) [64]. HSV and HSL models represent colour in a similar way an artist 

mixes paint. Hue is one or a mixture of two primary colours. Saturation is the 

amount of white added to the colour. Value or lightness is the amount of black 

added to the colour. In order to display pixels using HSV or HSL, it is first converted 

to the RGB colour model. 

 

There are a variety of algorithms and techniques to manipulate an image’s colour. 

Adjusting the brightness and contrast of an image is used in photography to 

enhance image quality. Brightness modifies how close a colour is to black, while 

contrast determines the colour range. Desaturation converts the saturation of 

image colours to zero, resulting in a black and white image. Changing the hue and 

saturation of colours makes it possible to change the colour of objects in an image. 

If a RGB colour model is used, the colours can be inverted by subtracting each 

colour value from the maximum allowed value. Colours in an image can also be 

completely replaced by a gradient by desaturating the image and choosing a 

gradient to replace values from white to black. Figure 3 shows a few colour 

manipulation techniques.  

 

 

Figure 3 - Examples of Image Colour Modifications 

Image filter algorithms are similar to colour manipulation algorithms, but use 

additional information like neighbouring pixels. It is convenient to first convert an 

image to signals (frequency domain) in order to apply filters. Some applications of 
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filters include image enhancements, changing the appearance of images, and 

highlighting certain properties of an image for image tampering detection. Figure 4 

shows a few examples of filters found in Photoshop CS5.1.  

 

 

Figure 4 - Examples of Image Filters 

Another image manipulation technique is cloning, also referred to as copy-move. 

Cloning is a technique that copies one part of an image to another part. If you have 

a photo of a poster on a wall, you can copy the parts of the wall onto the poster in 

order to hide the poster. Photoshop CS 5.1 has a tool called “content aware fill” 

which covers a selected area with parts of the given image, similar to cloning. 

Applications for cloning include the removal of unwanted artefacts, filling an area 

which has been deleted or simply duplicating objects in a scene. Figure 5 shows an 

example of how cloning is used to remove written information from a message. 

 

 

Figure 5 - Example of Image Cloning 
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Splicing is an image manipulation technique where two or more images are 

combined to create a composite image. Splicing can be used to depict a scene that 

never occurred. Figure 6 shows an example of how the image of Figure 2 and Figure 

5 are spliced to create a composite image. Image 2 is first slightly distorted and its 

colour manipulated, before it is added to Image 1. A shadow is added to the 

composite result by manipulating the colour at the base of the chess piece.  

 

 

Figure 6 - Example of Image Splicing 

As seen in Figure 6 it is relatively easy to manipulate images to depict a scene that 

never occurred. The next subsection discusses different techniques to detect 

manipulated images. 

2.3.2 IMAGE MANIPULATION DETECTION 

Methods used to detect manipulated images can be classified as informed and 

blind. Informed methods require access to the original image before modifications 

have been made. Blind methods do not require access to the original image. This 

subsection discusses a few active and passive methods that can be used to detect 

image manipulations. 
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INFORMED DETECTION METHODS 

Informed detection methods require access to the original image in order to detect 

modifications. Informed detection methods include hash-based and watermark-

based methods. 

 

A hash function is an algorithm that maps data of variable length to data of fixed 

length called a signature. It is difficult to modify the original data so that the original 

and modified versions produce the same signature, which is why it can be used to 

aid data authentication. It is also possible to create multiple signatures with 

different hash functions to strengthen authentication. Cryptographic hash functions 

like MD5 or SHA-1 are used for message authentication, but can also be used to 

authenticate other digital information, such as images [65]. If the original image 

signature is available, it can be compared with the signature of an image in question 

to determine whether it has undergone any changes. Some image modifications do 

not change the content of an image, but will still cause a signature to change. 

Venkatesan et al. [66] introduced an image hashing method that is designed to be 

robust against image changes due to compression, geometric distortions and other 

content-preserving manipulations. If an image is detected as being manipulated, it is 

sometimes required to know which part of the image has been manipulated. Roy 

and Sun [67] presented an image hashing method which not only detect, but also 

localize tampering with the use of a small signature. A problem with hash-based 

methods is that the signature is designed to be stored and transferred separately 

from the image through a secure channel. The signature can also be stored in the 

header of an image, but can be easily removed. Watermark-based methods are 

similar to hash-based methods, but embed information into the image instead. 

 

A digital watermark is a distinct mark that is embedded into digital media to ensure 

integrity and authentication of images. Watermarks are typically used to identify 

ownership of copyright. A content-fragile watermark is a type of watermark which is 
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designed to be robust to perceptually irrelevant information, while being fragile to 

perceptually significant modifications. Possible modifications can be detected and 

localized by observing any damages that have been done to a watermark. This can 

be done in multiple ways. Wu and Liu [68] embedded a watermark, as well as a set 

of simple features in the frequency domain of an image via table look-up.  Fridrich 

[69] divided an image into blocks and watermarked each block independently. 

Kundur and Hatzinakos [70] embedded a watermark in the discrete wavelet domain 

of an image by quantizing the corresponding coefficients. The previously mentioned 

watermarking methods are either vulnerable to vector quantization counterfeiting 

attacks, or sacrifice localization accuracy to improve security. Celik et al. [71] 

addressed these problems by proposing a hierarchical watermark. The image is 

divided into blocks in a multilevel hierarchy. Block signatures are then calculated in 

this hierarchy. The lower level block signatures provide good localization accuracy, 

while higher level block signatures provide increased resistance to vector 

quantization attacks. General problems with watermarks include the distortion of 

original image content and the potential increase in bit-rate required to compress a 

watermarked image. Watermarks can also be tampered with, as shown by Cox and 

Linnartz [72].  

 

Hash-based and watermark-based methods only ensure authentication from the 

time the methods have been used. If the image has been manipulated beforehand, 

it will not be detected. To detect image manipulation without prior knowledge of an 

image, blind detection methods can be used.  

BLIND DETECTION METHODS 

Unlike informed detection methods, blind detection methods only have access to 

the image in question. In order to detect image modifications, blind methods search 

for inconsistencies caused by image modifications. Some inconsistencies can be 
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found in duplicated areas, blurred areas, lighting, image compression, chromatic 

aberrations and geometry perspectives. 

 

Duplicated areas in an image can indicate that an image has been manipulated. 

Cloning, as discussed in subsection 2.3.1, is an image manipulation technique that 

duplicates an area of an image to another part in the same image. This technique 

can be used to hide areas of an image. An exhaustive search can be used to detect 

duplicated areas, but is computationally expensive. Fridrich et al. [73] used a 

technique that tiles the image by overlapping blocks. The DCT (discrete cosine 

transformation) coefficients of the image blocks are compared to detect 

duplications. This technique is more efficient than an exhaustive search since the 

DCT coefficients are first lexicographically sorted. Mahdian et al. [74] used blur 

moment invariants to compare blocks. Blur moment invariants can be used on 

images with blur degradation, additional noise, or arbitrary contrast changes. Huang 

et al. [75] used SIFT (scale, invariant, feature and transform) descriptors from an 

image for comparisons. SIFT descriptors are invariant to image changes that include 

changes to illumination, rotation and scale. Bayram et al. [6] extracted features with 

FMT (Furier-Mellin Transform) to compare blocks. FMT features are invariant to 

scaling and translation. FMT features are also robust to lossy JPEG compression, 

blurring and noise addition. Bayram et al. [6] also showed that computational 

efficiency can be improved by using bloom filters instead of sorting blocks 

lexicographically. All of the above mentioned techniques can detect duplicate areas, 

but have high computation time, produce a high number of false positives and 

require human interpretation of results. 

 

Images can have inconsistent blur characteristics if image splicing is used. Images at 

the same distance from the camera should have the same focal blur. Blurring is also 

used to conceal traces of image manipulation. By detecting inconsistent areas of 

blur on the same image, it is possible to detect manipulated images. Hsiao and Pei 
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[76] used frequency domain information for blur estimation. The scheme used was 

shown to be powerful in blurred region detection for defocused images, as well as 

images that were manipulated with a blur filter. Wang et al. [77] used Elder and 

Zucker’s [78] method to estimate the blurriness of chosen image patches and used a 

threshold to judge consistency. Cao et al. [5] used an edge-based blur estimator. 

The linear consistency of blurred edges is assessed based on linear fitting and a 

statistical metric. Kakar et al. [79] used motion blur estimations through image 

gradients to detect spliced areas. The motion blur technique was shown to provide 

better results in selecting regions with inconsistent blur, than other blur-based 

techniques. Blur-based detection techniques in general require human 

interpretation of result. 

 

Lighting conditions between two images can vary significantly. Even images of the 

same scene, but with different camera locations, can have different lighting 

conditions. Determining the direction of the light sources in a scene can be used to 

detect image manipulations, if different objects appear to be illuminated by 

different lights. Nillius and Eklundh [1] presented a fully automatic algorithm for 

estimating the direction of a projected light source. First a heuristic algorithm uses 

colour and edge information to choose potential occluding contours. Secondly, a 

shading model is used to estimate the light direction of each contour. Finally a 

Bayesian network is used to estimate the final light direction from the first two 

steps. Johnson and Farid [80] used the specular highlights of people’s eyes to 

determine the direction of a light source. Kee et al. [2] described a geometric 

technique to detect inconsistent shadows. This technique was designed for a scene 

with a single dominant light source, like an outdoor scene lit by the sun. Gholap and 

Bora [4] used the colour illumination of objects to detect colour inconsistencies. 

Colour inconsistencies can be caused by different light sources or image 

manipulation techniques. The advantage of lighting-based detection techniques is 
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that it is difficult to hide inconsistencies in lighting. Like most of the other 

techniques, human interpretation of results is required. 

 

The compression history of images can be used to detect manipulated images. 

When an image is saved as an image file type like JPEG, it gets compressed. Every 

time an image is manipulated and saved, another level of compression is applied. If 

part of an image is manipulated, that part will most likely have a single level of 

compression, while the rest of the image will have more levels of compression. 

Lukas and Fridrich [81] presented a solution to detect double compressed JPEGs by 

detecting features in the image’s DCT histogram. The DCT histogram will show 

double compression if different quantization matrixes were used for each 

compression level. A neural network classifier was used to determine the primary 

quantization step, with less than 1% error rate. Popescu and Farid [82] used an 

expectation/maximization algorithm to detect statistical correlations that are 

caused by resampling images. The approach was shown to work on uncompressed 

TIFF, JPEG and GIF images. Chen et al. [83] used a machine learning based scheme 

to distinguish between single and double compressed JPEGs. Features were 

formulated from JPEG 2D arrays, with different magnitudes and directions. A 

threshold technique is then used to reduce the size of each TPM (transition 

probability matrix), which is characterized by the Markov process used. Elements of 

the TPMs are then used for the machine learning algorithm. Compression based 

detection techniques are good for detecting re-saved images. Unfortunately images 

are also resaved after image modifications that do not change the content of a 

scene.  

 

Chromatic aberration occurs when an optical system fails to perfectly focus light 

from all wavelengths. Manipulated image parts can cause chromatic aberration 

inconsistencies, which can be used to detect image manipulation. Johnson and Farid 

[84] proposed a technique that uses lateral chromatic aberrations that are 
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approximated with a low-parameter model. Their technique is based on maximizing 

the mutual information between colour channels, but claim that other correlation 

metrics may be equally effective. Chromatic aberration based detection methods 

work well with non-compressed non-uniform parts of an image. Weak results can 

however be expected for uniform regions of typical JPEG images. 

 

When images are spliced together, the geometric perspective of image parts can be 

different. Even manipulated image parts of the same image can have different 

geometric perspectives. Johnson and Farid [3] reviewed three techniques which are 

used for metric measurements on planar surfaces. These techniques use polygons, 

vanishing lines or circles. The measurements can be used to detect projective 

geometric distortion caused by image manipulation techniques, which are difficult 

to conceal. This approach is unfortunately difficult to automate. 

 

Image manipulation detection techniques have their weaknesses, which can be 

exploited. In the next subsection different image detection anti-forensic techniques 

are looked at. 

2.3.3 IMAGE MANIPULATION ANTI-FORENSICS 

Image anti-forensics manipulates the inconsistencies used for image manipulation 

detection. The goal of image anti-forensics is to try and create a perfect forgery. In 

this subsection a few of these are looked at. 

