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Literature Review 

 

1) Horizontal Gene Transfer 

 

1.1) Background and Process 

 

Horizontal gene transfer (HGT), as the name states, is a process that transfers genetic 

material from one organism to another by genealogical reproductive way (also known as 

vertical transfer of genetic material). The transfer can occur between the same 

organisms or across different species but mainly within the prokaryotic species and 

seldom in eukaryotes. There are at least three mechanisms when it comes to the 

process of HGT. Conjugation, where mobile elements such as plasmids actively 

replicates itself and gets transferred to another cell; transduction, where the gene of a 

host cell is packaged within a virus and transferred to another host along with virus 

genes and transformation is when parts of the DNA are picked up from external 

environment (Figure 1).  

 

The first sign of HGT was in an experiment by Joshua Lederberg and Edward L. Tatum 

which saw a type of bacterial mating called conjugation. The experiment observed that 

the generation of daughter cells is able to grow in a media that cannot support the 

growth of either of the parent cells. Their experiments showed that this type of gene 

exchange requires direct contact between bacteria (Lederberg and Tatum 1946). Later 

in the early 1950s, following the success of the study where genetic exchange happens 

between the bacteria Escherichia coli, the authors hypothesized further that all bacteria 

could undergo such a process and hence experimenting on Salmonella typhimurium and 

other Salmonella serotypes began. The results from the experiment were positive and 

later on the process were named transduction forms one of the three main mechanisms 

of HGT. (Zinder and Lederberg, 1962). 
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Fig 1. The process of HGT can happen in three different ways. Conjugation, where mobile element such as plasmid 

replicates itself and transferred to the recipient; transformation happens when DNA material is picked up from 

external environments (dead cells) and transduction occurs when genes are packaged in viruses and transferred when 

changing hosts. 

 

In the mid of 1980s, the phenomenon and impact of HGT was first described by Michael 

Syvanen. The hypothesis was that cross-species gene transfer in prokaryotes occurs and 

a new perspective in prokaryote evolution could be considered. The idea was that the 

uniform genetic code across different species allows exploitation of the same 

transferred gene by different organisms. There are also some other hints that genes can 

be transferred between prokaryotes, hints such as DNA containing plasmid which 

autonomously replicate, transfer by phages such as the experiment by Freeman or by 

direct digestion, phagocytosis. By ingesting large amount of genetic material, the 

bacteria which are main carrion eaters are exposed to genes from most other species. 

All these cases are ways which leads to HGT and also the building blocks of how we 

know the concept it is today. The major point in Syvanen’s article was that lateral gene 

transfer is a major concept in order to explain many things that the classical Darwin 

theory cannot explain in evolution and also contributes many new possibilities into the 

way of evolution (Syvanen, 1985).  
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1.2) Advantages and Disadvantages 

 

Standing in the bacteria point of view, there are two major advantages to HGT to be 

considered. The first advantage would be gaining of a new function that is beneficial to 

the recipient through transfer of a novel gene from a foreign donor. This will rapidly 

increase the rate in which the species will evolve compared to evolving independently. 

Another benefit is when an organism undergoes gene loss by deletion or deleterious 

mutations and will be able to regain that gene through HGT by another member of the 

population.  

Of course on the other side of the coin, there are also many disadvantages that are very 

detrimental to the host. When HGT occurs, the transferred genetic material is 

somewhat random (Complexity Theory discussed later on in the evolution section) and 

also the point of insertion is also random. Hence majority of the time, HGT is not 

beneficial and one or more of the following can occur. Non-coding genes could lengthen 

the size of the genome and hence increase the replication time of RNA/DNA. Genes with 

no function (could be due to other interactive genes not being present within recipient) 

or duplicated genes could be expressed increasing translation and transcription cost 

which is not beneficial to the host. Random insertion of genes could lead to existing 

genes being none functional or interfere with the gene function. Hence HGT is a high 

risk high reward process. 

 

With numerous advantages and disadvantages, finding the balance of how much HGT is 

actually beneficial for optimal evolution rate is then important. In a study done by Higgs 

and Vogan, they modeled the beneficial and detrimental effects of HGT (Vogan and 

Higgs, 2011). By testing different values of HGT rate and gene loss rate within the model, 

they were able to conclude that HGT rate was high when gene loss was high (due to 

advantage two) and vice versa. They further hypothesized that the earliest genomes 

before the last universal common ancestor had high gene loss during replication process 

and hence HGT was favored. As the genes are rapidly spread, larger and fitter genomes 

were built, vertical transfer of these genomes can then be passed down with lower gene 

loss rate. This can be seen by modern prokaryotic genomes which have a much lower 

HGT rate since the chance of a beneficial gene being transferred is relatively low 

compare to earlier genomes. Therefore increases the probability of detrimental effects 

by HGT and hence lower HGT rate is preferred.  
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When we look at the traditional portrait of the tree of life, we could see that HGT is not 

something that happens frequently. This is due to the fact that with the increasing 

number of complete genome sequences being available, we could see that some genes 

are highly conserved but slightly discordant. If the rate of HGT is high, then majority of 

the genome sequences from different organisms should be similar and all organisms 

should function in the same way. An explanation to this could be that when the genome 

sequence of an organism reaches a particular level of complexity, gene transfer should 

not be possible since the organism already obtain the gene or the gene is not necessary 

to the organism. This way, the rate of HGT will decrease and reach the Darwinian 

Threshold (the time of major transition of evolutionary mechanisms from mostly 

horizontal to mostly vertical transfer). In this case, HGT is a disadvantage and the rate is 

minimized in order to achieve better evolution which matches the conclusion that Higgs 

and Vogan came up with the model. 

 

 

1.3) Genomic Islands 

 

With the increasing importance of HGT within the bacterial world, we needed to find a 

way in which we can detect the actual transferred genetic region in order to get a better 

understanding of the effects of HGT. Genomic Islands (GI), a region of genetic material 

that is foreign within the host organism that is thought to be transferred over by HGT. 

The idea came from pathogenic islands (PAI) which as the name states is a region of 

genetic material that can cause the bacteria to become pathogenic when it was not 

before. The initial naming of PAI was by Groisman and Ochman in 1996 where studies 

showed viruses transferred virulent strains from one to another and hence come out of 

a dormant state after a certain amount of time. PAIs were then characterized as an 

unstable region with virulence-associated phenotype (Groisman and Ochman, 1996). 

Some other GI types include symbiosis (Sullivan et al., 2002), metabolic (Penn et al. 

2009), antibiotic synthesis and antibiotic resistance (Levings et al. 2005) and fitness 

(Hacker and Carniel, 2001). These GIs vary in size and recognized by their functional 

homology. GIs are normally between 10 to 200kb and could be recognized by 

compositional means such as GC content, GC skewness, tetranucleotide and/or codons 

frequency biases. Phylogenetic methods can also be used to find characteristics such as 

having 16-20bp direct repeats flanking on both sides allowing integration of GIs into 

target site. Some other characteristics such as GIs containing cryptic genes encoding 
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integrases and carrying of insertion elements or transposons (Buchrieser et al., 1998; 

Gal-Mor and Finlay, 2006) could be present. These characteristics are all markers for 

identifying GIs in target sequences. 

 

 

Fig 2. The general structure of a genomic island which contains irregular GC content compared to the rest of the 

genome. Genomic islands are usually inserted after tRNA and is flanked both sides with direct repeats (DR). It also 

contains an integrase as well as some insertion sequence and some genes. The type of genomic island will be 

determined according to the type of gene. Genomic Island can be described as virulence, symbiosis, metabolic, 

antibiotic and fitness islands.  

 

With current technology, HGT have never been an easy task to identify. There have been many 

methods developed but none have had perfect success in identifying all HGT events. Each 

method has its own pros and cons and no real golden standard in how to really identify HGT. 

However when a GI is located, further studies could be done in order to investigate the 

evolutionary effects of HGT in a retrospective manner by performing function 

annotation and analyzing the amelioration of inserted DNA regions within bacterial 

genomes (HGT).  
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1.4) Evolution 

 

Ever since the discovery of the concept of HGT until modern understanding of the 

process, it is evident that HGT is one of the more important driving forces in the world 

of prokaryote evolution. From a recent study by Babic et al., they were able to get a 

direct visualization of horizontal gene transfer. Using E. coli as the test subject and 

fluorescent protein fusion method, they found that DNA transfer through the F pilus at 

considerable cell distances and the integrated transfer DNA through recombination 

occurred within up to 96% recipients. These transferred DNA also split and segregate to 

different chromosomes through successive replication and future generations inherit 

different cell clusters (Babic et al., 2008). From the above example, the process could be 

explained as a section of history within an organism evolutionary timeline. 

 

HGT has been a rather controversial topic when it comes to explaining some parts of 

evolution but it is widely accepted in prokaryotic world (Boucher et al., 2003). Unlike 

natural selection, mutation and genetic drift which are some other evolution processes, 

when lateral gene transfer happens across species, the genes transferred are not always 

appropriate genes for the recipient genome. With large amount of genetic material 

being transferred, could all these be useful to the organism which receives all these 

genetic material? While, inappropriate gene transfers may lead to destruction of 

organisms since random insertion of genetic material could lead to a change in many 

protein functions. Novel functional gene transfer however will improve adaptability and 

survivability of the organism through many new functions gained by the transfer. Since 

the organism with the transferred gained novel function which improve survivability, by 

natural selection, this organism will outlive the others and hence pass down the newly 

combined genetic material to the next generation. Hence, HGT also fits in the 

explanation of evolution. 

 

There have also been problems regarding the lateral gene transfer model in terms of 

evolution. The main concern was that by looking at the genetic material in different 

organism, one can hardly tell which gene has been transferred and which organism was 

the donor. Today with numerous whole genome sequences being available, many 

criteria have been set to check where such transfers have occurred. One such criterion is 

based on codon biases and bases compositions relative to the genes in the DNA 
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sequence, but this criterion itself is very controversial due to the fact that the mutation 

rate or selective pressure in the recipient is different from the donor (Koski et al., 2001). 

Another problem in identifying HGT is that the DNA sequence itself mutates over time 

and that the DNA composition of transferred genes ameliorates and become more like 

the genes within the recipient. This makes it hard for researchers to identify the donor 

of the gene and make a connection to HGT even happening. By the above criterion, 

identification of gene transfer also becomes harder when the transfer happened a long 

time ago. Another major concern to HGT is that when comparing genes, one cannot tell 

if the gene has been lost or being transferred.  

 

As the technology in this field of study increases exponentially, so does the amount of 

research put into HGT in order to get a clearer picture of the effect on evolution. Results 

showed that 1.6 to 32.6 percent, depending on the microbial genome, may have been 

acquired by horizontal gene transfer (Koonin et al., 2001) and recently using network 

analysis of shared genes, the above result could be increased to around 81 percent 

(Dagan et al., 2008). This is due to the fact that current HGT identifying technique 

cannot identify all HGT events and different techniques also give different results with 

little overlap. Current techniques also have high false positive rates hence the estimate 

of HGT genes within different microbial genomes have a large range in percentage. With 

the above results, current microbial genomes share a large percentage (up to 81 percent) 

of its genome between them and hence rare appropriate genes have a less probability 

of getting transferred. This would lead to less HGT rate which matches the case of 

modern microbial genomes.  