 

Watermarks are created with the goal to authenticate images and potentially detect 

image manipulations. Watermarks can be made unusable with anti-forensic 

techniques. Voloshynovskiy et al. [85] classified watermark attacks into four 

categories. The first category is removal attacks, which try to remove the watermark 

from the image. These techniques try to remove the watermark without trying to 

crack the security of the watermark algorithm. Some of these techniques might not 
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fully remove the watermark, but does significant damage to it. The second category 

is geometric attacks, which try to distort the watermark instead of trying to remove 

it. Some watermark detectors can only recover watermark information if perfect 

synchronization is possible. By modifying the geometry of the image, the detector 

will not be able to achieve synchronization. Some of the more recent watermark 

techniques use special synchronization techniques, which are not affected by 

geometric attacks. The third category is cryptographic attacks, which try to crack the 

security methods used in watermarks. By cracking the security method, it becomes 

easy to remove the watermark. The fourth category is protocol attacks, which try to 

attack the whole concept of the watermark application. An example is to try and 

estimate watermark data in an image and copy it to another image. This way a 

watermark can be faked even if the watermark algorithm, watermark technology or 

watermark key is unknown. 

 

Some detection methods use inconsistencies that arise when image parts are 

resized or rotated. Kirchner and Bohme [86] presented three approaches which can 

be used to defeat the resampling detection method, like the one proposed by 

Popescu and Farid [82]. The best performance was achieved by the complementary 

methods that used resampling with edge-modulated geometric distortion and a 

duel-path approach. Two general conclusions were made by Kirchner and Bohme 

[86]. The first conclusion was that attacks which are integrated in the manipulation 

technique are more effective than post-processing attack techniques. The second 

conclusion is that downscaling and rotation modifications are easier to conceal than 

upscaling. 

 

Searching for JPEG image compression inconsistencies is another detection method, 

which was discussed in the previous subsection. Stamm et al. [87] showed how 

proper addition of noise to an image’s DCT coefficient can remove quantization 

artefacts. Quantization artefacts are used as indicators of JPEG compression. Results 
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showed that this approach was able to fool a DCT quantization based artefact 

classifier more than 95% of the time. 

 

This section looked at methods that manipulate an image’s appearance, as well as 

techniques to detect such manipulations. There are other ways to manipulate 

images, which do not significantly change the image’s appearance. These 

techniques are used to hide information for covert communication channels, 

instead of fabricating a scene that did not occur. Techniques to hide information in 

images and detect images with hidden information are also part of image forensics. 

These techniques are looked at in the next section. 

2.4 STEGANOGRAPHY AND STEGANALYSIS 

Steganography are techniques which are used to inconspicuously hide information 

in other information. The goal of steganography is to send a message without a 

third party knowing that a message has been sent. Images are ideal for hiding 

messages since images usually contain a lot of data which can be changed without 

changing the appearance of the image. An image used for steganography is called a 

cover image. The message itself is encrypted and then inserted into the cover image 

to create a stego image. The stego image is sent though a communication channel 

which can be intercepted by a third party. When the receiver receives the message, 

the message can be extracted by reversing the algorithm used to hide the message. 

Covert communication will be successful if a third party is unable to detect the 

hidden message. Techniques used to detect steganography are called steganalysis. 

Figure 7 illustrates the model for steganography and steganalysis [88]. 
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Figure 7 - Model for Steganography and Steganalysis 

Steganography can be used to protect privacy but can also be used for illegal 

activities, like the distribution of illegal information. In this section different 

steganography and steganalysis techniques will be looked at, since it is also part of 

image forensics.  
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2.4.1 STEGANOGRAPHY TECHNIQUES 

There are different steganography techniques for hiding information in images.  

Steganography techniques can be evaluated on how hard it is to detect and remove, 

the amount of information which can be hidden, and whether the appearance of 

the image is changed in a visible way. Steganography techniques can be categorized 

into those which exploit an image’s format, spatial domain, or frequency domain. 

 

An image’s file format has certain properties which can be exploited to embed 

information. Data can be appended at the end of the image file. This technique 

exploits the EOF (end of file) tag. When the image is opened in a viewer or image 

editor, everything after the EOF tag is ignored. Another place to insert data is in the 

EXIF data of images, which is used to store metadata of an image. These methods 

are simple and do not modify the appearance of the image in any way, but can be 

easily detected [89]. 

 

Spatial domain techniques modify the pixel values of an image. One method is to 

replace the LSBs (least significant bits) of predetermined pixels with hidden data. 

Modifying the LSB of a pixel, results in a small change in colour. Small changes in 

colour are hard to detect with the human eye. Increasing the amount of LSBs used 

per pixel increases the amount of data which can be hidden, but also increases the 

amount of image colour distortion that might be visible [89]. LSB matching is 

another technique that is a slight modification of LSB replacement. Instead of 

replacing the LSB, the LSB is increased, decreased or left the same depending on the 

data that should be hidden. Even pixel values are increased or left unchanged, while 

odd pixel values are decreased or left unchanged. Mielikainen [90] proposed a 

variation of this approach by using two pixels as a unit to hide information. The first 

pixels carries one bit while the combination of the two carries a second bit. This 

approach showed more resistance to steganalysis techniques. Wu and Tsai [91] 

proposed a PVD (pixel value difference) steganography technique that also uses 
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pairs of pixels as a group to hide information. Data is hidden in the pixel difference 

of consecutive and non-overlapping pixel pairs. Some image formats, like GIFs, use a 

colour palette to restrict the amount of colours used in the image. If the LSBs are 

modified, too many colours might be required for the palette. Grey-scaled palette 

based images are thus more suitable for steganography, since the colour values 

differ slightly in the palette [92]. Fridrich and Du [93] proposed a palette based 

steganography technique that avoid areas of uniform colour and embed data into 

texture-rich portions of the image. Spatial domain techniques have weak resistance 

against steganalysis techniques, which led to the research of frequency domain 

techniques. 

 

Frequency domain techniques use pixels in the frequency domain instead of the 

spatial domain. The frequency domain represents data as signals. The DCT (discrete 

cosine transformation) coefficients used for JPEG images is an example of frequency 

domain information. The compression of JPEG DCT coefficients is controlled by a QT 

(quantization table). Upham [94] created JSteg that embeds information in LSBs of 

non-zero quantized DCT coefficients. Westfeld [95] introduced the F5 algorithm, 

which does not embed information directly into the LSBs of the DCT coefficient. 

Instead, the F5 algorithm decreases the absolute values of the DCT coefficients by 

one if it needs to be modified. Chang et al. [96] proposed a steganography 

technique that first modifies the QT of a JPEG. Information is then embedded in the 

least two-significant bits of the quantized DCT coefficients, which are located in the 

middle-frequency part. Modifying the QT first, results in less distortion in the 

resulting JPEG image. Provos [97] created OutGuess-0.2 which uses two steps to 

embed information. First the message bits are embedded along a random walk into 

the LSBs of the quantized DCT coefficients, while skipping 0’s and 1’s. Coefficients 

that were not selected during embedding are then corrected, to make the global 

DCT histogram of the stego image match that of the cover image. This technique 

was designed to be resistant against statistical steganalysis techniques. Solanki et al. 
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[98] proposed the YASS (Yet Another Steganographic Scheme) method, which does 

not embed data directly into the JPEG DCT coefficients. First the spatial 

representation of the image is divided into big blocks (B-blocks). An 8x8 block (H-

block) is then randomly selected in each B-block, with a secret key, for performing 

DCT. Information is then encoded with error correction codes and is embedded in 

the DCT coefficients of the H-blocks. Lastly, inverse DCT is performed on the H-

blocks and the whole image is compressed and distributed as a JPEG. YASS was 

shown to resist some blind steganalysis attacks and survive distortion constrained 

attacks. 

 

Steganography techniques can leave traces, such as statistical anomalies, that make 

it possible to detect. Different detection techniques are looked at in the next 

subsection.  

2.4.2 STEGANALYSIS TECHNIQUES 

Steganalysis techniques try to identify whether an image has hidden information or 

not and can be classified as targeted and blind techniques. Targeted techniques try 

to exploit a known steganography technique. Blind techniques try to identify 

whether any steganography technique was used, without any knowledge of the 

steganography algorithm that might have been used. This subsection will look at 

both. 

TARGETED TECHNIQUES 

Targeted techniques try to exploit weaknesses in known steganographic algorithms. 

Some informed steganalysis techniques will be looked at for LSB embedding, LSB 

matching, PVD steganography, F5 algorithm, OutGuess and YASS.  

 

LSB replacement replaces information in the least significant bits of an image. A 

common misconception of earlier LSB embedding techniques is that the LSB of an 
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image is evenly distributed. Westfeld and Pfitzmann [99] proposed two steganalysis 

techniques that exploit this misconception. The first is a visual technique that 

creates a black and white image from the LSBs for the target image, where an LSB of 

0 = white and LSB of 1 = black. A distinctive pattern could be observed in stego 

images, but the visibility of the pattern was determined by the original cover image. 

The second is a statistical technique called Chi-square (  ). With this technique the 

frequencies of the PoV (Pair of Values) of pixel bytes are first calculated. PoV are 

bytes with different LBS, while the rest of the bits are similar. An example is 

11111110 and 11111111. The PoV frequencies are then compared with a Chi-square 

test. If the PoV frequencies show a close to random distribution, there is a high 

probability that a message has been embedded. Fridrich et al. [100] proposed a 

quantitative analysis technique, which is known as RS analysis. Groups of 

neighbouring pixels are classified as regular (R), singular (S) or unusable (U), with the 

use of a discrimination function. Each class has its own flipping function which is 

determined by a mask (M). In a typical image                   will be true, 

but in a stego image it will be false. The RS analysis algorithm can also predict the 

amount if pixels that were changed. Dumitrescu et al. [101] proposed a sample pair 

analysis algorithm, which is based on some statistical measures of sample pairs that 

are highly sensitive to LSB replacement. This approach uses finite state machines for 

detection. Fridrich and Goljan [102] proposed a weighted stego analysis. The 

advantage of this method is its modular structure and clean mathematical 

derivations. Most of the steganalysis methods for LSB replacement exploit the fact 

that the pixel values are changed within the PoV.  

 

LSB matching removes the equal trend of frequency in the PoV, making LSB 

replacement steganalysis invalid for LSB matching steganography. Harmsen and 

Jeremiah [103] showed that LSB matching affects the HCF (histogram characteristic 

function) center of mass. Ker [104] showed that HCF worked well for colour image 

LSB matching steganalysis, but were ineffective for grey-scale images. For this 
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reason two different methods were proposed to apply the HCF. The first was to 

calibrate the output using a down-sampled image. The second was to compute the 

adjacency histogram instead of the usual histogram. These two methods were 

shown to be more reliable. Li et al. [105] proposed using HCF on the pixel difference 

of adjacent pixels. This approach showed improved performance over its 

predecessors. Zhang et al. [106] proposed an algorithm that reduces false positives 

in high-frequency noised images. This algorithm exploits the fact that LSB matching 

decreases the local maxima of an image’s grey level and increases the local minima. 

 

PVD steganography uses the difference in pixel pairs to hide information. Zhang and 

Wang [107] showed that PVD steganography can be detected by a histogram-based 

analysis of pixel-value differences. A method to increase security of PVD 

steganography was also proposed. This method introduces a pseudo-random 

dithering to the division of ranges of the PVD. Sabeti et al. [108] proposed a chi-

square based method to detect PVD steganography. 

 

The F5 algorithm preserves crucial characteristics of the DCT coefficients histogram, 

like monotonicity and symmetry.  However, the shape of the DCT coefficients 

histogram is not preserved. Fridrich et al. [109] exploited this inconsistency in the 

DCT coefficients histogram for steganalysis. To estimate the histogram the following 

steps were taken. First the image is decompressed and cropped by four pixels, to 

remove the quantization in the frequency domain. The image is then recompressed 

to its original compression level. Finally a least square fit comparison is used to 

determine the relative changes in the histograms of the original and cropped 

images. Results showed that even if at least 10% of the DCT coefficients were 

modified, it can be detected. 

 

Unlike the F5 algorithm, OutGuess 0.2 preserves the shape of the DCT coefficients 

histogram. Fridrich et al. [110] proposed a technique which exploits the embedding 
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mechanism of OutGuess. This is achieved by embedding another message into the 

stego image, which will partially cancel out the original message. This effect is 

different on the stego and cover images, which enables detection. 

 

YASS randomizes the locations of H-blocks with the use of a key. Li et al. [111] 

showed that the randomized embedding of YASS was not random enough. YASS also 

caused detectable artefacts.  Statistical features were detected in the domain used 

for data embedding, which showed high effectiveness in detection and identifying 

some embedding parameters.   

BLIND TECHNIQUES 

Unlike targeted techniques, blind techniques require less or even no information of 

the steganographic method used. The goal is to extract image features which can be 

used on a wide variety of steganographic methods. Blind techniques usually use 

some kind of classifier, which is trained on a set of image features from stego and 

cover images. The image features used can be classified as image quality, 

calibration, moment based, and correlation based features [88]. 

 

Steganography techniques can cause degradation in image quality, but degradation 

can also be caused by other factors. Avcibaş et al. [112] showed that image quality 

metric based distance, between a cover image and its filtered version, is different in 

comparison to a stego image and its filtered version. The image quality features 

were chosen with the use of the analysis of variance technique. These quality 

features provided the best discriminating power for an image classifier. Results 

showed approximately 70% correct classification on a variety of steganography 

techniques. 

 

Calibration features are features that can be used to approximately recover cover 

image parameters from a stego image. Fridrich [113] used calibration features to 
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create a blind steganographic detector for JPEG images. A set of 23 calibration 

features were used from the image’s DCT domain. Using calibration features, the 

image-to-image variations can be decreased and thus enabled more accurate 

detection. Pevny and Fridrich [114] extended the 23 calibration features, with the 

use of Markov features [115], to produce a 274-dimentional feature vector. The 

feature vector was used with an SVM multi-classifier. Results showed more reliable 

results than those achieved with the original 23 calibration features. The problem 

with using DCT is that DCT uses first order statics. Counter-measures that match first 

order statistics can foil detection. 

 

Moment based features can be found in the higher-order statistics of an image’s 

wavelet domain. These statistical moments can be used to detect stego-noise, 

caused by steganography techniques. Lyu and Farid [116] showed strong higher-

order statistical regularities within the wavelet domain of a set of natural images. By 

embedding information into an image, these statistics are significantly modified. 

These statistics were used in a linear and non-linear classifier and showed high 

detection rates for large messages. However, when a small enough message was 

embedded it was not detected. 

 

Steganography techniques can disrupt the local correlations of an image. Local 

correlation can be found between pixels in the spatial domain, or DCT coefficients 

blocks in the frequency domain. Sullivan et al. [117] modelled the inter-pixel 

correlations of images as a Markov chain. A detection-theoretical divergence 

measurement can be calculated from the Markov model and used with a classifier 

for detection. Shi et al. [115] also used a Markov technique to model differences, 

but used it for JPEG DCT coefficient instead. JPEG 2D arrays are first formed from 

the magnitudes of quantized block DCT coefficients. These JPEG 2D arrays are then 

used to enhance changes caused be JPEG steganography. The differences are then 

modelled with a Markov process to that it can be used for steganalysis. 
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Blind steganalysis techniques can be used for more general steganography 

detection, but mostly showed weaker detection rates than targeted techniques. 

 

This chapter gave an overview of digital image forensics. In the next chapter, 

stereoscopic images are investigated. Stereoscopic images contain more 

information than normal images, which can be exploited for digital image forensic 

purposes.  
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CHAPTER 3 - STEREOSCOPIC IMAGES  

3.1 INTRODUCTION 
Everything most people see in the world is seen from two perspectives. These 

perspectives are from a left and right eye. There is a large amount of overlap 

between what the two eyes see. This overlap is often referred to as binocular vision 

[118]. Binocular vision helps a person’s brain to estimate the depth and distance of 

objects. This is also known as stereopsis. Leonardo da Vinci was the first known 

person to record this phenomenon [119]. Leonardo noticed that objects in a 

painting will appear at the same depth as its surroundings. This prevents a viewer, 

with two eyes and at a close distance, to see the objects as it would appear in 

nature. The reason for this is because the viewer won’t be able to see parts behind 

an object that should be visible to one eye and not to the other. A few centuries 

after Leonardo, Wheatstone [120] found that not only the visibility behind objects 

differ, but also the objects themselves appear to differ to each eye. This led to the 

creation of photographic stereoscopic images. 

 

 

Figure 8 - Example of a Stereoscopic Image 

A stereoscopic image is an image pair that is sometimes referred to as a 3D image. 

Figure 8 shows an example of a stereoscopic image. This image pair usually consists 

of a left and right image, mostly taken from approximately the same position and 

angle as would be seen by a person’s left and right eye. Section 3.2 gives more 
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information on creating these images. To view a stereoscopic image, some kind of 

technique must be used to project the one image to the left eye and the other 

image to the right eye. This will create the illusion of depth to the viewer. Section 

3.3 discusses the different techniques used to view stereoscopic images.  Section 3.4 

gives a few applications for stereoscopic images. Section 3.5 discusses stereoscopic 

images and digital image forensics. Section 3.6 looks at ways to splice and fabricate 

stereoscopic images. Section 3.7 looks at methods to extract and view stereoscopic 

depth information. 

3.2 CAPTURING STEREOSCOPIC IMAGES 
Capturing a stereoscopic image require two different images of the same scene. 

There are multiple ways to achieve this. If for example two separate cameras were 

used, the physical horizontal position (baseline) and the view direction of the 

cameras can be adjusted in different ways. Subsection 3.2.1 discusses these 

different approaches. 

 

The devices to capture the stereoscopic image pair can also differ. A single camera 

can be used to capture one image, moved and then used to capture the second 

image. This will not really work so well when capturing objects in motion, since the 

object’s position will have changed by the time the camera has moved. A second 

option can be to use two separate cameras to capture the two images at the same 

time. Some kind of synchronization mechanism will most likely be required if the 

images need to be taken at exactly the same time. A third option is to use a single 

camera to capture both images at the same time. These types of cameras will most 

likely have two separate lenses or a specialized lens attachment that makes use of 

mirrors. Subsection 3.2.2 gives more information on the different type of digital 

devices which can be used to capture digital stereoscopic images. Subsection 3.2.3 

gives more information on digital file formats used to store digital stereoscopic 

images.  
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3.2.1 VIEW DIRECTION AND BASELINE 

When capturing a stereoscopic image pair, the view direction of the image capturing 

devices determines whether a toed-in or parallel camera configuration is used [121]. 

Figure 9 illustrates the toed-in camera configuration, while Figure 10 illustrates the 

parallel camera configuration. If the stereoscopic image was displayed on a 3D-TV, 

objects at the ZDP (zero disparity plane) will appear to be at the same depth as the 

screen [122]. Objects between the ZDP and the image capturing devices will appear 

to be in-front of the screen. The rest of the objects will appear to be behind the 

screen. 

 

 

Figure 9 - Toed-in Camera Configuration 

 

 

 

Figure 10 - Parallel Camera Configuration with Image Cropping 
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With toed-in camera configuration, the view directions of the image capturing 

devices converge. By changing the angle of the image capturing devices, the ZDP can 

be easily adjusted. The problem with a toed-in camera configuration is that the 

images suffer from vertical disparity caused by keystone distortion [121]. Vertical 

disparity is when a point on the left image is at a different vertical position as the 

same point on the right image of a stereoscopic image pair. In order to correct the 

vertical disparity, a stereoscopic image rectification algorithm can be used [123]. 

Figure 11 illustrates vertical disparity. 

 

 

Figure 11 - Vertical Disparity caused by Keystone Distortion 

With the parallel camera configuration, the view directions of the image capturing 

devices are parallel.  This cause the ZDP to be at infinity, which means everything in 

the image, will appear in front of the screen if viewed with a 3D-TV. One way to 

correct this is to crop the left image on the left side and the right image on the right 

side. The more the images are cropped, the closer the ZDP will be to the viewer. 

Cropping also reduces the angle of view of the resulting image, which can be seen in 

Figure 10. Another method to control the ZDP is to use specialized shift-sensor 

cameras [124]. With this method, the CCD image sensors of the cameras are shifted. 

This changes the view angle of the camera while keeping the camera lenses parallel. 

Figure 12 illustrates this method. 
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Figure 12 - Parallel Camera Configuration using Shifted Sensors 

In addition to changing the view direction of the image capturing devices, the 

baseline can also be adjusted. If two separate cameras were used to capture a 

stereoscopic image pair, the baseline would be the horizontal distance between the 

centre of the cameras’ lenses. The mean adult IPD (inter-pupillary distance) is 

approximately 63 mm [125]. A baseline around this distance is the usually used for 

capturing stereoscopic images. Increasing or decreasing the baseline can be used to 

alter the perceived size and depth of objects, since the baseline represents the 

viewer’s size. The larger the baseline, the larger the viewer must be to have the 

same distance between the viewer’s eyes. A large baseline can be used to capture a 

scene that would normally be too far away for the user to see any depth, like a 

mountain range. A smaller baseline can be used to capture a small object. This 

“enlarges” the object for the viewer. These techniques are commonly used in 

creating stereoscopic 3D films [126]. 

3.2.2 DIGITAL IMAGE CAPTURING DEVICES 

A variety of image capturing devices can be used to capture digital stereoscopic 

images. Any device with a digital camera can potentially be used. This section 

discusses different digital image capturing devices and methods for capturing digital 

stereoscopic images. 
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One of the methods to capture a stereoscopic image is to use a single device with a 

single lens camera to capture both images. First one image can be captured. After 

moving the camera, the second image can be captured. These images can be 

combined with software to form a single stereoscopic image. Since it takes time to 

move the device, this method is not ideal for capturing moving objects. For this 

method, any device with a digital camera can be used to capture a stereoscopic 

image.  

 

Another method to capture stereoscopic images is to use two separated image 

capturing devices. One device is used to capture the left image and other used for 

the right image. These devices are usually synchronised to capture both images at 

the same time, which allows the capturing of moving objects. Synchronisation can 

be achieved in various ways. One way is to use a mechanical trigger, which presses 

both shutter release buttons at the same time [127]. Another way is to use a 

mechanism that triggers the shutter release buttons electronically [128]. If the 

devices have remote triggers, the triggers can be linked to trigger both devices 

simultaneously [129]. With this stereoscopic capturing method it would be ideal to 

have two identical cameras. This will insure that the images are of the same quality 

and with the same properties. 

 

Instead of capturing both images separately, a single non-stereo image capturing 

device can be modified to capture both stereoscopic image-parts. A camera lens 

adaptor can be used to split the captured image, so that both image-parts are 

captured side-by-side in a single image. These adapters make use of a prism and 

mirrors to capture light from two different positions [130]. 

 

Recently, capturing digital stereoscopic images has become more convenient. 

Specialized devices have been developed which have two separate lenses to capture 

digital stereoscopic images. In addition, most of these devices have auto-
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stereoscopic displays. These displays allow a user to instantly view the captured 

stereoscopic image without the need of special eyewear. There are a few image 

capturing devices with these functionalities, like the Fujifilm FinePix Real 3D W3 

digital camera [12]. Not only digital cameras, but also specialized video cameras 

exist that can capture and display stereoscopic images, like Sony’s HDR-TD10 3D 

Camcorder [13]. Some smart phones have the same capabilities, such as the LG 

Optimus 3D and the HTC Evo 3D [15]. Nintendo’s 3DS is a handheld game console 

with stereoscopic image capturing and viewing capabilities [14]. There are also 

tablets that can capture and view stereoscopic images, like the 3D tablet from 

Hampoo [16]. 

3.2.3 DIGITAL FILE FORMATS 

Stereoscopic images can be stored as single file or two separate files. When storing 

the stereoscopic image in separate files, any image file format can be used to store 

the stereoscopic image-parts. The image-parts can also be placed next to each other 

in a single image and saved as any image file format. A third option is to use the MP 

(Multi Picture) format [131]. 