 

In another study by Kanhere and Vingron (2009), it was shown that transfer across 

specie in the microbial world happens more often from bacteria to archaea (from the 

study, 74% of genes were transferred in this direction) instead of the other way around. 

Out of the transferred genes from bacteria to archaea, majority of the transferred genes 

were closely related to metabolic functions. On the other hand, archaea gene transfers 

to bacteria showed a preference of translational related genes(Kanhere and Vingron, 

2009).  

 

Acknowledging that HGT is an important factor of bacterial evolution, it should be 

accounted that there are certain barriers in which HGT is limited to a certain extent. The 

complexity theory proposed by Jain et al. contains two points. First point says that the 
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informational genes such as genes involved in DNA replication, transcription and 

translation are less prone to HGT while operational genes are more likely to be 

transferred (Jain et al., 1999). This point was supported by Nakamura where he 

published an article using Bayesian inferences showing that operational genes were 

more likely to be transferred (Nakamura et al., 2004). The second point in the 

complexity theory was that after the genes have been transferred, post-transfer 

maintenance of genes occurs and the genes with useful functions are preserved while 

useless genes were removed. In this case, the organism will rapidly gain new functions. 

Another aspect to be considered is the effect of taxonomic distance between organisms 

which would effect if HGT would occur or not. Several studies shows that gene transfers 

occur more effectively if the two organisms participating in the transfer are closely 

related in terms of evolutionary (Nakamura et al., 2004, Ochman et al., 2000). 

 

Building onto the complexity theory, Wellner et al. proposed that when an organism 

achieved a certain complexity, it serves as a barrier to prevent HGT (Wellner et al., 2007). 

They further hypothesized that connectivity (gene interaction network to form protein 

complex) is also associated with HGT where gene with lower connectivity has a higher 

chance to be transferred. This makes sense since a new genes with lesser connectivity is 

easier to incorporate into a genome. HGT is beneficial when it introduces a new gene to 

the recipient genome to create new function but when the genome itself is complex 

enough, the transferred gene more likely will cause harm on native genes or fail with 

incorporation into an existing network of genes. Hence a lower HGT rate is observed 

between taxonomically distant organisms which are caused by taxonomic barrier. This 

idea is also supported by Vogan and Higgs (2011) in their model where HGT reaches a 

certain threshold in which vertical transfer of genes is more beneficial than horizontally 

(This phenomenon is also known as Darwinian Threshold). Study by Mozhayskiy and 

Tagkopoulos (2011) also confirm the above points with another measure of fitness 

where environmental complexity will also affect the rate of horizontal gene transfer. 

 

The tree of life for prokaryote species currently is difficult to define. With numerous 

cross transfers of genetic material, speciation itself is a complex process hence new 

ways for speciation is needed (Thompson, 2013). The uses of phylogenetic trees are no 

longer a viable way to explain complex relationships between species although there are 

still new methods still in development to define such systems (Thiergart et al., 2014). 

Phylogenetic tree (rooted or unrooted) which takes into consideration the most 

parsimonious (MP) connection (represented by branches, caused by speciation or 
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mutation) between most common ancestor and species (represented by nodes) after 

speciation event. This linear model is restricting by the fact that most of the time there 

are more than one MP connection between species and creating a single phylogenetic 

tree from data is often contradicting and lots of results of interest could be lost 

depending on the type of research being done (phylogenetic tree only takes into 

consideration the MP connection, hence other possible MP connections will be lost and 

not analyzed).  

 

This brings us to a more generalized model of phylogenetic tree also known as a 

phylogenetic network which considers more than just a single MP connection but 

multiple possible MP connections between species under study (Husan and Bryant, 

2006). This technique is less limiting and hence broadening up the ability to do more 

research of interest such as complex relationships between bacteria species or 

characteristics of different networks under different evolutionary circumstances. The 

downside to all this is of course the computational cost of taking multiple MP 

connection into account (as many MP connections as possible whereas taking all MP 

connection into consideration is sometimes impossible with current technology). There 

are different types of phylogenetic networks depending on the research done (Figure 3). 

Split networks, a more generalized phylogenetic tree which takes into consideration 

multiple MP connections between species and their most common ancestor into one 

super tree. Reticulate networks display evolutionary data with events such as 

hybridization, recombination and HGT which fits very well with bacteria. Other types of 

phylogenetic networks also exist. These include gene loss and duplication as well as host 

and parasite co-evolution. Aside from MP type analysis, other analysis methods also 

exist such as statistical parsimony (Templeton et al., 1992).  

 

Pangenomics (bacterial species can be described by its pan-genome, which is composed 

of a "core genome" and a "dispensable genome") became a more viable way to explain 

species of bacteria (Medini et al., 2005). The core genome of bacterial specie could be 

considered as the household genes and dispensable genome are the genes that have 

either gone through HGT or through mutation. Based on the idea of phylogenetic 

networks, core genome can also be seen as sharing of a common ancestral history while 

dispensable genes can be the reticulate events such as HGT which are the multiple 

branches within the network. With so many genes transferred and a large pool of 

dispensable genomes, identifying HGT events becomes increasingly more difficult.  
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Fig 3. Different types of Phylogenetic networks, phylogenetic tree being one type of network. Other networks include 

split networks, reticulate networks and other phylogenetic networks. Each type of network is used for different type 

of research depending on research. Split network include Median network (data from sequence), Consensus network 

(data from tree), split decomposition and neighbor-net (both data from distances). Reticulate network include 

hybridization network (data from tree), recombination network (data from sequence) and ancestral recombination 

graphs (data from genealogies). Lastly, other phylogenetic network include any graphs explaining evolutionary data 

and augmented trees where HGT is represented as additional inserted edges into the tree to create a network of not 

just linear transfer but also horizontal.  
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2) HGT Identification tools 

 

2.1) Phylogenetic Approach 

 

When it comes to identifying HGT, there is no single bioinformatic tool capable of 

finding all HGT within an entire genome. Currently phylogenetic and compositional 

methods are the two main groups to be considered with the most success. While each 

of the above groups has their own strength and weaknesses, the results from both of 

these approaches barely overlap and hence hard to distinguish which method is better 

or more correct (Figure 4). Phylogenetic method searches for conflicts between the 

phylogeny inferred for a gene and the assumed organismal phylogeny whereas 

compositional methods searches for atypical regions within a genome compared to the 

rest of the genome. The reason for the non overlapping set of results from both 

methods is amelioration whereby transferred genes will undergo directional mutation 

and hence harder to detect using compositional methods. Compositional methods 

detect largely recent events which depends on donor and recipient having different 

compositional traits, while phylogenetic methods depend on homolog sequence being 

present in other sequences separating donor and recipient which allows this methods to 

detect much more ancient transfers (Ragan et al., 2006). 

 

The first step to any phylogenetic method is to collect a large amount of data sequence 

to infer trees for the comparison analysis. A big downfall for this method is that 

sometimes when there is insufficient phylogenetic information, a lot of HGT events 

cannot be detected. Suppose that the data set is sufficient and a phylogenetic tree is 

built based on the sequences (normally using ribosomal RNA or well conserved and 

characterized protein sequences (Santos and Ochman, 2004)), a reference tree is also 

made based on the true evolutionary history of the organisms under study. The second 

drawback happens during tree building phase whereby both trees are based on many 

trees built and come to a consensus tree. Due to different rates of mutation of different 

genes, this process could be challenging and a consensus tree could be hard to 

determine. Taking the drawback into account, after both trees have been built, a 

comparison is done between the two trees and if HGT event has occurred within this 

data set, there should be a disagreement between the two trees. There are many ways 

to do a tree comparison, but the optimal measure is using the subtree prune and regraft 

(SPR) distance (Hein et al., 1996) to find HGT events within a tree. 
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Fig. 4. Graph indicating the detection of HGT by compositional and phylogenetic methods in terms of time and 

phylogenetic distance parameters. Since amelioration occurs at a faster rate than normal mutations through vertical 

transfer, older HGT events are detected by mainly phylogenetic methods (Beige) while compositional methods detect 

more HGT events since HGT happens more frequently between close taxa (Grey) which are one of the limitations of 

phylogenetic method. There are HGT events identified by both methods (brown) which the conditions needed to 

identify the process are satisfied. The region indicated by (1) where HGT happened long ago between close taxa is 

difficult to identify through either methods hence currently none of the existing methods can identify all HGT events 

within a genome. 

 

SPR operation on a tree is defined by performing a cutting on any edge hence pruning 

subtree “t” and then regrafting “t” to a new vortex (Figure 5). In the context of HGT, the 

regrafted edge corresponds to the donor and the cut edge corresponds to the recipient. 

An edit path is a set of SPR operations which was done to the reference tree in order to 

get a congruent tree compared to the inferred one. Normally there will be many edit 

paths for a single comparison and hence an optimal edit path is chosen which is the 

most parsimonious for a given reference and inferred tree. The length of the optimal 

edit path is then the minimum SPR distance between the trees which also include all 

HGT events within this data set. One advantage of the phylogenetic approach is that 

when doing the analysis, one can see the direction of transfer during the HGT event 

based on the optimal edit path (Beiko and Hamilton, 2006). While this approach is very 

1 



 

powerful in detecting HGT events, computational complexity in order calculate SPR is 

still limited. 

 

Fig. 5.  SPR operation is done when there is a 

HGT occurred indicated by the dashed arrow, edge E6 is the

start by cutting edge E5 and then

incorporating the new edge to create E(2+5).

involved in the transfer event. 

 

Despite many challenges faced by phy

in terms of identifying HG

there are other statistical 

methods. The approximately biased 

tested, a probability is calculated for the confidence that this tree is the true tree 

describing history of the data under consideration. The greater the P

tree, the closer it is to the 

trees with a P-value above a significant alpha value. If the confidence set does not agree 

with the organismal phylogeny with significant alpha value, then there are possible HGT 

event within the data set. The AU test is reliable in its measure with respect to false 

positives but false negative rates are still within unacceptable range especially with 

stringent alpha values. Depending on research, a decrease in alpha value could be used 

to decrease false negative rates. A 5% significant level gives up to 90% power of 

detection on average which is reasonable but still inadequate in some cases.

 

Building onto the traditional method of phylogenetics, a method of genome wide 

prediction of HGT can be done
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powerful in detecting HGT events, computational complexity in order calculate SPR is 

SPR operation is done when there is a discrepancy between the reference tree and the inferred tree. Suppose 

indicated by the dashed arrow, edge E6 is then the donor and is received by edge E5. SPR operation 

then regrafting it under the new vortex E(5+6). New parent edges are formed by 

incorporating the new edge to create E(2+5). The other edges are not affected by the operation since they were not 

Despite many challenges faced by phylogenetic methods, it is still the method of choice 

in terms of identifying HGT especially for ancient genes. Aside from the SPR distance, 

there are other statistical tests that boost the power of accuracy on phylogenetic 

methods. The approximately biased (AU) test is such a measure where

ability is calculated for the confidence that this tree is the true tree 

describing history of the data under consideration. The greater the P

tree, the closer it is to the true tree and a confidence set is made containing all test 

value above a significant alpha value. If the confidence set does not agree 

with the organismal phylogeny with significant alpha value, then there are possible HGT 

ata set. The AU test is reliable in its measure with respect to false 

positives but false negative rates are still within unacceptable range especially with 

stringent alpha values. Depending on research, a decrease in alpha value could be used 

false negative rates. A 5% significant level gives up to 90% power of 

detection on average which is reasonable but still inadequate in some cases.

Building onto the traditional method of phylogenetics, a method of genome wide 

of HGT can be done in retrospective assessment of prediction reliability. With 

E(2+5)

E6 

powerful in detecting HGT events, computational complexity in order calculate SPR is 

 

between the reference tree and the inferred tree. Suppose 

donor and is received by edge E5. SPR operation 

New parent edges are formed by 

The other edges are not affected by the operation since they were not 

logenetic methods, it is still the method of choice 

Aside from the SPR distance, 

the power of accuracy on phylogenetic 

(AU) test is such a measure whereby for each tree 

ability is calculated for the confidence that this tree is the true tree 

describing history of the data under consideration. The greater the P-value for the test 

true tree and a confidence set is made containing all test 

value above a significant alpha value. If the confidence set does not agree 

with the organismal phylogeny with significant alpha value, then there are possible HGT 

ata set. The AU test is reliable in its measure with respect to false 

positives but false negative rates are still within unacceptable range especially with 

stringent alpha values. Depending on research, a decrease in alpha value could be used 

false negative rates. A 5% significant level gives up to 90% power of 

detection on average which is reasonable but still inadequate in some cases. 

Building onto the traditional method of phylogenetics, a method of genome wide 

in retrospective assessment of prediction reliability. With 

E(2+5) 
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current technology, genomic information such as annotation and new genome 

sequences are rapidly increasing and therefore an automated and computational 

efficient tool should be created. With the addition of the above two points, the 

downside of phylogenetic methods greatly decreases and therefore a stronger tool can 

be created. Darkhorse algorithm created by Podell and Gaasterland combines a 

probability based lineage weighted selection method with filtering approach and 

adjustable for wide variation in protein sequences conservation to detect HGT on a 

genome bases (Podell and Gaasterland, 2007). The algorithm uses an unique measure 

namely lineage probability index (LPI) which is calculated by using BLAST results in the 

relative context (based on the query by a percentage base to compensate difference in 

conservation between proteins) and then ranked by their lineage frequency of matches 

over entire genome (based on multiple databases which increases statistical power). 

The measure can characterize organism's HGT history profile, density of database 

covered for related species and list of proteins least likely to be inherited. The algorithm 

is made to be efficient (only LPI measure is needed to be computed) and automated, 

therefore useful in quick updates of incorporating new information to existing analysis. 

Positive results can then be prioritized for more in depth analysis such as phylogenetic 

tree and nucleotide composition. 

 

 

2.2) Compositional Approach 

 

Compositional method, also known as parametric method, uses characteristics of the 

genome as a tool in detecting HGT events. These characteristics include GC content (as 

well as first and third codon position), oligonucleotide usage (OU), and codon bias etc. 

These parameters all have its pros and cons and all had its successes in detecting HGT. 

GC content being the most basic method of composition group uses the theory of each 

specie has its own unique GC content pattern. This is due to a combination of 

environmental (adaptation and survivability in different habitat) and genetic factor of 

individual genome (Foerstner et al., 2005; Sueoka, 1988). Hence finding atypical regions 

of highly differential GC content within recipient genome allows identification of HGT 

events.  
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Since GC content methods are the most basic, there are many flaws and needs many 

improvements. Nucleotide positions are known to mutate at different rates depending 

on their region within the genome (conservative regions) or different codon positions 

(third codon positions tend to mutate more than the other two). Therefore depending 

on the GC methods alone will create many false positives and will not be a sufficient 

method to use in order to detect HGT. Codon usage is the next addition to the tool box 

which reinforces the existing GC method and gives solution to the above two problems. 

Aside from taking into consideration of comparing the GC content of both first and third 

codon positions from the genome mean, codon adaption index (CAI) is also used as a 

measure to differentiate atypical genes within recipient (Sharp and Li 1987). A statistical 

chi squared test is used to give power to the test in order to reduce amount of false 

positives.  

 

Although with the addition of codon usage technique, the detection power of the above 

two method increased significantly. Codon bias and GC content is still a poor indicator 

for HGT and still many transferred genes are still under the detection radar (Koski et al., 

2001). Oligonucleotide usage (OU), also known as short nucleotide sequences or k-mer 

(sequence length of two to fourteen nucleotides), are known for its descriptive 

characteristic of a genome. OU signature dates back to 1995 where Karlin et al. uses 

dinucleotide composition bias to make evolutionary implications (Karlin and Burge, 

1995). Since then, statistical approaches were used as a reinforcement of existing OU 

techniques (Deschavanne et al 1999) as well as higher order k-mer analysis such as 

tetranucleotide patterns along with Markov Models (Pride 2003). The pattern of 

deviation of OU frequencies from expectation (where combination of ACGT of the same 

length had the same frequency) were shown to be genomic signatures and hence 

contain phylogenetic characteristics that links microorganisms. Therefore the idea 

behind this approach is that genomic OU composition within genome is less variable 

than between genomes. This allows simplistic criteria in order to identify HGT events 

and region (GI) regardless of where the analysis within genome being considered which 

codon bias technique lack in. OU statistics also take into consideration interactions 

between nucleotides such as base stacking energy, position preference and bendability 

which can affect the rate in which the nucleotide mutate (Reva ON 2004).  

 

Like the other techniques, OU pattern analysis in terms of detecting HGT is powerful but 

still lacking from being the perfect approach. An overview done by Bohlin et al. which 

analyzed the effectiveness of di-, tetra- and hexa-mers in detecting HGT came to an 



19 

 

conclusion that none of the above three techniques were superior than the others and 

are all context dependent (Bohlin et al., 2008). Thus lack of a golden standard in 

choosing which approach to use in different context to prevent false positive and false 

negative predictions is a key problem of GI identification. Therefore, new algorithms 

need to be made by incorporating as much information as possible as well as being 

flexible and simplistic to use. SeqWord Genomic Island Sniffer (SWGIS), software 

developed by Bezuidt et al. (2009) uses OU statistics to identify atypical regions within 

genomes. OU pattern of various length could be used in combinations of each other (di- 

to hepta-nucleotides) within one algorithm which gives flexibility and an all round 

analysis to identify HGT (Reva, 2005). SWGIS belongs to the larger SeqWord project by 

Reva which also contain other software tools such as genome browser where GIs can be 

visualized and differentiated into different types (Ganesan et al., 2008). 

 

SWGIS utilizes three parameters in order to detect and differentiate different GIs. These 

parameters include OU distance, pattern skew (PS) and OU variance. Normalization 

could also be done which allows frequency count of words to be normalized by other 

word length or mono-nucleotide frequencies (e.g. if the analysis is done on a much 

skewed or diverse GC content genome, you would like to normalize the word frequency 

by mono-nucleotide to take that fact into consideration in your analysis). Normalization 

is split into two options, internal and external which internal applies to the current 

genomic fragment under analysis and external applies to the global genome.  

 

The program first calculates the frequency of nucleotide words of various lengths 

(chosen by user) and deviation of frequency from expected is then calculated and 

recorded as a matrix (pattern). The results are then ranked according to most deviated 

to the least deviated. Distance between two patterns (e.g. GI region compared to the 

whole genome) is calculated as the absolute distance between ranks of oligonucleotide 

word in the two patterns. The program automatically calculates four combinations of 

direct and reverse strands and takes the minimum value as the distance. Therefore 

depending on the distance value, HGT events can be identified since genomic signature 

is somewhat unique to each organism, a large distance value between patterns shows 

that there is a foreign genetic material. Pattern skew is a particular case of distance 

measure which calculates the distance between direct and inverse strands of the same 

DNA. Since for bacterial genomes the PS value tends to be low, a high PS value could 

imply insertion of phage elements (Reva, 2004). Lastly OU variance calculates the 

variance of the deviation between two patterns. Depending on the normalization used 
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on the patterns, the patterns are unique and a large difference in variance between 

patterns is another criterion for identifying HGT events. However, due to there being a 

constraint to the number of combinations of nucleotide words, uncontrolled mutation 

(insertion) can cause higher OUV values which could cause false positives which is a 

downside to this algorithm. 

 

There are other applications of compositional methods beside the standard analysis of 

whole genome sequences. Tamames and Moya developed an algorithm which estimates 

the extent of HGT in metagenomics (Tamames and Moya, 2008). Since compositional 

methods require comparison of region of interest to rest of the genome, metagenomic 

data is therefore lacking in this regard. An alternative approach is then used by 

combining OU (tetranucleotide used here) by sliding windows (10 at default) through 

ORF and Pearson’s correlation between the windows. ORFs are compared to each other 

and low correlation implies dissimilarity between them. All values are then grouped into 

matrix and then clustered into a tree. Depending on the cutoff, any significant 

correlation values (lower than cutoff) are then considered to be transferred genes. 

Though the task is difficult in identifying HGT with metagenomic sequences, the results 

are still a good start into a new field of study. In turn, compositional techniques are a 

powerful tool in many applications and a simplistic yet efficient way in identifying HGT 

events. 

 

2.3) Other Approaches 

 

New techniques are being brought up at incredible speed with modern technology. 

Aside from the standard phylogenetic and compositional approaches to identify HGT, 

other methods that utilize similar ideas to the above two main groups have emerged. 

We here look at two of these techniques and see what new perspective these results 

will bring and their shortcomings compared to the other main techniques. 

 

The theory behind the first technique branches off from traditional compositional group  

whereby using the nucleotide substitution rate matrix to detect HGT. Different species 

have their own nucleotide compositions and hence must have their unique rate matrix 

associated with it. This offers an advantage over traditional compositional methods 
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whereby similar composition does not imply similar rate matrix. Hamady et al.  

hypothesized that HGT changes nucleotide substitution dynamics because mutational 

processes differ between old and new organism (Hamady et al., 2006). Hence if a 

change in the rate matrix is detected, HGT should occur within the organism since the 

transferred gene rate matrix differ from the recipient and by amelioration, a change of 

rate matrix occur. On the other hand if a genome has not undergone HGT, the rate 

matrix should stay moderately the same between genes of the same organism. A 

criterion is then set for a test for putative HGT genes within different genomes. 