 

The MP format is used in multiple stereoscopic image capturing devices, which 

include Nintendo’s 3DS handheld game console and Fujifilm’s FinePix Real 3D W3 

digital camera. Stereoscopic images using this file format can be identified by the 

“MPO" file extension, which stands for Multi Picture Object. This file extension can 

be changed to “JPG”, which will enable most devices to view the first image-part of 

the stereoscopic image. Figure 13 illustrates the basic MP format data structure for 

a stereoscopic image. 
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Figure 13 - Basic MP File Format Data Structure for a Stereoscopic Image 

The MP format uses the same structure as EXIF JPEG for individual images, which 

are linked with additional MP extensions. Each individual image is a JPEG (Joint 

Photographic Experts Group) compliant image as specified in the EXIF (Exchangeable 

image file format) specification. These individual images are delimited by SOI (Start 

of image – 0xFFD8) and EOI (End of image – 0xFFD9) markers. Images stored in APPn 

(JPEG application marker segments), like thumbnails, do not have these markers 

and are not considered “individual images”. APP1 contains EXIF attributes, in the 

form of tags, as specified in the EXIF 2.21 specification. These tags include 

metadata, like the camera settings and the conditions under which the image was 

created. APP2 contains MP extensions, which include metadata for the set of 

images and how they are related. For stereoscopic images, APP2 will contain 

information like the baseline length. The first individual image’s APP2 also contains 
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a MP Index IFD (Image File Directories), which contains information about the 

overall file structure. 

 

More detailed information about the MP format can be found in the MP format file 

specification [131]. 

3.3 VIEWING METHODS 

The goal of stereoscopic viewing methods is to project one stereoscopic image-part 

to the one eye, while projecting the other stereoscopic image-part to the other eye. 

Several methods have been developed to achieve this. Some require the viewers to 

wear special eyewear, while others do not. This section gives an overview of 

eyewear, autostereoscopic and other methods for viewing stereoscopic images. 

3.3.1 STEREOSCOPIC WITH EYEWEAR 

Stereoscopic methods that require eyewear can be classified into four categories. 

The categories are position multiplex, colour multiplex, polarisation multiplex and 

time multiplex. 

 

With position multiplex, the two image parts are displayed at different positions. 

Special eyewear is used to change the view direction of each eye when the images 

are viewed.  This allows the viewer to see both images as though they were placed 

at the same position. The problem with this approach is that it is highly dependent 

on the position and the distance of the viewer’s eyes from the images. An example 

of a product that uses this approach is the KMQ prism glasses. For these glasses, 

stereo image-parts are displayed one above the other as seen in Figure 14. 
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Figure 14 - Position Multiplex with KMQ Prism Glasses 

With colour multiplex, the two-image parts are merged into a single image using a 

complementary colour coding technique. An anaglyph is an example that uses 

eyewear with different coloured lenses to filter the complementary colours. The 

complementary colour combinations are red / cyan, blue / yellow and green / 

magenta [132]. For example, let us assume red / cyan is used to create the merged 

image. The red colours of the one image-part and the blue and green colours of the 

other image-part will then be used. This causes a loss of colour information in the 

resulting anaglyph image [122]. Another problem with anaglyphs is that the image 

suffers from crosstalk [132]. Crosstalk causes one eye to see some of the image-part 

intended for the other eye. Figure 15 shows an example of a red / cyan anaglyph 

created from Figure 8. 

 

 

Figure 15 - Example of an Anaglyph 
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Polarization multiplex is a popular viewing method used in 3D cinemas. This method 

super-imposes the two stereoscopic image-parts by using different polarities for 

each part. Polarised glasses are then used to filter the different polarised images for 

each eye. Polarisation of images can be circular or linear. Unlike linear polarisation, 

circular polarisation does not depend on the orientation of the viewer’s head to 

properly separate the image-parts for the viewer’s eyes [133]. The advantage of this 

stereoscopic viewing method is that the eyewear is inexpensive. 

 

Time multiplex is a technique where the image-parts are alternated on a single 

display. These image-parts are alternated at a high refresh rate, which is typically 

twice the refresh rate of a normal display, to prevent the appearance of flickering 

[134]. Shutter glasses that are synchronized with the display, are then used by the 

viewer. These glasses block the view of one eye, depending on the image part that is 

currently showing on the display. Shutter glasses are more expensive than other 

eyewear, because they require synchronization electronics and LCD lenses to block 

images. 

3.3.2 AUTOSTEREOSCOPIC 

Autostereoscopic methods do not require eyewear to view stereoscopic images. 

The filtering of the two-image pairs occurs at the display itself, instead of requiring 

special eyewear. Two filtering methods that are commonly used in autostereoscopic 

displays are parallax-barrier and lenticular lenses [135]. 

 

One of the first implementations of parallax barriers dates back to 1692 [136]. The 

French painter, G. A. Bois-Clair, created paintings with alternating strips of two 

images. He placed a grid of vertical laths in front of the image to block the view of 

one of the images, depending on the position of the viewer. Some autostereoscopic 

displays use the same principle to display stereoscopic images. The image-parts are 

interlaced in vertical strips and a parallax barrier is placed in front of the image. The 
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barrier blocks the one image to the one eye and the other image to the other eye, 

depending on the position of the viewer. Nintendo’s 3DS handheld game console is 

an example of a device that uses parallax barriers [14]. Figure 16 illustrates this 

autostereoscopic method. 

 

 

Figure 16 - Autostereoscopic Method using Parallax Barrier 

The lenticular method is commonly used in printing stereoscopic images, as well as 

printing images that appear to be animated when the viewing angle is changed 

[137]. With this method, the image-parts are interlaced similar to the parallax 

barrier method. Instead of using a parallax barrier, cylindrical lenses are used.  

These lenses magnify image parts for the viewer, depending on the viewing angle. 

Fujifilm’s FinePix 3D W3 digital camera is an example of a device that uses an 

autostereoscopic lenticular display [12]. Figure 17 illustrates this autostereoscopic 

method. 

 

 

Figure 17 - Autostereoscopic Method using a Lenticular Lens 
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3.3.3 OTHER METHODS 

Other methods exist which allow for the viewing of stereoscopic images. This 

subsection discusses a few of them. 

 

Some stereographic displays can be worn like a pair of glasses. Wearable 

stereoscopic devices project the correct stereo image-part to each eye. This can be 

achieved with the use of a small high resolution screen, or by projecting light 

directly into the eye. When using a screen, the stereoscopic image-parts are 

displayed side-by-side. Lenses or mirrors are then used to project the correct image 

part to the correct eye. A separate screen for each eye can also be used in a similar 

way. An example of an electronic device that uses a screen, is Vuzix’s stereoscopic 

augmented reality glasses [138]. Another example is the Oculus Rift virtual reality 

headset, which was acquired by Facebook in 2014 [139]. Instead of using screens to 

display the stereoscopic image, light can be projected to the back of the viewer’s 

eyes with the use of microscopic mirrors. Avegant's Glyph is an example of headset 

that uses this technique [140]. 

 

Wigglegrams are another way to view stereoscopic images. Wigglegrams are 

animated images that alternate between stereoscopic image-parts. This creates the 

illusion of the camera constantly moving slightly left and right. This movement helps 

the brain perceive depth, since objects closer to the viewer appear to move more 

than objects further away. 

 

Certain eye techniques can be used to view stereoscopic images, where the image-

parts are placed next to each other. The placement of the images can be parallel or 

cross-eyed. With parallel placement, the image-part intended for the left eye is 

placed on the left side. By relaxing the eyes, as if viewing something in the distance, 

each eye will look at a different image. This will create the illusion of a third centre 

image that is an overlap of the image-parts and will appear to have depth. To aid 
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parallel viewing, a piece of cardboard can be placed between the eyes, to enable 

each eye to only see one of the image-parts. With cross-eyed placement, the image-

part for the left eye is place on the right side. When viewing the image, the eyes 

need to cross as if focussing on an object between viewer and the image. This will 

create the illusion of a centre image, which appears to have depth, similar to 

parallel viewing. To aid cross-eyed viewing, an object can be placed in front of the 

viewer and moved towards the image. Figure 18 illustrates both methods. 

 

 

Figure 18 - Parallel and Cross-eyed Viewing Techniques 

Constant use of eye-techniques can cause strain on a person’s eyes. 

3.4 APPLICATIONS 
There are many applications for stereoscopy and stereoscopic images. This section 

gives a few of these applications, which include entertainment, education, medical 

sciences, forensic sciences, astronomy, robotics, altered reality and advertisement. 
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Stereoscopic images are commonly used in the entertainment industry. This can be 

seen by the amount of stereoscopic 3D films that are released each year. In 

addition, films that were not originally created in stereoscopic 3D, like Titanic and 

the Star Wars films, are converted to stereoscopic 3D [141]. Television programs can 

also be converted to stereoscopic 3D [142]. There are already a few television sets 

which can achieve this in real-time, like Samsung’s Smart TVs [143]. Video games 

are another form of entertainment which use stereoscopic images [17]. 

 

Education benefits from stereoscopic images, because it aids in the understanding 

of spatial relationships. The GeoWall project [18] is an example of how stereoscopic 

images help with Geoscience research and education. A great number of physics 

processes are better understood when shown in stereoscopic 3D [144]. Medical 

education uses stereoscopic images to help students visualize the human anatomy 

[145]. Stereoscopic images also help enhance training simulations. Examples include 

dental [146] and neurosurgeon training [147]. 

 

Stereoscopic images are not only used in medical education, but also in medical 

sciences. It has been shown to help improve surgical navigation [148]. Stereoscopic 

X-ray imaging systems [19] demonstrate another medical application for 

stereoscopic images. 

 

There are different applications for stereoscopic images in forensics science. 

Historical stereoscopic aerial photography can aid environmental forensic 

investigations [20]. With the aid of stereoscopic microscopy, a forensic analysis of 

black coral has been performed [149]. A stereoscopic microscope has also been 

used in fingerprint-based forensics [150]. 

 

Stereoscopic images have been used multiple times in astronomy and are still used 

frequently. In 1969, both the Apollo 11 and Apollo 12 missions used a special 
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stereoscopic camera to take pictures of the lunar surface [151]. In 1976, the Viking 

mission used two facsimile cameras for taking stereoscopic images of Mars [152]. In 

1986, the first SPOT satellite was launched, which was used to take stereoscopic 

images of the earth [153]. In 2006, the twin STEREO spacecraft were launched, 

which at the time of writing were still being used to take stereoscopic images of the 

sun and solar phenomena [21]. 

 

There are more applications for stereoscopic images. In robotics stereoscopic 

images are used for robot vision [22]. Stereoscopic images can also be used to 

enhance Augmented Reality [138] and Virtual Reality [154]. With the use of 

lenticular printing, stereoscopic images can be printed for advertisements [23]. As 

technology advances, more uses for stereoscopy and stereoscopic images will most 

likely be discovered. 

3.5 STEREOSCOPIC IMAGES AND DIGITAL IMAGE 

FORENSICS 

Regular digital image forensics can be applied to stereoscopic images. The 

difference is that stereoscopic images contain additional information that can 

improve digital image forensic techniques. This additional information also makes 

digital image counter forensics more challenging. 

 

Image source identification tries to identify the device or method used to create an 

image. For stereoscopic images, there are additional factors to take into account. 

The stereo image parts could have been taken by separate image capturing devices, 

a single device with two lenses or a single device for both images. When separate 

image capturing devices are used, the make and model of the capturing devices will 

most likely be the same. This ensures that the image quality remains constant over 

the two image parts. Using this information, it can help to validate device class 
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identification for the image parts. Specific device identification information will be 

the same or different, depending on the technique used to capture the image parts. 

 

Image forgery detection tries to detect image manipulations on an image. For 

stereoscopic images, there are two images to edit instead of one. This makes it 

harder to create an undetectable forgery. Image inconsistencies could arise from 

each image part separately, as well as the combination of the image parts. Because 

there are two images of the same scene, it is possible to extract depth information. 

Section 3.7 discusses a few techniques to extract depth information. Inconsistencies 

in depth information can help identify image manipulations, which is explored in 

this dissertation. Depth information can also be used to automate other image 

forgery detection techniques. An example is the detection of defocus blur [77]. 

Objects at the same distance from a camera will have the same blur kernel sizes. 

When an image is modified with a technique like splicing, blur inconsistences can 

arise. This method requires the investigator to select areas with similar distance 

from the camera. The selection process can potentially be automated for 

stereoscopic images, with the use of depth information. 

 

Steganography tries to inconspicuously hide information, while steganalysis tries to 

detect hidden information. Stereoscopic images can be used for steganography in a 

similar way as normal images. There is more space to hide information because of 

the additional image part. Information can be hidden in one or both image parts. 

Another rather naïve place to hide information, can be the space between the EOI 

and SOI tags in a MPO file. The problem with stereoscopic steganography is that the 

two image parts provide additional statistical information for steganalysis. Each 

image part has its own statistical information. Comparing the statistical information 

of the two image parts can provide even more statistical information for 

steganalysis. Additional counter-measures may thus be required in order to counter 

steganalysis techniques. 
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3.6 FORGING STEREOSCOPIC IMAGES 
Stereoscopic images can be manipulated in non-stereoscopic image manipulation 

software. If the stereoscopic image is in the MP format, it might first need to be 

converted to two separate images, or placed side-by-side in a single image. When 

manipulating stereoscopic images, everything done to the one image part should be 

done to the other image part to minimize visual inconsistencies. This section will 

look at image splicing for stereoscopic images and techniques to synthesize 

stereoscopic images. 

3.6.1 STEREOSCOPIC IMAGE SPLICING 

Image splicing is when multiple images are combined to form a single composite 

image. For stereoscopic images, splicing can be categorised as non-stereoscopic to 

stereoscopic splicing and stereoscopic to stereoscopic splicing. 

 

Non-stereoscopic to stereoscopic splicing can be used when the subject that needs 

to be spliced is only available in non-stereoscopic image form. An image of a famous 

actor is an example. When the subject is copied to the stereoscopic image, it needs 

to be copied to both the left and right image part. The vertical position of the 

subject should stay the same. The horizontal position is slightly adjusted to place the 

subject at the correct depth in the scene. Using this splicing method can cause the 

subject to appear flat. The reason for this is that objects from non-stereoscopic 

images have no internal depth. Internal depth is the depth difference of points on a 

subject. The nose of a person facing the camera should appear closer than the 

person’s ears. This inconsistency is only visible to viewers when there is a large 

enough difference in the expected and perceived internal depth. Figure 19 shows an 

example of non-stereoscopic to stereoscopic image splicing, which uses the 

stereoscopic image from in Figure 8. 
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Figure 19 - Non-Stereoscopic to Stereoscopic Image Splicing 

Stereoscopic to stereoscopic splicing can be used when both images are 

stereoscopic. When a subject is copied from a stereoscopic image, the subject in the 

left image part is copied to the left image part of the combined stereoscopic image. 

The same subject in the right image part is copied to the right image part of the 

combined stereoscopic image. The goal is the preserve the internal depth of spliced 

image parts. It should be note that non-stereoscopic to stereoscopic image splicing 

can be used with stereoscopic images, if only one of the image parts of a 

stereoscopic image is used. Figure 20 shows an example of non-stereoscopic to 

stereoscopic image splicing, which uses the stereoscopic image from in Figure 8. 
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Figure 20 - Stereoscopic to Stereoscopic Image Splicing 

Non-stereoscopic to stereoscopic image splicing is more likely to be used, than 

stereoscopic to stereoscopic image splicing. The reason for this is that non-

stereoscopic images are more common than stereoscopic images. It is easier to find 

non-stereoscopic images of subjects on the internet, than stereoscopic images of 

subjects. The advantage of stereoscopic to stereoscopic images is that subjects 

contain internal depth, unlike non-stereoscopic to stereoscopic image splicing. 

There are however methods to synthesize internal depth for non-stereoscopic 

image parts, which are discussed in the next subsection. 

3.6.2 SYNTHESIZING STEREOSCOPIC IMAGES 

It is possible to synthesize a stereoscopic image from a non-stereoscopic image. An 

example of such synthesized stereoscopic images can be found in old non-
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stereoscopic films that are converted to stereoscopic 3D [141]. Stereoscopic images 

can also be synthesized for film scenes which would be too expensive or impractical 

to capture with stereoscopic cameras. In this subsection, non-stereoscopic to 

stereoscopic conversion will be further referred to as 2D to stereo 3D conversion. 

2D to stereo 3D conversion methods can be classified as manual, semi-automatic 

and automatic conversion. These methods scale from quality to speed. 

MANUAL 2D TO STEREO 3D CONVERSION 

Manual methods require the shifting of object or region pixels horizontally to create 

an artistically chosen depth. When pixels are shifted, empty areas will appear. The 

reason for this is that objects in one stereoscopic image part cover areas not visible 

in the second stereoscopic image part. These areas can be painted in, or filled with 

image cloning or a similar technique. The newly created image can then be used as 

the second part of the stereoscopic image.  Figure 21 shows an example of simple 

manual 2D to stereo 3D conversion. In the example the object was first separated 

from the background. The background and object were then skewed horizontally to 

opposite directions. Lastly, the empty areas were filled with Photoshop CS 5.1’s 

content aware fill, which is similar to image cloning.  

 

 

Figure 21 - Manual 2D to Stereo 3D Conversion 
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Manual type methods can produce high quality depth, but are very time consuming 

and expensive. In order to improve conversion time, semi-automatic methods can 

be used. 

SEMI-AUTOMATIC 2D TO STEREO 3D CONVERSION 

Semi-automatic methods convert 2D to stereo 3D automatically but still require 

human guidance. A common method for conversion is with the use of depth maps. 

This method usually requires three steps [142]. First the depth map is created and 

processed. Then the image is warped to create the stereoscopic image pair. Finally, 

if any holes are present on the image, they are filled. 

 

The first step is to create a depth map. Depth maps can be represented as grey scale 

images that illustrate the different depths in an image. Objects closer to the camera 

are illustrated as a lighter grey than objects further away. Creating depth maps 

usually require human guidance to specify the depth of surfaces. Surfaces are first 

selected, isolated and then given a relative depth. The selection process can be 

simplified by drawing a line over an area and having an algorithm determine the 

boundary of the surface [155]. The boundary can then be modified as desired. The 

depths of objects are chosen depending on where they should appear in relation to 

the viewing surface. An optional step is to smooth the edges of the depth map, to 

reduce block artefacts and sharp transitions between object boundaries. 

 

The second step is to convert the created depth maps to a stereoscopic image pair. 

This is achieved by rendering a virtual image by projecting the pixels of the original 

image to their proper 3D locations and then projecting them to the virtual image 

plane. The virtual camera is set up to form a parallel stereoscopic setup with the 

original camera. With this approach the original image is used as one of the 

stereoscopic image parts. Alternatively, two separate images can be created using 

the original only as a reference. 
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The third step is to fill any empty areas that may arise from step two. Empty areas 

are areas which are covered by surfaces in the original image, but should be 

revealed when viewed from a slightly different position. There are multiple ways to 

fill these empty areas. The pixel colour information of nearby pixels can be 

horizontally interpolated to fill the holes [156]. If no depth information is taken into 

account the foreground and background will appear to be fused. To avoid this fusing 

problem, the pixel colours of only the background can be used instead. Another 

filling method is to diffuse boundary pixel values by solving the Laplacian equation 

on the boundaries of empty areas [157]. Inpainting techniques [158], which are 

used for image restoration and removing of artefacts, can also be used to fill empty 

areas. All of the filling methods mentioned so far can cause texture artefacts, 

caused by the duplication of neighbouring pixel colour information. To reduce 

texture artefacts, the depth maps can be pre-processed. Empty areas arise when 

there are sharp edges in the depth map. By smoothing the depth map, these empty 

areas can be avoided [159]. Smoothing can however cause geometric distortion in 

the resulting stereoscopic image. Straight vertical lines in one image part could be 

rendered as curves in the second image part. 

 

After a stereoscopic image has been created, post-processing can be used to 

improve image quality. 

AUTOMATIC 2D TO STEREO 3D CONVERSION 

Automatic 2D to Stereo 3D conversion attempts to automate all of the steps used to 

synthesize stereoscopic images. Automatic conversion can be done in real time if 

speed is more important than quality. One application is the conversion of real time 

TV broadcasting.  
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Creating depth maps for depth map based conversions is one step that can be 

automated. Instead of estimating depth with the aid of a human, depth information 

can be estimated with the use of pictorial depth cues. Pictorial depth cues are 

information the human visual system uses to perceive depth in a 2D image. Focal 

blur, geometric cues, and colour intensity cues are examples of pictorial depth cues. 

 

Focal blur can be used to estimate the relative distance of objects from the camera. 

Objects at the same focus levels will have the same depth. Some methods to 

calculate blur levels include a wavelet-based approach [160], a high order statistical 

approach [161] and a de-convolution process in the frequency domain which uses 

inverse filtering [162]. Using focus information is relatively simple, but out-of-focus 

areas in front and behind the point of focus can appear the same.  

 

Geometric pictorial depth cues include linear perspective, the height of objects and 

the textures of objects. Linear perspective refers to parallel lines that appear to 

converge at a distances, eventually reaching a vanishing point. Using the position of 

these lines and vanishing points, it is possible to estimate depth [163]. Height of 

objects can also be used to determine depth. Objects closer to the bottom of an 

image are usually closer to the camera. To extract depth, a line-tracing algorithm 

can be used to create horizontal lines from the one side of the image to the other 

side [164]. It is possible to extract depth from textures of certain images. The shape 

of a surface can be estimated, by looking at the markings or texture of the surface 

[165]. 

 

Image colour intensity pictorial depth cues include atmospheric shattering, light and 

shadows distribution, and figure-ground perception. Atmospheric shattering refers 

to the shattering of light rays in the atmosphere. This shattering effect causes 

objects far away to have less contrast and a blue-ish tint. Using a simple warm/cool 

colour theory, objects with a warm colour can be estimated to be closer than those 
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with a cool colour [166]. Light and shadow distribution is the shading of objects and 

the shadows they cause due to lighting. The grey level of a pixel depends on the 

light source direction and a surface normal. There are multiple algorithms which can 

determine the shape of objects from an image’s shading [167]. Figure ground 

perception is provided by the edges and regions in a scene. Two overlapping regions 

can be separated by a single edge. The edge usually belongs to only one of the 

regions, which will be in the front. The back region is assumed to go on behind the 

front region. This principle can be used to estimate relative depth of edges and 

regions [168]. 

 

There are conversion methods that do not require the creation of depth maps. If the 

original 2D image was created from a fully computer generated 3D scene, access to 

the 3D scene can simplify 2D to stereo 3D conversion. The 3D scene can be 

rendered from two different views, simulating a stereoscopic camera setup. The 

same can be done for any computer generated 3D objects that are combined with 

other images. 

 

Other non-depth map based methods include those that construct 3D scenes using 

structure from motion [169] and those that calculate the planar transformations 

between images in sequence [170]. Both these methods require multiple video 

frames in sequence and thus not suitable for single image conversion. 

3.7 EXTRACTING STEREOSCOPIC DEPTH INFORMATION 

Stereoscopic depth information can be useful for stereoscopic image forgery 

detection. If a stereoscopic image is manipulated, inconsistencies in the image’s 

depth can occur. Object depth can be internal or external. Internal depth is the 

depth difference of separate points on the same object. External depth is the 

position of the object relative to the scene and other objects. There are multiple 
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ways to extract and view depth information, which include triangulation, disparity 

maps, and 3D modelling. 

 

Triangulation can be used to determine the distance of a point from the image 

capturing device(s) [171]. Triangulation uses the positions of the point in both 

stereoscopic image parts, together with viewing angle and camera baseline 

distance. Calculating the distance of points can be useful, when investigating depth 

inconsistencies. However, the required information for triangulation might not be 

available. The stereoscopic image metadata can be removed, or the image’s file 

format might not support the required metadata. 