 

The rate matrix is derived from the Markov Model of neutral sequence evolution. This 

algorithm is used because of its success in many other bioinformatic applications such as 

sequence searching, alignment and phylogeny. The model typically represents four 

nucleotides at any given position within a DNA sequence. Each nucleotide has a rate of 

change to other nucleotide and is then grouped as a 4x4 matrix with each unit within 

the matrix representing a rate from one nucleotide to another (Figure 5a). By theory, 

the row of the rate matrix must sum to zero because the rate of change away from each 

state must equal the rate of change towards them. Hence the diagonal values must be 

negative while the off diagonal values are positive (Figure 5b). This is one of the criteria 

to check if the rate matrix is correctly derived. The rate matrix for the genome is then 

derived empirically through the probability matrix through a logarithmic conversion. 

Although Markov Model is useful, many assumptions for the model do not always make 

biological sense. Assumptions such as all sites are identical and independent are clearly 

not true in the sense that sites are often correlated especially those that encode RNA 

(Smith et al., 2004). Markov models also have a basic assumption of time consistency 

and being time-reversible which is also not biologically correct (Lobry and Lobry, 1999). 

To get close to being biologically significant, a constraint must be added to the rate 

matrix. This in turn limits the true inference of the rate matrix and therefore shrinking 

the ability to detect HGT which is the major downfall of this approach. 

 

For this model specifically, two improvements have been added in order to improve 

biological significance while not decrease the accuracy of the model in determining HGT. 

Triple roots are used instead of pairs to remove the assumption of time-reversibility. 

This allows further increase in accuracy in order to determine the rate matrix as well as 

allow direction of change to be inferred at the cost of a bit more computational time. 

The model also only takes into consideration the nucleotide of the third codon position 

to minimize the influence of selection. 
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Fig. 5a. Rate of change between different nucleotide states by Markov Model. 

Fig. 5b. Rate of change matrix based on the Markov Model. The negative diagonal values allows the rows to sum to 

zero which is a criteria for a valid rate matrix 

 

 

In order to check the extent in which the ability of the model to detect HGT is significant, 

inferring the rate matrix correctly is of great importance. The rate matrix is inferred 

using three genomes of the same species of approximately the same level of divergence. 

If the rate matrix inferred does not fit well with the genes within each genome 

(uncorrelated) in some way, this implies that there should be more than one rate matrix 

that fits this genome and hence HGT even should have occurred. To discriminate if there 

are two or more rate matrices involved, phylogenetic methods are used to build trees 

based on the number of rate matrices involved of 8 or 16 sequences. Various new 

statistics are then used in order to analyze the trees to make a conclusion. These 

statistics include a combination of different methods used by other researchers which 

include mean distance of sequence, number of sequence used for inferring and 

normalizing of the rate matrix, variance of distance etc.   

 

This method of detecting HGT increases accuracy in discriminating between HGT and 

non HGT events up to three folds compared to standard GC content methods. The 

comparison to GC methods is due to it being consistent within bacterial genomes as well 

as all other compositional statistics are somewhat related to GC content. This 
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improvement of accuracy is based on a combination of different statistics in order to 

reduce error rate. The random forest algorithm was used in order to include statistical 

significance to the result (Breiman, 2001). There is a limit to the accuracy of this method 

whereby the rate matrix between the compared organisms must be slightly different in 

order to distinguish a difference. While some downfall is still evident, overall, this new 

approach offers a new tool to detect HGT at significant accuracy. 

 

The second technique differ from the first in which it uses pure statistical analysis in 

order to detect HGT but still branches off the standard compositional approach. 

Chatterjee et al. proposed that at any segment of a whole chromosomal sequence must 

have a similar distance between the segment and the rest of the sequence (Chatterjee 

et al., 2008). The measure could be done based on GC content or their oligonucleotide 

distribution and the distance measure are done by either absolute or Euclidean distance. 

Alternatively for annotated genomes, one may take account gene content and their 

codon usage as well as amino acid usage biases. 

 

The first phase of the test for HGT is done by a comparison of “s” to the rest of the 

chromosome sequence (“s” being a segment within the DNA sequence under study). A 

vector of N segments is taken independently and each segment has the same length as 

“s” and does not overlap with “s”. Another vector of N random pairs is then 

independently selected from the chromosome sequence which does not overlap with 

“s”. Distance is then calculated for both vectors between “s” and s' (complement of “s”) 

as well as s1' and s2'. If s belongs to a GI, vector D1 should be larger than D2 otherwise 

HGT did not occur in the segment s. 

 

Statistical theory states that since D1 and D2 are both taken independently hence both 

vectors are independent and identical distributions. Therefore a standard statistical test 

can be done whereby the null hypothesis is that elements in D1 is the same as element 

in D2 (not a GI) and alternative hypothesis would be D1 is larger than D2 (GI). Mean and 

variance values are then calculated for both vectors D1 and D2 and by central limit 

theory (for large enough N) if the statistic is zero, null hypothesis is true while if the 

statistic is positive, alternative hypothesis is true. If computational constraint is an issue, 

a smaller N must be chosen and therefore a two sample Kolmogorov-Smirnov test or 

Wilcoxon-Mann-Whitney statistical test can be used as a replacement (Randles, 1979). 

These tests support the above criteria as a test for GI. 
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Since GI vary in size and location within the chromosome, statistical test is then done on 

s by sliding window across the chromosome and varies in size. The sliding window 

should not be too small as it will increase the computational cost significantly. P-value is 

then recorded and plotted allows easier detection of GI location and size within 

chromosome. A cutoff P0 (0 < P0 < 1) then determines the putative GI from the 

chromosome which ends phase one of the tests. Further refinement is done on the 

putative GIs after phase one since these GIs are always larger in size and may be a false 

positive. A refinement phase is then done to increase the accuracy of the method by 

reducing false positive. This phase is similar to the above test but the only difference is 

that the putative islands are removed from the chromosome sequence itself so that the 

random segment does not include any of these regions. This will in turn reduce the 

effects of any influence by any putative islands present in the chromosome sequence. 

The rest of the test will be the same as the first phase.  

 

The method works well and ranked highest compared to some other well known 

methods such as Island-DB, W8 and HGT-DB etc. in terms of sensitivity but not so well in 

terms of specificity. This is due to the fact that this method detects a much larger 

number of putative GIs based on the criteria used. The advantage of this method is that 

it does not require any training set and uses a powerful statistical backup which some 

other methods lack. On the other hand, possible downfalls of this method include 

computational cost with varying window sizes and a high number of false positives 

which is caused by a large number of putative GIs being identified. While setting strict 

parameters can reduce the false positive rate, a lot of interesting information could be 

lost so a clear border line is hard to distinguish. 

  



25 

 

3) Amelioration Model 

 

3.1) Concept of Genomic Amelioration 

 

Amelioration is the process where the base DNA composition of the transferred genes 

from a donor undergoes nucleotide substitutions over time and reflects similarly in DNA 

composition to the recipient genome. This is due to the fact that the introduced genes 

are subjected to the same mutational pressure (Sueoka, 1988) as the recipient genome 

and hence over time become more similar in genomic composition. This is directed 

mutation whereby the foreign insert within a new environment being under the stress 

of a new mutational pressure and hence undergoes increased selection towards the 

recipient genome. Amelioration can hence be thought as an evolutionary process or 

model whereby acquiring foreign genetic material and making it its own for its own 

benefits through stress induced mutagenesis is also viable (Maclean, 2013). The process 

of amelioration is more evident in large groups of gene transfers since there is a larger 

region of atypical composition to undergo directional mutation. Furthermore, newly 

transferred genes are easier to identify since they have just started ameliorating and 

comparison of donor and transferred gene can aid the modeling process. 

 

There have been very few models of amelioration since the start of this idea and 

therefore there is no golden standard to the approach. The most famous one is to use 

the rate of nucleotide substitution between the gene transferred and recipient genome 

to model amelioration (Lawrence and Ochman, 1997). The rate and extent of 

amelioration as well as analyzing how long each gene undergoes directional mutational 

pressure allows the estimation of the time of HGT. This model is based upon the fact 

that nucleotide composition of a DNA sequence typically represents an equilibrium 

between selection and directional mutational pressure (Sueoka, 1962; Sueoka, 1988). 

When a gene is transferred, the gene will experience the same directional mutational 

pressure as the recipient genome and its base composition will reach a new equilibrium. 

Mathematical model describing this change has been developed (Sueoka, 1962) to 

express this change in DNA composition with respect to directional mutational pressure. 

The amelioration model does not directly quantify directional mutation pressure but 

rather represent it as a fraction of net change in DNA composition with regards to 

nucleotide substitution rate. The model consists of four parameters namely nucleotide 
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substitution rate, transition/transversion rate (IV ratio), GC content at equilibrium and 

GC content of HGT region. All parameters are easily calculated and the model itself is 

very easy to use. 

 

 

The rate of amelioration can be expressed as a function in terms of the substitution rate. 

An empirical substitution rate S can be expressed as the rate of change at the site of 

cytosine or guanine (RGC) and the rate of change at site adenine and thymine (RAT). RGC 

can be further broken down into the rate of change from G or C to A or T (RGC -> AT 

includes G -> A, G -> T, C -> A and C -> T) and the rate of interchange between G to C 

(RGC -> CG includes G -> C and C -> G), similarly for RAT. Knowing the fact that all transition 

mutation and half the transversion changes the GC content of the DNA sequence, we 

can simplify the equation into one rate of change along with the IV ratio. One 

assumption for this is that the two transversion rates are equally frequent.  

 S   = [(IV Ratio + 1) / (IV Ratio + 0.5)] x [RGC -> AT + RAT -> GC]     [1] 

Equation [1] represents the total substitution rate in terms of both directional mutations 

and transition/transversion rates. The combined action of these two rates will lead to 

GC equilibrium as proposed by Sueoka (Sueoka, 1962, Sueoka, 1988). GC equilibrium 

(GCEQ) can therefore be expressed as a ratio between the directional mutation rate of 

AT and GC.  