 

Disparity maps can be used to extract and view relative depth information, without 

the need to know specific camera properties. Disparity is the difference in horizontal 

position of a pixel in the left and right stereoscopic image part. With the use of a 

stereo-matching algorithm, each pixel is assigned a colour value according to its 

disparity. A disparity map can be dense or sparse. A dense disparity-map tries to 

show a match for every pixel, while a sparse depth-map does not. Some pixels may 

be occluded in one image part and will thus not have a match. Figure 22  shows an 

example of a dense disparity map created from Figure 8. The example was created 

from a simple SSD (sum of squared differences) algorithm [172]. Disparity map 

creation can be challenging when images contain semi-transparent areas, reflective 

areas, smooth surface areas, strong specular lighting, and areas that only appear in 

one of the image parts. The quality of Figure 22 was affected by these image 

properties. 
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Figure 22 - A SSD Dense Disparity Map 

Stereo-matching algorithms use a combination of one or more of the following steps 

to create a disparity map [172]. First matching costs are evaluated for the stereo 

image pair. Next the matching costs are aggregated. Disparities are then computed 

or evaluated. Finally the disparity is refined.  

 

Stereo-matching algorithms can be categorized as local or global [172]. Local 

algorithms use the image colour values of a squared window around each pixel in 

order to find a match. An example of a local algorithm is the SSD algorithm. For the 

SSD algorithm, matching cost is the squared difference of pixel intensity values at a 

given disparity. The matching cost values are then aggregated over square windows 

with constant disparity. The disparity is determined by the match with the smallest 

aggregated value for each pixel. Other matching costs include absolute differences 

[173], adaptive normalized cross correlation [174] and rank transformation [175]. 

There are local algorithms that change the size of the squared window to deal with 

occluded areas. These include adaptive windows [173] and shiftable windows [176]. 

Unlike local algorithms, global algorithms usually try to find a disparity match by 

minimizing a global cost function. Examples of global algorithms include those that 

use graph cuts [177], nonlinear diffusion [178] and belief propagation [179]. 
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Instead of displaying relative depth as a 2D image, a 3D model can be created. 3D 

models can be represented in multiple ways which include volume, functions and 

polygons. Volume can be represented by cubes in a discrete 3D grid, like voxels 

[180]. Function representations encode distance to the closest surface, like level-

sets [181]. Polygons are planar facets which can be connected to form a 3D surface, 

called polygon meshes [182]. Figure 23 shows an example of a 3D model created 

from Figure 8, with the use of AgiSoft StereoScan software. 

 

 

Figure 23 - 3D Model Created from a Stereoscopic Image 

The 3D reconstruction of multiple 2D images can be categorized into four classes of 

techniques [183]. The first class computes a cost function on an estimated 3D 

volume and then extracts a surface from this volume. An example is the voxel 

colouring algorithm [180]. The second class iteratively evolves a surface to minimize 

a cost function. An example is an evolving mesh that moves as a function of internal 
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and external forces [182]. The third class generates disparity maps and uses the 

disparity maps to create a 3D scene [184]. The final class extracts and matches a set 

of feature points and then creates a 3D surface from these points [185]. 

 

This chapter gave an overview of stereoscopic images. The next chapter investigates 

how disparity maps can be used to aid the detection of stereoscopic image forgery. 
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CHAPTER 4 - USING DISPARITY MAPS TO 

AID STEREOSCOPIC SPLICING DETECTION 

4.1 INTRODUCTION 

Non-stereoscopic to stereoscopic image splicing copies a 2D area into both 

stereoscopic image parts. Modifying the horizontal position of the 2D area, changes 

the depth at which the object appear in the scene. The 2D area itself will not have 

internal depth, which may be detected with the use of a disparity map. 

 

This chapter investigates whether it is possible to detect simple non-stereoscopic to 

stereoscopic splicing, by highlighting flat areas in the disparity map of a stereoscopic 

image. An assumption is made that internal depth has not been fabricated for the 

spliced area. 

 

An experiment is performed on a set of 50 spliced stereoscopic images. Section 4.2 

describes the methodology of the experiment. Section 4.3 discusses the results. 

Section 4.4 provides a conclusion. 

4.2 METHODOLOGY 
An experiment was created to test whether the following is true: 

 

The 2D spliced area, in non-stereoscopic to stereoscopic splicing, can be 

detected by highlighting flat regions in the disparity map of the image.  An 

assumption is made that internal depth has not been fabricated for the spliced 

area. 
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The four steps used for the experiment are as follows: 

1. Create a dataset of 50 spliced images which mimic non-stereoscopic to 

stereoscopic image splicing. 

2. Create a mask which shows the correct spliced areas. 

3. Create a disparity map for each spliced image. 

4. Highlight large areas of similar disparity. The highlighted areas are copied 

from the mask onto the original image to illustrate detected areas. The 

amounts of correctly and incorrectly identified pixels are recorded. 

 

Figure 24 illustrates the steps taken for the experiment. The illustration shows the 

mask as black and white for clarity. In the result image, black shows correctly 

identified spliced areas, while white shows false positives. 

 

 

Figure 24 - Experiment Steps to Detect Non-Stereoscopic to Stereoscopic Splicing 

MATLAB 7.9.0 was used to implement the disparity map creation and highlighting 

algorithms. The preparation of the data set, algorithms used and measurements 

taken are discussed in the next subsections. 
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4.2.1 PREPARING THE DATASET 

A set of 50 stereoscopic images were chosen from self-captured images using 

Fujifilm’s FinePix Real 3D W3 digital camera. Self-captured images were used 

instead of images from the internet to ensure integrity. The image set provided a 

variety of subjects at different distances, with different lighting conditions. Figure 25 

shows the left image part of images used for the experiment. 

 

 

Figure 25 - Thumbnails of the Stereoscopic Images used for the Experiment 
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Each stereoscopic image was first converted from the original MPO file to a side-by-

side image, for easier image manipulation. AgiSoft StereoScan was used to extract 

the stereoscopic image parts from the file. Photoshop CS 5.1 was used to create the 

side-by-side image and further manipulations. The right image part was used as the 

first image part, so that images can be viewed using a cross-eye viewing method. 

The side-by-side image size before splicing was 4000 x 1125 pixels. 

 

To simulate non-stereoscopic to stereoscopic image splicing, an area in the right 

image part was copied to the left image part. The copied area had the same vertical 

position, but a different horizontal position in the left image part. The horizontal 

position was adjusted to place the copied area at a depth which was consistent with 

the background it originally was part of. By duplicating an area in this way the 

internal depth of the chosen area was removed, but the external depth was kept 

consistent with the image. This simulated the effect caused by non-stereoscopic to 

stereoscopic image splicing. Using part of the original image to simulate splicing 

ensured the consistency of some image properties which might have influence the 

experiment, such as colour difference. Figure 26 shows the spliced area in black, 

which is the silhouette of a person. Figure 27 shows an example of the splicing 

simulation process.  

 

 

Figure 26 - Silhouette used to Simulate Stereoscopic Image Splicing 
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Figure 27 - Simulating Non-Stereoscopic to Stereoscopic Image Splicing 

The same area was used to simulate splicing for every stereoscopic image. The only 

difference was the horizontal placement of the copied area in the left image part. 

This allowed the use of a single mask to validate results of the experiment. The 

copied area for each image also had different textures. This simulated different 

types of areas that might be copied from a 2D image. 

 

After the stereoscopic image had been manipulated, the image was saved as a 1000 

x 281 pixel JPEG with 80% compression. This step was used to add noise to the 

image and simulate the type of transformation the image may receive before 

reaching a viewer. Image hosting websites, or social media websites that host 

images, may resize and compress images to save storage space and bandwidth. 

 

The mask used to validate results was created from the silhouette of Figure 26, by 

adding a mono-colour background. For the experiment, the silhouette was 

converted to blue and the background to red. This simplified validation slightly, by 

checking the red and blue colour channels in MATLAB. For images in this 

dissertation, the colours in images are changed to black from blue and to white 

from red. This allows better visibility if this dissertation is not viewed in colour. The 

rest of the dissertation will refer to the black pixels as correctly identified areas and 

white pixels as false positives. 
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4.2.2 CREATING THE DISPARITY MAP 

An SSD correlation-based algorithm [172] was used to create a dense disparity map. 

A correlation based algorithm was chosen for simplicity. Other algorithms might 

smoothen or flatten areas to improve visual appearance. Smoothing and flattening 

can improve the appearance of external depth information, but remove or lessen 

internal depth information. Figure 28 shows a disparity map of Figure 8 created with 

a SSD correlations algorithm and an algorithm that uses graph cuts. 

 

 

Figure 28 - Disparity Maps Created from Different Algorithms 

For the SSD correlation algorithm used, the side-by-side stereoscopic image   was 

first converted to grey scale with the use of MATLAB’s rgb2grey function.   was then 

split into a left image part       and a right image part       . A window around each 

pixel in the left image was compared to the window of a set of pixels in the right 

image. The algorithm used is given as follows:  

 

For each pixel                  [            
  ]    *             

  +  find a 

pixel                   [   (            )                  
      

       ]    *   (            )                   
             +  so that the 

SSD formula (4.1) is minimized. 
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∑ ∑ (                                  )
 

 

    

 

    

 (4.1) 

 

The value         is calculated from              and               that provided 

the closest match.         is stored in a result matrix at position        . After 

the best matches for all the pixels are found, the values in the result matrix are 

normalized. The normalized values are used to create a grey scale disparity map, by 

using the normalized values as the RGB colour values. 

 

For the formula,   indicates the window size around each pixel that should be used 

for comparison.         determines the number of pixels left and right of 

              that should be used for comparison.         determines the number 

of pixels above and below               that should be used for comparison. 

 

For the algorithm   was chosen as    (
          

  
 
           

  
) , since it provided 

adequate results.         was chosen as 
           

 
, since none of the images showed 

a horizontal disparity greater than that.         was chosen as 1, for any small 

vertical disparities which might be present. 

4.2.3 HIGHLIGHTING FLAT AREAS  

Highlighting large flat areas can be done in multiple ways. For the experiment each 

pixel in the disparity map was compared to the values of its neighbouring pixels. The 

size of the area around the pixel was chosen to be four times the size of the area 

used in the creation of the disparity map. This size was chosen, since it is small 

enough to highlight areas as wide as the legs of the silhouette in Figure 26. 

Calculating whether the area is flat was done with the following algorithm: 
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For every point, {            [            ]    [             ]} , in 

disparity map   calculate the result of formula (4.2). 

 

∑ ∑ |                     |

  

     

  

     

 (4.2) 

 

Where   is from formula (4.1). If the result of formula (4.2) is equal to zero, the area 

around          has no internal depth. If the area has no internal depth, copy the 

selected area from the mask  ,              [           ]    [   

        ]   onto the original image              [           ]    

[           ] .   

4.2.4 TAKING MEASUREMENTS 

Two measurements were taken during the experiment. The first measurement was 

the percent of correctly detected spliced area. This was calculated by comparing the 

number of black pixels in the highlighted image area to the number of black pixels in 

the mask. A high value indicates a high rate of detection. The second measurement 

was the percentage of false positives. This was calculated by comparing the number 

of white pixels in the highlighted image area to the number of white pixels in the 

mask.  

 

The next section gives the experiment results and discusses these results. 

4.3 DISCUSSION 
Table 1 shows the results of the experiment. The correctly spliced area is 

significantly higher than the false positives. 
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Table 1 - Experiment Results for Test Set of 50 Spliced Images 

Property Value (mean ±  ) 

Correctly Detected Spliced Area 50.77% ± 18% of spliced image area 

False Positives 10.12% ± 8.32% of non-spliced image area 

 

From the results of Table 1 it can be seen that only around 50% of the spliced image 

areas were detected. Reasons for the low detection rate include the highlighting 

algorithm used and the textures of spliced areas. 

 

The highlighting algorithm searches for square areas with no depth. As seen in 

Figure 26, the silhouette has a lot of curves, which may not be completely filled if 

only covered with squares. The legs of the silhouette are also barely large enough to 

fit a few squares. Since the disparity map algorithm searches for square areas to 

compare depth, the areas near the borders of the silhouette might have a different 

depth than the rest of the silhouette. This causes the leg areas to be even smaller 

than expected and can thus not be filled by the chosen block size. The feet could 

also not be filled by the chosen block size because they were too small. Another 

area of interest is the area between the legs. This area has a different depth, and 

will not be filled. The highlighting algorithm used thus has a few problems. It cannot 

fully highlight spliced areas with a lot of curves. A spliced area will not be 

highlighted if the spliced area is smaller than the highlighting squares used. A 

spliced area with holes, or a lot of discontinuities, might not be highlighted. 

 

The area which was copied sometimes contained textures with solid colours, 

smooth surfaces or repeated parts. These textures make it difficult for the disparity 

algorithm used to identify the correct disparity of an area. Figure 29 shows an 

example of a copied area with such textures. The walls in the image have the same 

texture and make it difficult to find a matching pair of pixels. The window area does 

not have this problem and was successfully detected. 
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Figure 29 - Simple Textured Areas Influencing Detection Rate 

From the results of Table 1 it can be seen that there was a high false positive rate of 

around 10%. A reason for this is that the internal depth of some areas appears flat 

due to the limited amount of pixels used to represent the area. Examples of such 

areas include, a wall facing the camera and objects at a faraway distance. Figure 30 

shows examples of a few flat surfaces that are facing the camera. Figure 31 shows 

examples of areas at a far distance.  

 

 

Figure 30 - False Positives from Flat Areas Facing the Camera 

 

Figure 31 - False Positives from Areas at a Far Distance 
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It may be possible to determine whether an area should be flat with post 

investigation. A concern for post investigation is the chance of false negatives. Some 

spliced areas, such as a poster facing the camera, may be spliced into a stereoscopic 

image. Detecting flat areas will reveal the poster but determining whether an area 

should be flat may cause the result to be dismissed as a false negative. 

4.4 CONCLUSION 

In this chapter a technique is proposed to detect simple non-stereoscopic to 

stereoscopic image splicing detection. The proposed technique creates a disparity 

map of the stereoscopic image and highlights large areas without internal depth. 

The technique was tested on a set of 50 spliced stereoscopic images. Results 

showed 50.77% of the spliced areas were detected and 10.12% of non-spliced areas 

were incorrectly detected.  

 

Reasons for the low detection rate include the limited areas which can be filled by 

the highlighting algorithm and the texture areas of the spliced image. The 

highlighting algorithm struggles to fill areas with a lot of curves. The highlighting 

algorithm also requires spliced areas to be large enough and not contain too many 

holes or discontinuities. Sliced areas can also contain textures that are smooth, or 

repetitive, which causes problems when the disparity map is created. Using a 

different highlighting and disparity map creation algorithm may improve detection 

rate. 

 

A reason for the high number of false positives is that some areas in an image may 

appear to have no internal depth. The lack of internal depth can be attributed to the 

limited amount of pixels used to represent the internal depth. Example of such 

areas includes flat surfaces facing the camera and areas which are far away from the 

camera. 
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Detecting areas without internal depth, using the technique described in this 

chapter, has limited uses and requires post investigation of results. The technique in 

this chapter showed a higher correct detection rate than a false positive rate, which 

indicates that this technique might be useful when combined with other splicing 

detection techniques. On its own, the technique of this chapter is not a reliable way 

to detect non-stereoscopic to stereoscopic image splicing. 

 

It is not enough to just detect the lack of internal depth. Some areas in an image will 

have no internal depth due to the limited amount of pixels used to represent these 

areas. In order to use internal depth for detection, it is necessary to know when 

areas are expected to have internal depth. The next chapter investigates the 

distance at which objects loses internal depth.  
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CHAPTER 5 - DETERMINING DISTANCE 

OBJECTS LOOSES INTERNAL DEPTH 

5.1 INTRODUCTION 

The previous chapter tried to identify areas without internal depth, which can be 

caused by simple non-stereoscopic to stereoscopic splicing. It was shown that 

detecting the lack of internal depth is not enough to detect spliced areas. There 

were areas which had no internal depth, because of the limited amount of pixels 

that represent the internal depth. By determining the distance at which an object 

loses internal depth, it is possible to know when internal depth is expected or not. 

Knowing when internal depth is expected can be used to aid simple non-

stereoscopic to stereoscopic image splicing, as well as stereoscopic to stereoscopic 

image splicing. 

 

Internal depth of an object can be calculated by calculating the difference in the 

distance of the nearest and furthest visible point on the object with regards to the 

camera. In digital stereoscopic images, a point can be represented by a single pixel. 

The distance of a point can be calculated by using the difference in horizontal pixel 

positions of the point on the left and right image of a stereoscopic image pair. At a 

certain distance from the camera any two points on an object would appear to have 

the same distance, because the difference will be less than one pixel. In this case, 

we will say that the object has no internal depth. If an object is spliced from a 

distance where it has internal depth to a point where it should not have internal 

depth, one may be able to still detect internal depth. This will indicate that the 

image was spliced. Splicing an image with no internal depth to a position where it 

should have internal depth could also lead to a similar anomaly, which can be used 

to detect splicing. 
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In this chapter, a formula is derived to calculate the distance at which objects lose 

internal depth. This formula is tested on a set of stereoscopic images. The 

stereoscopic images contained chairs with target signs in the front and back to 

represent internal depth. These chairs were placed at different distances and 

photographed. The internal depth of the chairs is measured and results compared 

to the derived formula. A chair is then spliced from a distance where it had internal 

depth, to an area where it should not have internal depth and vice versa. This is 

done with stereoscopic to stereoscopic image splicing. The spliced chair’s internal 

depth is measured and compared to the expected internal depth. 

 

Section 5.2 gives the experiment design and shows the steps taken to derive the 

formula. Section 5.3 discusses the results.  Section 5.4 provides a conclusion.  

5.2 METHODOLOGY 

A formula was first derived to determine the depth at which objects loses internal 

depth. In order to test the derived formula, stereoscopic images with different 

properties were created. The distance at which an object loses internal depth in 

these images were compared with the results of the formula. Once the results of 

the derived formula were confirmed, steps were taken to test the use of the 

formula for stereoscopic image splicing detection. The steps taken for deriving the 

formula and the rest of the experiment are given in this section.  

5.2.1 DERIVING THE ALGORITHM 

An object will have no internal depth if the calculated distance of any two points on 

the object is the same. The following formula, from Mrovlje and Vrančid [171], can 

be used to calculate the distance ( ), from the camera, of a single point in a digital 

stereoscopic image: 
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)        

 (5.1) 

 

  is the horizontal distance between the lenses of the camera or cameras used to 

capture the stereoscopic image.    is the horizontal image resolution in pixels.    is 

the viewing angle of the camera.         is the number of horizontal pixels the 

point differs in the left and right image of a stereoscopic image pair. It should be 

noted that formula 5.1 assumes that the view direction of both lenses are parallel. 

 

As seen in formula 5.1, the distance of a point is dependent on the number of 

horizontal pixels the point differs in the two images of the stereo image pair. When 

two points have the same difference in pixels, those points will be the same 

distance from the camera. If those two points are the nearest and furthest point on 

an object, with regards to the camera position, the object will have no internal 

depth. To derive a formula to determine the distance which an object loses internal 

depth, requires the horizontal pixel difference of two points, to be less than a pixel. 

 

Let   be the distance of the closest point on an object with a depth of   . The 

distance of the furthest point on the object will thus be       . Let         be 

the number of pixels the point at   differs in the left and right image of a 

stereoscopic image pair. Let           be the number of pixels the point at 

        differs in the left and right image of a stereoscopic image pair. The 

number of pixels     that represents the smallest amount of pixels needed, to 

represent internal depth for an object, can be given as:  

 

                      

 
(5.2) 
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Using (5.1), we get:  

 

 
       

   

    (
  

 )          
 

 

(5.3) 

Substituting (5.2) in (5.3) gives:  
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 ) (         )
 

 

(5.4) 

Simplifying (5.4) with the use of (5.1) gives:  

 

   *     (
  

 
)+   *         (

  

 
)+  [        ] 

 

(5.5) 

  can be solved with the use of the Quadratic Formula. Since we are only interested 

in the positive distance in-front of the camera, solving and simplifying   gives:  

 

 

   
    

 
*(√  

    

        (
  

 )
)   + 

 

(5.6) 

With object depth     , difference in horizontal camera lens positions    , 

horizontal pixel resolution     , the camera viewing angle      and max internal 

depth    . The distance     where    , is the approximate distance at which an 

object starts losing internal depth. 

 

More detailed steps for (5.4) to (5.5) and (5.5) to (5.6) can be found in Appendix A. 
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5.2.2 TESTING THE FORMULA  

The following steps were taken to create stereoscopic images to test the distance at 

which an object loses internal depth. 

 

Five chairs were set up with two targets each. One target was placed in the front of 

the chair and one against the back of the chair. The distance between the targets 

were measured as 37cm and represents the internal depth of the chair.  

 

The five chairs were placed in an arc in front of the camera position. The angle 

between each subsequent chair was approximately 10°, so that the chairs would fit 

in the frame of the cameras used. The chairs were moved and photographed 5m, 

10m, 15m and 20m from the camera position. These distances were chosen since 

formula 5.6 indicated that the chairs will lose internal depth somewhere in that 

range. Figure 32 illustrates the chair setup. Figure 33 shows a photograph example 

of the chairs placed at 5m.  

 

 

Figure 32 - Illustration of Chair Placement at 10m 
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Figure 33 - Photo of Chair Placement at 5m 

 

Two cameras were used to photograph the chairs. The first was a Fujifilm FinePix 

REAL 3D W3. Both 3D and 2D photos were taken with this camera. The second 

camera used was a Sony Cybershot DSC-P43. These cameras were chosen, since 

they provided different variables to test formula 5.6 with. When the chairs were 

photographed with a single lens, the camera was moved on a horizontal line at 

0mm, 25mm, 50mm, 75mm and 100mm. Stereoscopic images were created using 

the 0mm image as the left image and the 25mm, 50mm, 75mm and 100mm images 

separately as the right image in the stereoscopic image pair. The reason for having 

stereoscopic images with different lens distances is because the distance of lenses 

differs on different stereoscopic image capturing devices.  This provided a way to 

emulate that difference. Table 2 gives more information about the cameras used. 

The distance at which the chairs are expected to lose internal depth, using formula 

5.6, is given in Table 3. 

 



    
 DETERMINING DISTANCE OBJECTS LOOSES INTERNAL DEPTH 
  
    

 
 
 89 
  

Table 2 - Information of Cameras used in the Experiment 

Make Sony Fujifilm 

Model DSC-P43 FinePix REAL 3D W3 

Mode 2D (Single Lens) 2D (Single Lens) 3D (Double Lenses) 

Resolution 2304 x 1728 3584 x 2016 3584 x 2016 

Focal Length 5 mm 6.3 mm 6.3 mm 

Sensor 1/2.7” CCD 1/2.3″ CCD 1/2.3″ CCD x2 

Sensor Size 5.37 x 4.04 mm 6.16 x 4.62 mm 6.16 x 4.62 mm 

Approx. Angle of View 56.47° 52.11° 45° 

Distance of Lenses - - 75 mm 

 

 

Table 3 - Distance Chairs             Start Losing Internal Depth 

Make Sony Fujifilm 

Model DSC-P43 FinePix REAL 3D W3 

Mode 2D 2D 3D 

Image Width      2304 3584 3584 

Approx. 
Angle of View     

56.47° 52.11° 45° 

Distance of Lenses     
25 

mm 
50 

mm 
75 

mm 
100 
mm 

25 
mm 

50 
mm 

75 
mm 

100 
mm 

75 
mm 

Distance chair 
          start 

losing internal depth, 
using formula 5.6 

        

4.27 
m 

6.12 
m 

7.53 
m 

8.73 
m 

5.64 
m 

8.05 
m 

9.90 
m 

11.46 
m 

10.77 
m 

 

After the chairs have been photographed at the four distances, the images were 

downloaded. In each image the horizontal pixel distance of the targets on each chair 

were measured separately and recorded. Measurements were taken in pixel units. 
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5.2.3 TESTING THE DETECTION OF SPLICING 

In order to test the detection of splicing, two stereoscopic images of chairs were 

used. Both images were taken with the Fujifilm FinePix REAL 3D W3 camera in 3D 

mode. 

 

According to formula 5.6 and the information in Table 3, the distance a chair with a 

depth of 37cm will start to lose internal depth is approximately: 

 

   
      

 

[
 
 
 
 

(

 
 
√  

              

              (
  
 )

)

 
 

  

]
 
 
 
 

        

 

For this reason, images of chairs at 5m and 15m were used.  