 GCEQ = RAT -> GC / (RAT -> GC + RGC -> AT) and ATEQ = RGC -> AT / (RAT -> GC + RGC -> AT)   [2] 

Therefore combining [1] and [2]  

 RAT -> GC = S x GCEQ x [(IV Ratio + 0.5) / (IV Ratio + 1)]       [3a] 

 RGC -> AT = S x ATEQ x [(IV Ratio + 0.5) / (IV Ratio + 1)]       [3b] 

The GC change over time can therefore be expressed as the gain in GC content minus 

the loss in GC content. Let ATHGT and GCHGT be the base composition of the horizontal 

transferred DNA:  

 ∆ GCHGT = [ATHGT x RAT -> GC] – [GCHGT x RGC -> AT]       [4] 

Combining (3a), (3b) and (4): 

 ∆ GCHGT = S x [(IV Ratio + 0.5) / (IV Ratio + 1)] x [GCEQ - GCHGT]     [5] 
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Equation [5] shows that the rate of change in GC content of horizontal transferred DNA 

can be expressed by three parameters. ∆ GCHGT is proportional to the substitution rate 

(S) as well as the difference between the GC equilibrium and the GC content of the 

horizontal transferred DNA values. The above two parameters as well as the IV ratio can 

all be derived from comparative studies in nucleotide sequences. Also taking into 

consideration that different codon positions experience different selective pressure and 

mutate at different rates. Hence different codon positions can be analyzed 

independently to create a more accurate amelioration model for specific DNA sequence. 

 

Even with taking into consideration that different codon positions experience different 

mutation rate, the amelioration model proposed above is still too simplistic. Taking the 

whole region into consideration, using a single mutation rate (S) might be insufficient to 

explain amelioration process. But the three parameters within the equation is still 

sufficient to make biological sense for the amelioration model to work, but a lot of 

information can still be added to improve the accuracy of the existing model.  

 

3.2) Project Aims 

Based on the model described in the previous section, the use of single nucleotide 

substitution rate S and GC content difference between equilibrium and transferred 

region takes the most basic assumptions for it to make biological sense. Due to its 

simplicity, it is easy to use at the cost of much information lost in result. Similarly to the 

GC content method in compositional techniques, taking in consideration of only single 

nucleotide within analysis causes flaws. These flaws can be covered by using 

oligonucleotide patterns which takes many of the assumptions into account which single 

nucleotide analysis lacks in. Hence a model which uses oligonucleotide pattern data 

needs to be derived for a more detailed analysis on amelioration of bacterial genomes. 

 

OU statistics calculated by the SWGIS are a very useful tool which summarizes important 

characteristics of a genome. By taking into consideration the difference between the OU 

statistics of GI and the rest of the donor genome allows us to get a clearer picture the 

amelioration process. Amelioration is the process in which the foreign genomic material 

will undergo mutation to achieve similar composition to the recipient genomic sequence. 

Hence the OU pattern of the GI will tend towards the donor sequence therefore 

difference in OU distance and variance will decrease during the amelioration process. 
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Using this fact, conversion can done on the OU word distance between GI and recipient 

sequence into a probability of mutation per iteration and utilizing these parameters to 

create a simulation of the amelioration process. 

 

Verhulst model is well known for its uses within the biology field for modeling 

population growth (Horowitz et al., 2010; Koseki and Nonaka, 2012). The sigmoid curve 

which defines the model is useful in explaining the amelioration process (Exponential 

increase in the beginning as well as the decreasing towards capacity value trending 

towards the end shows directional mutation which is the core assumption of the 

amelioration process) as well as its simplicity to use (Simple logistic equation). The 

parameters of the model also reflect real life situations (capacity, initial exponential 

increase then decrease towards capacity). Therefore we aim to model the amelioration 

process through the usage of Verhulst Model and oligonucleotide usage patterns within 

the sequences of genomic island and recipient. 

 

3.3) Project Objectives 

The objective of the project will be to derive an algorithm which will model genomic 

amelioration of bacterial genome using a combination of compositional methods (OU) 

and mathematical modeling (Verhulst Equation). The algorithm should reflect the 

dynamics of the amelioration process and produce parameters that could explain it 

throughout the time lapse of the process. These parameters must be biological 

meaningful in which it can explain the trend of the amelioration process as well as 

estimate the time of insertion of different horizontally transferred genomic islands in 

different recipient genomes. Hence multiple different genomic islands (testers) as well 

as possible recipient genomes (target) were chosen such that the algorithm can be seen 

in terms of explaining amelioration for all types of bacteria genome sequences. These 

different tester target combinations should also be able to give answers questions 

regarding the amelioration process. These include different taxa amelioration 

comparisons (gram-positive, proteobacteria, etc.), from the same taxa (is the 

amelioration process less extreme than different taxa?) and tester target sequence from 

the same genome (does it ameliorate at average mutation rate/ no directional 

mutation?). 

 

The resulting model must be simplistic and easy to derive in the sense that by using the 

least amount of core data and using most autonomous method to achieve. The model 
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should also be able to make conclusions such as rate of mutation estimate of different 

genomic loci sequences and the time of insertion of different genomic island into their 

recipients. To ensure the most accurate results, we use multiple genomic islands from 

the same origin to compare the degree of amelioration to their time of insertion.  

 

Vocabulary 

GI – Genomic Island 

OU – Oligonucleotide Usage 

PLF – Probability Logistic Function 

PAGI - Pseudomonas aeruginosa Genomic Island 

Tester – Genomic Island insert sequence 

Target – Recipient genome sequence 
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Introduction 

 

Horizontal gene transfer (HGT) within bacteria studies has dated back several decades 

and has been well documented. Current studies are still undergoing to dwell deeper into 

its effects within phylogeny and evolution alongside improvement in new technology 

and techniques (Hamady et al., 2006). These techniques have been improved to 

increase accuracy in determining HGT events as well as trying to create a standardized 

tool which can determine all HGT events. Currently there are two main methods in 

determining HGT, compositional and phylogenetic, in which both has their own 

advantages and disadvantages (Vogan and Higgs, 2011). Amelioration, the process 

where the base DNA composition of the transferred genes from a donor undergoes 

nucleotide substitutions over time and reflects similarly in DNA composition to the 

recipient genome, is one of the factors influencing the creation of a standardize tool and 

a major downfall of compositional methods.  

 

Although HGT is well understood, amelioration itself is understudied. Hence the study of 

amelioration is vital to enhance the understanding of this process. With this insight, 

many aspects such as the mutation process of transferred material (preference in 

composition mutation, directional mutation, mutation rate), and the effects of base 

composition of recipient on the amelioration process can be answered. Therefore we 

attempt to create a logical yet practical mathematical model to model amelioration. 

 

To increase the understanding of amelioration within bacterial genomes, four foreign 

inserts and known genomic islands (GI) were used to model their amelioration process 

towards compositional profiles of genomes of organisms representing distant taxa and 

different GC content, i.e. Bacillus subtilis 168, Pseudomonas aeruginosa PA01, 

Escherichia coli K12, Xylella fastidiosa 9a5c and Streptomyces griseus NBRC 13350. 

These genome sequences were chosen as a small sample in attempt to cover the vast 

bacteria domain with many major phyla being covered (actinobacteria, gram-positive 

bacteria, etc.). Hence the amelioration model created here can also be applied on other 

bacteria organisms.  
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Simulation of amelioration process was done using compositional methods on each 

combination of GI (tester) and recipient (target) whereby k-mer words (di-mers, tri-mers, 

tetra-mers) were calculated and ranked based by their frequencies in descending order 

of oligonucleotide usage (OU) (Bezuidt et al., 2009). A logistic probability function was 

then used to convert the ranked frequencies into a probability which gives the likelihood 

that at any given position the nucleotide will be substituted into another. A program on 

Python to simulate the amelioration process of generations with a given mutation rate 

was designed and in turn simulates the amelioration process for the underlined GIs. An 

amelioration model was then derived and fitted to the standard Verhulst model, which 

in general used in population dynamics. The standard Verhulst model was fitting to 

amelioration process was due to its sigmoid curve shape that fit the basic assumption of 

directional mutation.  

 

The parameters within the model were also well suited for the simulated data and 

represent a good fit for the sample simulations. The program predicts a graduate 

merging of the insert’s OU profile with those of the host genomes that would stabilize at 

some level of pattern similarity. The dynamics of this process and the level of 

stabilization depend on the rate of mutations in the tester organism as well as the 

composition of the tester and target sequence. Using statistical methods, a regression 

model was made as a simplification in creating the amelioration model with the above 

three parameters which can be used for any bacterial organism. 

 

The resulting amelioration model was also used on 4 distinct GIs from the same origin 

sequence (Klockgether, 2007) towards the same target. The time of insertion estimate 

was reasonable for all four distinct GI sequences which prove that the algorithm is 

suitable for estimating of the time lapsed after GI acquisition by a bacterium. The 

algorithm was also modified to estimate the mutation rates in different organisms and 

genomic loci though the results were inconclusive with further improvements needed 

within the method. 
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Methods 

 

Flow Chart 
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Sequence Data and Oligonucleotide Usage Statistics 

Four known genomic islands (GI), labeled under tester, were used to model their 

amelioration process towards compositional profiles of genomes of organisms 

representing distant taxa and different GC content, i.e. Bacillus subtilis 168 (BS), 

Pseudomonas aeruginosa PA01 (PA), Escherichia coli K12 (EC), Xylella fastidiosa 9a5c (XF) 

and Streptomyces griseus NBRC 13350 (SG). 5 Genomic islands PAGI1, PAGI2, PAGI3, 

PAGI4 and PKLC102 were used to estimate the time of insertion (Klockgether et. al., 

2007). Detailed statistics are within table 1 below. GIs used in this study was identified 

and obtained from SWGIS Pre_GI database within the SeqWord Project [1]. Similarly, 

the five target organisms sequence data (Fasta format) were also obtain in this manner. 

Genome sequences chosen were of similar bp sizes such that it reflects the true 

amelioration process whereby an insertion of GI is within the recipient. The sequence 

file was then used in another program made using python script Oligonucleotide Pattern 

Evolution Project (OPEP). 

 

Table 1. Detailed statistics of genome sequence used within study 

Tester Target 

Host NC GI# Start End Length Start End Length 

Bacillus subtilis 168  NC_000964 9 2146000 2258655 112655 1000009 1100009 100001 

Escherichia coli CFT073 NC_004431 20 3409389 3494936 85547 

   Escherichia coli K12 substr 

MG1655 NC_000913 

    

1 100001 100001 

Streptomyces coelicolor A3(2) NC_003888 33 7561923 7647787 85864 

   Streptomyces griseus NBRC 

13350 NC_010572 

    

1 100001 100001 

Xylella fastidiosa 9a5c NC_002488         500000 600001 100001 

Pseudomonas aeruginosa 

pathogenicity island PAGI 1 

 

1 1 51300 51300 

1 106370 106369 Pseudomonas aeruginosa PA01 NC_002516 

    PAGI_1         51300 

   PAGI_2         158230   

  PAGI_3         128136 

   PAGI_4         34398   

  pKLC102         103609   

    

OPEP transforms sequence data into OU statistics which is vital in the simulation step. 