 

Two forms of stereoscopic to stereoscopic splicing were tested. First the center 

chair at 5m was spliced to a distance of 15m. Then a chair originally at 15m was 

spliced to a position of 5m. The spliced images were scaled to be the same size as 

the non-spliced chairs. The internal depth of the spliced chairs were measured and 

compared. Measurements were taken in pixel units. 

5.3 DISCUSSION 

The discussion of results is separated into two parts. The first is the testing of 

formula 5.6. The second is the testing of stereoscopic to stereoscopic image splicing 

detection. 

5.3.1 TESTING THE FORMULA 

Table 4 gives the average measured internal depth of the five chairs for the different 

cameras, camera settings and chair distances. For example, the average measured 
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distance of the chairs at 5m, taken with the Fujifilm camera in 3D mode, is 4.8 

pixels. The asterisks (***) indicates the point where the chairs should be losing 

internal depth according to formula 5.6 and Table 3. All the pixel distance values 

above the asterisks (***) are expected to be above 1.0 and those below are 

expected to be less than 1.0. 

 

Table 4 - Average Measured Internal Depth of Chairs at Different Distances 

Make Sony Fujifilm 

Model DSC-P43 FinePix REAL 3D W3 

Mode 2D 2D 3D 

Distance of Lenses     
25 

mm 
50 

mm 
75 

mm 
100 
mm 

25 
mm 

50 
mm 

75 
mm 

100 
mm 

75 
mm 

Average Measured Internal Depth of the Five Chairs in Pixels 

C
h

ai
rs

’ D
is

ta
n

ce
 f

ro
m

 C
am

e
ra

  ***         

5m 0.6 1.0 1.8 2.2 1.0 1.4 2.6 3.4 4.8 

  *** *** *** *** *** ***   

10m 0.2 0.6 0.6 0.6 0 0 0.6 0.8 1.6 

        *** *** 

15m 0 0 0 0 0 0 0.4 0.6 0.6 

          

20m 0 0 0 0 0 0 0 0 0 

*** Distance chairs should loose internal depth according to formula 5.6 and Table 2. 

 

Table 4 indicates that formula 5.6 accurately predicted the point at which objects 

lose internal depth for most cases. There was an exception when the Fujifilm 

camera was used in 2D mode. When the distance of the lenses was 100mm, and the 

chairs were at 10m, the average internal depth was expected to be more than 1 

pixel. As seen in the table, it was measured as 0.8 pixels which is less than expected. 

A possible explanation for this inconsistency could be due to camera lens distortion 

[186] and the position of the chairs relative to this distortion. 
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Something else that should be noted is the internal depth values at 20m. All these 

values are 0, which means that none of the chairs had any internal depth at this 

point. Accuracy of the formula can be improved by modifying the value of   in 

formula 5.6. A   value less than 1 may be chosen to find the point at which an 

object will always have no internal depth. A value greater than 1 can be chosen for P 

to ensure that detected areas will have internal depth. 

 

In the next subsection, the result for using formula 5.6 in stereoscopic image splicing 

detection is discussed. 

5.3.2 TESTING THE DETECTION OF SPLICING 

This subsection gives and discusses the results of splicing stereoscopic images 

before and after the point in which an object loses internal depth. The point where 

the object loses internal depth was calculated with the use of formula 5.6. 

SPLICING AN OBJECT FROM INTERNAL DEPTH TO NO INTERNAL DEPTH 

For this experiment the center chair was spliced from a distance of 5m to a distance 

of 15m. The spliced chair was scaled to be the same size as the non-spliced chair in 

the same image. Before the spliced image was scaled, it had an internal depth of 5 

pixels. The non-spliced chair had no internal depth.  

 

After splicing and scaling, the non-spliced chair still had no internal depth, but the 

spliced chair had an internal depth of 2 pixels. The spliced chair thus had internal 

depth at a point where internal depth was not expected. This indicates that a 

spliced object can be detected if the object has internal depth beyond the distance 

calculated by formula 5.6. 
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SPLICING AN OBJECT FROM NO INTERNAL DEPTH TO INTERNAL DEPTH 

For this experiment the center chair was spliced from a distance of 15m to a 

distance of 5m. The spliced chair was scaled to be the same size as the non-spliced 

chair in the same image. Before the spliced image was scaled, it had no internal 

depth. The non-spliced chair at 5m had an internal depth of 5 pixels. 

 

After splicing and scaling, the non-spliced chair’s internal depth was still 5 pixels. 

The spliced chair’s internal depth was now measured to be 2 pixels, where it 

originally was measured to be 0 pixels. The reason for this increased internal depth 

can be explained with the help of graphs shown in Figure 34. When the internal 

depth was measured, it was done in pixel units with the use of markers, like the 

darkest point on an edge. When the darkest point on an edge is estimated with 

graphs, the distance of these points shows the increase in internal depth. The first 

graph shows the difference in pixel distance of the left (L) and right (R) edge, which 

is less than 1 pixel and thus have no internal depth. When the edges are scaled, the 

difference in internal depth is also scaled to be more than one pixel. Thus, when an 

image has an internal depth less than 1 pixel, scaling can cause it to have an internal 

depth of more than 1 pixel. 

 

 

Figure 34 - Increasing Scale Increases Measured Internal Depth 
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Results of the experiment thus indicate that an image which was spliced from a 

distance, where it was measured to have no internal depth, may have internal 

depth after scaling. However, the internal depth of the spliced object may be 

significantly smaller than when it was not spliced. 

5.4 CONCLUSION 
This chapter investigated how the relation between an object’s distance and 

internal depth can aid in the detection of spliced stereoscopic images. 

 

A formula was derived to determine the distance at which an object loses internal 

depth. The calculated values of the formula were compared to a set of stereoscopic 

images. The formula was shown to calculate a good estimate for determining at 

which distance an object loses internal depth. 

 

An object was spliced from a point where it has internal depth to a point where it 

should not have internal depth and vice versa. The derived formula was used to 

calculate the point at which the object loses internal depth. Results indicate that an 

object scaled and spliced from an area with internal depth to an area without 

internal depth, can be detected. An object that was spliced from an area without 

internal depth to an area with internal depth, might gain internal depth if scaled, 

but can have a significantly smaller internal depth than expected. These results 

indicate that the relation of an object’s physical depth to its calculated internal 

depth can aid the detection of stereoscopic image splicing. 

 

There are limitations to the technique proposed in this chapter. The formula which 

was derived assumed a parallel camera configuration. Another formula will be 

needed for toed-in camera configuration. A second limitation is that the points 

chosen in the image need to be compared manually with the actual distance 

between the points. It may be possible to automatically highlight objects and search 
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for the closest and farthest point, but post inspection will still be required. The 

actual distance of the points needs to be known. A third limitation is the image 

properties required by the formula. These camera properties might not be available 

in the image’s metadata, such as the camera angle of view. The angle of view will 

change in cropped images and also if some sort of zoom is used when capturing an 

image. It might however be possible to predict the necessary properties by 

identifying the camera used. Goljan and Fridrich [45] have shown that camera 

identification can be done with cropped and scaled images. They also showed that 

previous image dimensions of zoomed and cropped images can be predicted. A 

fourth limitation is the distance an object is spliced to. If the distance of an object 

isn’t changed significantly, the proposed technique won’t be able to detect the 

difference. 

 

The proposed technique is not just useable for spliced images, but can also be used 

to aid the detection of stereoscopic image manipulation techniques which 

significantly change the depth of areas in an image. It may be possible to combine 

the proposed technique with other image manipulation techniques to strengthen 

detection rates. 
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CHAPTER 6 - CONCLUSION 

6.1 CONCLUSION  
This dissertation investigated how stereoscopic depth information can be used to 

aid the detection of stereoscopic image manipulations. 

 

Two detection techniques were created and tested with experiments. The first used 

disparity maps, while the second used triangulation to get depth information. These 

techniques focused on detecting stereoscopic image splicing. The first focused only 

on non-stereoscopic to stereoscopic image splicing while the second can also be 

used for stereoscopic to stereoscopic image splicing. 

 

The first technique used a disparity map to highlight large areas without internal 

depth. When a 2D image is copied onto a stereoscopic image, the 2D image will 

have no internal depth. By detecting large areas without internal depth, these areas 

could be detected. An experiment was created with 50 spliced stereoscopic images. 

Large areas without internal depth were highlighted and compared with the copied 

area. Results showed that approximately 50% of the copied area was detected. 

Reasons for the low detection rate include the highlighting algorithm used and the 

textures of the spliced area. It may be possible to improve these results with the use 

of different highlighting and stereo matching algorithms. Results also showed that 

approximately 10% of the original stereoscopic image area was incorrectly detected. 

A reason for the high false positive rate is that some areas have internal depth that 

cannot be represented in the limited amount of pixels used in the image. These 

areas will also appear flat, similar to spliced areas from non-stereoscopic images. 

Examples of such areas include objects at a far enough distance and flat areas facing 

the camera, such as a wall. This technique can thus not reliably detect copied areas 

on its own. It can potentially be enhanced with the use of other techniques. An 
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example is using this technique with depth from defocus [187]. Depth from defocus 

uses focal blur information of images to estimate depth information. This 

information may help to lower the amount of false positives that were detected by 

the first technique.  

 

For the second technique, a formula was derived to determine the distance at which 

an object loses internal depth. The formula was tested on images with known 

internal depth to determine whether the formula accurately predicts the loss of 

depth. Results showed that the formula can predict the point at which an object 

loses internal depth. An object with internal depth was then copied and scaled to a 

depth where it was expected to have no internal depth and vice versa. The new 

internal depth was then compared to the expected internal depth calculated with 

the formula. Results showed that the internal depth of scaled and moved objects 

were inconsistent with the internal depth of other objects captured at the same 

depth. This technique is limited to objects which have been moved to a depth which 

is significantly different from its original depth. This technique is reliable but 

requires information that might not be available. Such information includes specific 

image capturing properties and the expected internal depth of an object. These 

values can however be estimated. It is possible to determine the camera used with 

the use of camera source identification. Values, like the angle of view, can then be 

estimated from the camera specification. Goljan and Fridrich [45] showed that 

camera identification can be done, even if the image was scaled or cropped. The 

scaling or cropping factor can also be determined to help estimate the camera 

properties needed for the second technique in this dissertation.  

 

From the results of the two experiments it can be concluded that it is possible to use 

inconsistent depth information to detect stereoscopic image splicing. Other image 

manipulation techniques that modify depth may also be detected. The research in 

this dissertation is not just limited to stereoscopic images. It can potentially be used 
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for any set of images that cover a part of the same scene from a similar direction. It 

should be noted that it is possible to fabricate the correct depth to counter the 

detection of depth inconsistencies.  

6.2 PUBLICATIONS 

Chapter 4 and Chapter 5 is based on the author’s work which have been previously 

published [188][189]. 

6.3 FUTURE WORK  
The techniques in this dissertation focused only on using depth information derived 

from disparity. It may be possible to combine this depth information with other 

depth cues to enhance detection. An example is focal blur, which can be used to 

estimate depth in a 2D image. Comparing the disparity map of a stereoscopic image 

with the focal blur information may show interesting results. 

 

For the second technique, the formula was derived for a parallel camera 

configuration. Modifications must be made to this formula or a different formula 

should be derived for toed-in camera configuration.  The different values required 

for the formula can also be investigated. If some of these values are unavailable 

they will need to be estimated. The accuracy of the estimations and the required 

accuracy for the formula will play a large role in determining the accuracy of the 

formula.   

 

Only depth was looked at in this dissertation. Other properties of stereoscopic 

images may be investigated. An example is the difference in overall colour of the 

stereoscopic image parts. The image parts could have been taken by separate 

camera lenses, or the lighting conditions might have slightly changed when a single 
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camera was used. The resulting colour variations may be used to detect image 

manipulations which do not take these into account. 
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APPENDIXES 

APPENDIX A - DERIVING FORMULA 5.6 

This appendix contains more detailed information for the steps between formula 

5.4 and 5.5, as well as between formula 5.5 and 5.6.  

FROM (5.4) TO (5.5) THE FOLLOWING STEPS WERE TAKEN: 
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FROM (5.5) TO (5.6) THE FOLLOWING STEPS WERE TAKEN: 
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Solving   using the Quadric Formula:                             
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Since we are only interested in the positive distance in front of the camera: 
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Substituting back        (
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This is how the formula in Chapter 5 was derived.  