Combinations of GI (Tester) and recipients (Targets) are used as inputs (20 combinations 

of 4 tester x 5 targets) and OU statistics are calculated. These OU statistics include 

deviation, distance (D), variance (V) and compositional variance between tester and 

target (V0) of which only deviation, V and V0 are used throughout the algorithm (Bezuidt 
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et. al., 2011). Deviation is a measure which calculates the logarithmic deviation of OU 

pattern from expected frequency of OU words. The equation is as follows:  






 +





















+

+

×=∆=∆
1ln

ln

6
22

222

222

...1

|...10|...1

0|...1|...1|...1

0|...1|...1|...1

eNN

NobsNeN

NeNobsN

CC

CCC

CCC

Nw

ξξξξ

ξξξξξξ

ξξξξξξ

ξξ  [1]  

Where ξn is any nucleotide A, T, G or C in the N-long word; C[ξ1…ξN]|obs is the observed 

count of a word [ξ1…ξN]; C[ξ1…ξN]|e is its expected count and C[ξ1…ξN]|0 is a standard count 

estimated from the assumption of an equal distribution of words in the sequence: 

(C[ξ1…ξN]|0 = Lseq × 4
-N). Deviation gives a relative measure in terms of a logarithmic 

normal distribution of abundant or rare a specific OU word is within the sequence. A low 

deviation measure (negative value, less than expected) implies rare OU word within 

sequence while high deviation measure (positive value, higher than expected) implies 

abundance of OU words within pattern. 

 

Variance (V) is calculated based on deviation in which the variation of deviation based 

on the whole sequence is calculated as seen in equation [2]. 
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Where σ0 is the expected standard deviation of the word distribution in a randomly 

generated sequence which depends on the sequence length given by:  

seq

N

L

4
02.00 +=σ     [3] 

The compositional variance (V0) calculates the variation of the deviation between two 

OU patterns tester and target. Equation [2] is used with the only difference being the 

deviation value used is calculated as DevTester - DevTarget. 
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Figure 6 is a graphical representation of OPEP program with. Two sequences are used as 

input situated in the top left and middle block while the difference in their OU pattern is 

shown within the top right block. Each OU is also shown in a block plot, each block 

representing a k-mer word, where the colour shows how frequent the k-mer word is 

present in the sequence (red showing k-mer word present in sequence more than 

expected, blue being the opposite). The intensity of the colour reflects how 

abundant/rare the word is represented. All OU statistics for the specific sequence are 

shown underneath. These OU statistics are then stored as variables to be used in the 

simulation step where the python script is already a part of the OPEP program. 

 

 

Fig. 6. Example of a screenshot of the OPEP program displaying a combination of tester (E.coli) and target (S. griseus). 

The left hand side represents the tester, middle the target and right the difference between two patterns. Tetra-mer 

word pattern is shown above where the OU statistic is shown in text below the block plot. Dev representing deviation 

(Equation 1) is a measure of frequency of word occurred in sequence that deviates from expected. In the right text 

block, the dev parameter shows the deviation measure between two patterns. The words are also in descending 

order whereby the highest dev is ranked first. Other parameters such as Pattern skew (PS), internal variance (Var, 

equation 2), variance (V) and distance (D) is also present. Distance shown on the top right corner represents the 
absolute distance between ranks of oligonucleotide in the two patterns. PS is a particular case of distance measure 

which calculates the distance between direct and inverse strands of the same DNA. Lastly var shows the variability of 

pattern within the sequence and V is the variability between sequences. The block plot gives an easier representation 

of the frequency measure of each k-mer word and is colour coded. Putting the cursor over each block also gives the 

status of the word in detail.   
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Probability Logistic Function 

The simulation process uses a special derived function (Probability logistic function) 

which converts a deviation measure into a probability that at any given position, a 

specific nucleotide can be substituted by another. The deviation used here is slightly 

different from equation 1 where the deviation measure here needs to only consider the 

nucleotide instead of the OU pattern and uses the deviation value based on the 

difference between tester and target sequence (DevTester - DevTarget). Consider the 

following example sequence …TGGTGGGTCGTGTAGG… where deviation at nucleotide T 

needs to be calculated for the given sequence, the following OU words statistics up to 

tetra-mer GGGT, GGT, GT, GGTC, GTC, TC, GTCG, TCG, TCGT are calculated. A win score 

is calculated for each possible permutation of substitution i.e. for GGGT: 

 

OU Word Prior deviation  

 

Posterior deviation  Win score 

(Posterior – Prior) 

GGGT -5.22 (DevGGGT) -5.22 (DevGGGT) 0 

GGGC -5.22 (DevGGGT) -4.71 (DevGGGC) 0.51 

GGGA -5.22 (DevGGGT) -0.29 (DevGGGA) 4.93 

GGGG -5.22 (DevGGGT) -2.39 (DevGGGG) 2.83 

 

This is done for all related substitutions and the deviation value for a specific nucleotide 

is equal to the sum of all win scores of that nucleotide. I.e. for nucleotide A for the given 

sequence above:  

 

GGGT → GGGA*p4 

GGT→ GGA*p3 

GT→ GA*p2 

GGTC→ GGAC*p4 

GTC→ GAC*p3 

TC→ AC*p2 

GTCG→ GACG*p4 

TCG→ ACG*p3 

TCGT→ ACGT*p4 

 

p2, p3 and p4 in this case are the weighing parameter. By default, all weighing 

parameters are equal to one. This procedure is done for every nucleotide ACGT at each 

position of the sequence and the deviation value is a row vector of the form [DevA, DevC, 

DevG, DevT]. 
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This deviation value (x) is then used in equation 4 to calculate the probability of 

substitution. 

 

 Probability	of	substitution	 = �
�(����(������    [4] 

 

Equation 4 is derived from the statistical logistic function and there are two reasons why 

this specific function is used. Firstly, the conversion range is for any x value (negative 

infinity to infinity) to a value between 0 and 1 (probability). In this case specifically, the 

function is tailored to be converted to a probability range of [0:0.33]. The reason for this 

is that at any given position, a nucleotide can only be substituted by 3 other possible 

nucleotides and also the probability of not being substituted at all. Consider an example 

that at position 10 of the sequence, the base is a nucleotide G. The deviation measure 

for position 10 is [-4.3745; 1.2864; 5.2346; -2.1465] (Deviation measure always sum up 

to 0) where each position in the list represents [A, C, G, T] respectively and mu equal to 

0.1. Using function [1], the probability conversion becomes [0.002; 0.016; 0.779; 0.203]. 

Since all probabilities must sum to one, the state in which the position is at, the 

probability is adjusted. In this case, the substitution probability for G is 1 – substitution 

probability for [A, C, T]. 

 

The other logic behind the logistic function is the usage of parameter “a” and “b” for 

biological justifications. Parameter “a” is a function of μ such that at deviation = 0, 

probability of substitution must equal to average mutation rate μ. In biological sense, at 

no deviation, the substitution rate should be as expected which is equal to the value of 

the average mutation rate of the sequence. Equation of parameter “a” is as follows: 

 

    � = −ln �������             

 

Parameter “b” represents the conservation of the sequence under study. A change in 

the “b” parameter will change the shape of the function which reflects how a small 

change in deviation will change the probability of substitution. For practical use, if a 

sequence under study is conserved, a large “b” value is used (b > 1). This will cause a 
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small change in deviation to cause a large change in probability which is true for 

conservative sequences (Figure 7). The opposite apply for low “b” values (0 < b < 1). For 

this study specifically, a “b” value of 1 is used for uniformity. 

 

 

Fig. 7. Logistic probability function shifts. Changing in parameter “a” and “b” in equation [1] will change the shape of 

the curve to allow flexibility to reflect real life situations. Parameter “a” also known as a function of average mutation 

value μ. This function is especially tailored such that at x = 0 (also known as the expected value or no deviation), y 

intercept is equal to μ. Meaning no abnormal mutation should occur and be as expected hence at this point, the 

mutation rate reflects the μ value. The shift in parameter “a” will shift the y intercept up and down which is shown in 

the top left and right graph. In biological sense, this shift will change the subset of probabilities in which the 

over/under represented words can be converted into. Parameter “b” represents the conservativeness of the 

sequence. A large “b” value will shrink the graph and an increase in a small range of deviation will increase in a large 

change in probability, while the opposite occurs for a small “b” value as shown in the bottom left and right graphs. X 

value in this case is the deviation value for each [A, C, G, T] at a specific position. 
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Results 

 

Simulation Results 

In order to identify possible amelioration models, a simulation of the amelioration 

process is needed first to generate data for the fitting procedure. Simulation step starts 

with user input parameters which is vital in controlling the results you are given. The 

parameters include the number of iterations for the simulation process, the average 

mutation rate for the sequence under study and the weighing parameters of k-mer 

words (Figure 8). The number of iterations forms the core of the simulation process and 

it determines how many generations the sequence will undergo allowing random 

nucleotide mutations. The average mutation rate (μ) parameter directly correlates with 

the amount of mutation (Figure 7) and k-mer weighing parameter determines the 

weighting of the k-mer patterns on the deviation measure. The “save report” option 

allows you to print the results onto a textfile with advanced option of saving the results 

after every N iteration. For this study, a μ value of 0.00001, 0.00004, 0.00008 and 

0.0001 are used for all combinations of tester and target and the iteration is set at 2000. 

Normalization of k-mer remains unchanged and the report is saved after every 100 

iterations. 

 

The simulation procedure then proceeds by calculating the necessary OU statistics first. 

These statistics include the deviation measure for each OU word pattern (equation 1), 

the variance of tester and target sequence based on the deviation measure (equation 2) 

and the compositional variance (V0) between the two sequences (equation 3). At each 

iteration of the simulation process, the deviation value at each specific position is 

calculated based on equation 4 as well as the probability of substitution for each 

nucleotide based on the probability logistic function. A random number is rolled 

between zero and one and depending on the random number it will determine which 

nucleotide the base will substitute into. For example, the base position is G and the 

probability of mutation is [0.002;0.016;0.779;0.203] (based on previous example), 

therefore the cumulative mutation probability becomes [0.002;0.018;0.797;1] for 

[A,C,G,T] respectively. If the random number falls between 0 and 0.002 then a mutation 

of G to A occurs and similarly for other nucleotides. This process is done for every single 

base position within the sequence and with every new iteration, this procedure is 

repeated starting from the calculation of OU statistics (since OU statistics are different 
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for the new sequence). The simulation process ends when all iterations specified by user 

are done. 

 

 

Fig. 8. There are several important parameter settings for the simulation process. μ representing the average 

mutation rate of the sequence which is inserted by the researcher depending on the data. For this research 

specifically, μ values of 0.00001, 0.00004, 0.00008 and 0.0001 are used. Iteration parameter determines how many 

generations you want the sequence to undergo mutation. Each iteration calculates new substitution probabilities 

depending on the newly calculated deviation values of the new sequence simulated. The k-mer (k representing 2-7 in 

this case) option allows you to specify the weighting of a specific k-mer pattern. Save report option allows you to save 

the final simulation report in a text file. The advanced option under save report allows you to specify the intervals in 

which the intervals get reported and the option of saving the sequence is also available. 

 

Initial simulation testing was done on the combination of P. aeruginosa 01 GI tester 

against a P. aeruginosa genomic fragment that is different from the sequence of GI as 

target. Different combinations of iteration (100, 300, 500, 1000, 5000, 10000) and μ 

(0.000001, 0.00001, 0.0001, 0.001, 0.01) were used to test the efficiency of the 

simulation program. As the iteration value increases, computation time increases 

exponentially (100 iterations – 8 hours, 10000 iterations – 4 weeks) while μ does not 

make a significant difference in computation time. Another factor that influences the 

computational time is the internal variance of the tester sequence (E. coli – 6 hours for 

100 iterations and S. griseus takes 10 hours for 100 iterations) where lower internal 

variance sequences tends to run quicker than higher ones. μ parameter does however 
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impact the logical part of the simulation and two situations could occur. High values of μ 

tend to allow too many substitutions per iteration and the amelioration process 

proceeds unnaturally fast (Figure 9) hence close to random which could be seen as the 

program’s limitation. Similarly, low values of μ will have the opposite effect. From the 

various simulations done with different μ values, the range of [0.00001; 0.0001] seems 

to work the best.  

 

 

Fig. 9. Comparison between different μ values influencing the variance measure. Higher μ value will increase the 

number of substitution per iteration (Increasing μ increases the probability of substitution at each base position 

based on the logistic probability function) therefore causes the difference in steep decline between the red curve and 

the blue curve in the first 100 iterations. Due to the higher μ, red curve reaches the minimum variance value much 

quicker and therefore random substitution occurs. This is due to tester sequence reaching a similar state as the target 

sequence (minimum variance value) which at higher μ, unlikely substitutions will become more likely (upward slope 

shown from 100 iteration onwards) therefore creating a situation of mutating away from target. The blue curve is on 

the other hand is a better representation of the amelioration process compared to the red curve where the process is 

smoother and better fit to biological applications.  

 

After the initial simulation run, four tester and five target combinations were run with 

different μ values for each combination. A total of eighty simulations were done and 

each simulation was analyzed individually. All simulation results shared similar trends of 

high variance decrease in the initial iteration period (usually 0 to 500 iterations) where 

the first 100 iterations showed the greatest different in variance. The decrease gradually 

diminishes and reaches a limit value which is similar to figure 11’s blue curve. Each 

simulation result of tester and target combination is different (variance decrease rate, 

limit value) but a general trend can be seen where combinations with similar 
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compositional pattern (low V0) tend to have lower limit value and lower variance 

decrease rate while for the opposite case, the effect is the other way around (highly 

different composition between tester and target, high V0, will tend to have a high limit 

value with high variance decrease rate). 

 

We found that the general trend of the simulation data follows a logistic curve much like 

a Verhulst model. Possibly applicable to simulate the amelioration changes in DNA 

composition of horizontally acquired islands towards the host genome pattern, however 

we found out that high rate of substitutions (μ) may significantly alter the sequence 

from a Verhulst based expectation. It was necessary to evaluate the appropriateness of 

the Verhulst model for different mu-values and tester-target combinations by 

investigation residual values. These results are presented in the next section. 

 

Verhulst Model Fitting  

Verhulst model is well known for its uses within the biology field for modeling 

population growth (Horowitz et al., 2010; Koseki and Nonaka, 2012). The sigmoid curve 

which defines the model is useful in this case where an extreme increase in the 

beginning shows the signature of the amelioration process (directional mutation) and 

the gradual decrease at the end which shows the similarity in the resulting sequences. 

This model shows much similarity to what we see within the results from the simulation 

data. Using the output from simulation results, we test the possibility of a Verhulst 

based model of amelioration process. The simplest way to do this which is also used 

within this study is to derive the differential equation of the simulated data and see if 

the differential equation matches the Verhulst model hypothesis. The Verhulst 

differential equation [5] and standard equation [6] is shown below: 

 

      [5] 

 

             [6] 
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Where g controls the slope of the differential equation, K is the maximum capacity of 

variable V. In the case of equation [6], additional parameters are V0 (not to be mixed 

with compositional variance) which is the initial value at time t=0 and t equals the time 

period. 

 

Using the compositional variance between tester and target from the simulation data of 

di-mer, tri-mer and tetra-mer separately (highlighted yellow in Table 2) against iteration 

as y and x values, linear regression is done to fit an equation. This could be viewed as 

the composition change of the sequence over time. Suppose the iteration dataset 

consists of {t0, t1, … , tn-1, tn} and similarly the V0 dataset being {V0, V1, … , Vn-1, Vn} (V 

could be either di-mer, tri-mer or tetra-mer). The empirical differential dataset is 

calculated by fitting a linear line through “n” points and taking its derivative. “n” being 

equal to {2,3,…,N, N+1} and N equal to the cutoff value. The cutoff value is calculated as 

the point in which the variance is reaching equilibrium or no longer is decreasing (Vn – 

Vn-1 > 0 or very close to zero). The logic behind the cutoff value is that we are trying to 

determine the limit value which is one of the parameters of the Verhulst Equation (K) 

and all values beyond the cutoff value will cause the differential dataset to become 

skewed (derivative very close to zero due to a large number of points being relatively 

close to each other in value) and hence estimating K becomes increasingly more 

inaccurate.  

 

Table 2. Simulation Output 

Iteration Mutation Delta 2D 2V 3D 3V 4D 4V 

0 0 0 8.82352 6.23378 12.16346 5.58532 12.38448 5.31588 

100 6750 6750 6.61764 4.42955 9.75961 4.2549 9.93433 4.30297 

200 8908 2158 5.88235 3.99178 8.84615 3.93263 9.50571 4.07895 

300 10498 1590 5.88235 3.71179 8.36538 3.71797 9.19868 3.93205 

400 11837 1339 5.88235 3.49119 8.02884 3.54465 8.99805 3.80521 

500 12963 1126 4.41176 3.30584 7.74038 3.39143 8.80654 3.69319 

600 13955 992 4.41176 3.16697 7.45192 3.27523 8.6363 3.60998 
Iter: Iteration; Mut: Cumulative mutation frequency; Delta: Mutation occurred during the iteration period; D: 

Distance V: Variance 

 

For example, let N be equal to 20 and the first row of the differential dataset will be 

equal to the gradient of the set {(V0:t0), (V1:t1)} and second row will become the gradient 

of {(V0:t0), (V1:t1), (V2:t2)}. This process will go on until all points (N) are taken into 
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calculation. This step is done separately for di-mer, tri-mer and tetra-mer dataset. Figure 

10 shows a visual representation of this step. 

 

 

Fig. 10. The process of creating the dataset for fitting the differential equation. Using the di-mer variance data points 

(Variance being the variable under study) as the points for line fitting. Initially two points are used and a line is fitted 

(top left), and after each fitting, another point is added (top right, bottom left) until there are no more points 

available (bottom right). For each line fitting, the derivative is used as a data point for the differential function.  

 

Using the empirical differential dataset, a differential equation is fitted and parameter 

for the model is estimated (Figure 11). The fitted model is in the same form as the 

Verhulst differential equation [5]. In order to derive the Standard Verhulst Equation [6], 

we need to derive the parameters of the equation g and K. The derived differential 

equation is a quadratic function where two parameters (g and K) need to be estimated. 

Due to its form, a linear transformation can be done which equation [5] can be re-

written as: 
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Using the above simplified equation, linear regression can be performed on the 

empirical dataset and both parameters can be estimated (g = a, K = -a/b). A python 

script has been written to perform the whole process from building the dataset to 

estimating both parameters. The program goes one step further in estimating the best g 

value (in terms of least squared error) corresponding to K. Since the simulated data 

follows a Verhulst differential equation model, we can assume that the Standard 

Verhulst Equation can therefore model the amelioration process where parameter g can 

explain the trend (gradual/extreme) of amelioration process, K the maximum similarity 

the tester and target can share in terms of compositional variance, t the time period of 

amelioration and V the compositional variance between tester and target. 

      

 

Fig. 11. Verhulst standard differential equation fitting. Using the dataset of derivatives (left), a fitting of differential 

equation is done (right). A python script is written for both formation of dataset as well as the fitting of equation. It is 

shown on the right graph the difference between the empirical derivative (blue) against the estimated (red). 

 

Verhulst Equation was then fitted to all combinations of tester, target and μ giving two 

more parameters g and m where m is equal to g/k. The results were recorded down into 

a table listing each combination with their corresponding μ values (Table 3). The 

resulting table was analyzed independently for each parameter (g and m) and their 

correspondence to the input parameters (Tester, Target, μ). Residue values were also 

recorded for each combination as absolute value difference between estimated 

equations against simulation data. The residue dataset will give more insight into how 

well the Verhulst Equation actually fit to the simulation of amelioration process as well 

as what factors might influence the fitting of the equation. 
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Table 3. Verhulst Model Fitting Parameters 

       Dimer   Trimer   Tetramer   

Tester/Target μ m g m g m g 

PAGI 0.00001 0.001027  0.002034  0.001107  0.002628  0.000918  0.002566  

- 0.00004 0.001765  0.002859  0.001976  0.004129  0.001310  0.003145  

Ecoli 0.00008 0.001681  0.002236  0.002202  0.004293  0.001917  0.004506  

     0.0001 0.001603  0.001915  0.003472  0.007150  0.002957  0.007223  

PAGI 0.00001 0.000160  0.000148  0.000413  0.000825  0.000551  0.001258  

- 0.00004 0.000424  0.000314  0.000927  0.001558  0.001297  0.002711  

9a5c 0.00008 0.001004  0.001014  0.001600  0.002720  0.002633  0.005502  

     0.0001 0.001122  0.001133  0.001997  0.003489  0.002608  0.005492  

PAGI 0.00001 0.001264  0.003804  0.001379  0.004922  0.001156  0.004392  

- 0.00004 0.001013  0.002147  0.002205  0.007278  0.001911  0.006652  

Subtilis 0.00008 0.001049  0.001573  0.002548  0.007849  0.002322  0.007661  

     0.0001 0.001010  0.001271  0.002816  0.008538  0.002646  0.008640  

PAGI 0.00001 0.000347  0.000346  0.000516  0.000795  0.000714  0.001428  

- 0.00004 0.000727  0.000371  0.000969  0.001095  0.001282  0.002269  

Aeruginosa 0.00008 0.001037  0.000539  0.001289  0.001353  0.001680  0.002889  

     0.0001 0.001193  0.000585  0.001365  0.001436  0.002120  0.003604  

PAGI 0.00001 0.000696  0.001446  0.000734  0.001717  0.000807  0.002385  

- 0.00004 0.000948  0.001299  0.000919  0.001488  0.000916  0.002024  

Griseus 0.00008 0.001449  0.001710  0.001390  0.002126  0.001297  0.002801  

     0.0001 0.001599  0.001837  0.001674  0.002506  0.001458  0.003053  

- 0.00004 0.001216  0.002758  0.001109  0.002897  0.001134  0.003408  

Griseus 0.00008 0.001643  0.003024  0.001921  0.004434  0.002043  0.005856  

     0.0001 0.001756  0.003011  0.002188  0.004981  0.002365  0.006774  
PAGI: P. aeruginosa Genomic Island, Ecoli: E.coli K12, 9a5c: X. Fastidiosa 9a5c strain, Subtilis: B.subtilis sub 168, 

Aeruginosa: P. aeruginosa, Griseus: S.griseus, m and g are both parameters of the Verhulst Equation where m = g/k 

(see methods). B. subtilis Genomic Island, E. coli K12 genomic island and S. coelicolor genomic island in combination 

with five targets are not displayed in this table (See Appendix Table 1). 

 

Box and whisker plots were made with 240 residue values made from 4 tester, 5 target 

and 4 μ combinations. The first plot is divided into different mu and K-mer combinations 

and their influence on the equation fitting step (Figure 12a). From the plot, a general 

trend of increasing in μ value decreases the residue of the fitting. This is seen for all K-

mer sizes with respect to the mean residue value (represented by the black line inside 

the blue box). This could be explained by the low substitution rate caused by the low μ 
value which in turn causes a higher estimation of capacity value K based on the 
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simulation data. With a higher K value, g parameter which depends on K will become 

lower (g parameter determines the slope/steepness of the graph hence with a higher K 

value; the graph will become less steep to compensate). 

 

 

Fig. 12a. Box and whisker plot of residue values corresponding to k-mer and μ combinations. 2, 3, 4 in the graph 

shows di-mer, tri-mer and tetra-mer respectively while the decimal values represent μ. It is shown in the graph above 

that lower μ values fit poorly with the Verhulst Equation and gradual increase in μ decreases the residue value 

(calculated as simulation variance – estimated variance by Verhulst Equation). Some outliers occur at higher μ values 

which correspond to poorly matched tester and target combinations (See figure 12b). There are more outlier residue 

values for tri-mer and tetra-mer due to a higher capacity value K value compared to the di-mer (See Figure 13). 

Therefore the capacity value K is achieved quicker in the tri-mer and tetra-mer case which allows more random 

substitution than di-mer hence a higher residue value. 

 

Another factor visible within figure 12a is that higher μ values caused more outliers 

within tri-mer and tetra-mer residue values. Due to a small number of outliers for each 

set of data (maximum 3 outliers out of 20 data points), a likely assumption is that some 

tester and target combinations’ composition is very different from each other. When 

this is the case, the tester will have a hard time incorporating within the target sequence 

and hence causes a higher K value (capacity in which the tester and target shows 

similarity in composition pattern). This will in turn cause a similar situation as case with 
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di-mer data set, where a higher K value would cause a bad fitting of the Verhulst 

Equation and therefore the outlying residue value. 

 

 

Fig. 12b. Box and whisker plot of residue between the estimated Verhulst Equation and simulation data. Each box 

represents a tester and target combination and the abbreviations represent: BS – B.subtilis, EC – E.coli, XF – 

X.Fastidiosa, PA – P.aeruginosa, SC – S.coelicolor, SG – S.griseus. The two highest residue values were 9.136 (PA/BS 

combination) and 9.2025 (SC/BS combination) while the three lowest were 0.4003 (SC/PA combination), 0.6146 

(EC/BS combination) and 0.6636 (PA/XF combination). SC/PA combination had the smallest range of residue values as 

well as the smallest mean. The orange circles represent the outliers of the box plots. 

 

The case above is supported by figure 12b where some combinations of tester and 

target show significantly larger residue than the others. Combinations PA/BS and SC/BS 

showed the highest residue while BS/SG and BS/PA were the next two highest values. 

Looking at these four combinations, PA/BS, SC/BS, BS/SG and BS/PA where the first 

represents the tester and the latter target, the organisms involved in the combination 

are identical in the sense that the tester and target were only swapped around. This 

implies that for specific tester and target combinations (PA and BS; SC or SG and BS 

where SC and SG are closely related) Verhulst Equation fitting is poor and hence the 

large residue value. Analyzing from a different perspective, combinations PA and SC 

against BS showed a significant difference from the rest. PA and SC share a similar 

internal variance (compositional parameter) while BS is significantly different from the 
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two. Looking at the reverse situation, the lowest residue values were of combinations 

SC/PA, PA/XF and EC/BS. All combination share similarities in small pattern variance but 

PA/XF do not have similar internal variance.  Therefore a hypothesis can be made that 

tester and target composition statistic (Internal variance, variance) and μ could be a 

determining factor on the Verhulst Equation parameters. 

 

To understand which factors influences the parameter of the Verhulst Equation, Figure 

13 and 14 plots the relationship between the two parameter from the Verhulst fitting 

and the different combinations of tester and target. There are six output parameters 

from the python script consisting of di-mer k (2K) and g (2g), tri-mer k (3K) and g (3g) 

and tetra-mer k (4K) and g (4g). Three additional parameters 2m, 3m and 4m were 

calculated as stated in the methods section. Figure 14 first shows the differences 

between the capacity values of different K-mers as well as a comparison between 

different combinations. It is clear that from the graph, tetra-mer K value for every 

combination is larger than tri-mer K value and in turn larger than di-mer. Biologically this 

is true where tetra-mer patterns which are much more complex than both tri-mer and 

di-mer patterns should have a higher variance difference (Tetra-mer pattern has 256 

different combinations of 4 nucleotide length words while tri-mers has 81 and di-mers 

have 16).  

 

Another interesting point in figure 14 is that combinations SC/BS and PA/BS showed the 

highest K values which corresponds to figure 12b. Combinations EC/SG and SC/EC also 

displays a high K value and since EC and SC or SG are highly different in composition, this 

supports the hypothesis of compositional statistics influencing the amelioration model 

parameters. A hidden point however, that is the two lowest K value combinations PA/PA 

and EC/EC shared a common factor of both testers and targets are of a similar organism. 

This leads to another potential factor of related species having an effect on the 

parameters of the Verhulst Equation. 
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Fig. 13. A combined graph showing the different tester target combination and their estimated K parameter based on 

the Verhulst Equation. On the x-axis shows the different tester/target combinations and on the y-axis the estimated K 

value. All estimations follow the same trend of tetra-mer (green) having the highest K value estimate and while di-

mer (blue) has the lowest. This is due to tetra-mer pattern being much more complex than di-mer patter (256 

combinations compared to 16 respectively) and hence the pattern between tester and target variance will be further 

apart (represented by K). P.aeruginosa (PA), PA combination as tester target and E.coli (EC), EC combination also 

achieved lowest K value estimate. The common factor between the two combinations is that both tester and target 

are of the same organism. Though this is not definite because B.subtilis (BS), BS and S.coelicolor (SC), S.griseus (SG) 

combinations do not follow this trend. The highest K values are achieved by BS (target) combinations with SC and PA 

(tester). A likely explanation is that the internal variance of PA and SC are highly different. This can be further seen 

from the combination EC and SC therefore we can conclude that the internal variance of tester and target influences 

the estimation of parameter K. 

 

Aside from parameter K, g parameter represents the rate or slope in which the Verhulst 

Equation takes form. A high g parameter implies a steep slope while a low value shows a 

shallow curve. Hence parameter g should therefore be directly linked to μ, a set 

constant in which determines the amount of substitution (see methods). Based on the 

hypothesis, parameters of the Verhulst Equation should be affected by 3 independent 

parameters, namely tester internal variance, target internal variance and mu. If tester 

internal variance does not affect the parameters, then for the same target and different 

tester combinations, the g and k values should be identical. Similarly for the case with 

the target internal variance but this is not true as shown in figure 14 where each tester 
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and target combination showed different linear lines (x-axis μ and y-axis g parameter). 

This graph shows that parameter 3g is a function of tester, target internal variance and 

μ. This is also done similarly to the other 5 parameters 2g, 4g, 2m, 3m, and 4m (See 

Appendix Figure 2, 3, 4, 5 and 6). 

 

The python script which fits the equation to the data will always use the parameters 

that create the least residue. This will in turn sometimes cause extreme parameter 

values as seen in figure 14. From figure 13, SC/EC and SC/BS had a high K value and to 

compensate for this, the g values were significantly different from the other 

combinations. This causes potential outliers which could affect the estimation of the 

parameter function at a later stage.  

 

 

Fig. 14. Graph plot of tri-mer g parameter estimate of the Verhulst Equation of all 20 combinations of tester and 

target. From the above graph, tester S. coelicolor (SC), target E.coli (EC) and B.subtilis combination clearly is the 

outlier of the dataset. Due to the nature of the model fitting of the Verhulst Equation, best estimate of K and g are 

done on the simulation dataset. Since the pattern composition (caused by internal variance) of SC/EC and SC/BS 

combinations are highly different, extreme g and k values are estimated (also seen in Figure 13). Therefore these 

values are eliminated for a better linear fitting for the rest of the data.  
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It was found that the Verhulst model in general fits to simulating of the DNA 

amelioration process as the cumulative error residues were within the range of 0.4003 

to 9.2025 of calculated absolute values. As it was expected (see the previous section), 

mismatches were greater when higher mu-values were set. However, contrary to our 

expectation, significant alterations were observed in several tester/target pairs (see Fig. 

12b), particularly BS/PA, PA/BS, BS/SG and SG/BS. It indicates that the current model 

does not account yet for all factors influencing the amelioration process. As the model 

worked appropriately for the majority of tester/target combinations, we decided to use 

it as a working model for further analysis remembering that some improving to the 

model should be done in future.  In the next section we consider approaches of 

estimating of Verhulst model parameters. 

 

Parameter Function Estimation 

From the figures of the previous section (12a, 12b, 13 and 14) we can assume that the 

Verhulst Model parameters for each combination share a dependency towards the 

characteristics of the tester and target of that combination. We tested this using all the 

Verhulst equation parameters from all combinations of tester and target grouped 

together. The initial dataset of tester and target combinations were chosen such that 

the different combinations were a small sample to represent the vast bacteria kingdom 

(each target were very different in terms of characteristic to the others, see discussion 

section on Parameter Function Estimation). Hence we assume and test if the general 

trend (dependency of Verhulst equation parameter on tester and target characteristics) 

will work for all bacteria combinations. 

 

The core of the Verhulst Equation is based on its two parameters (K and g) where the 

others are all user inputs (V0 and V(t)). The dataset with the parameters g and K from 

the Verhulst Equation were further reduced down into parameters g and m (where k = 

g/m therefore m = g/k). Since in the standard Verhulst Equation, K is dependent on m, 

hence it is more sensible to fit an equation to m rather than K. This also eliminates the 

dependence upon g by K hence reduces any unnecessary error within the regression 

process. Based on the model fitting of the 80 combinations of different tester and 

targets, a general trend (Figure 15) can be seen from the dataset of parameters g and m 

where K = g/m. To verify the truth of this relationship, a statistical multivariate linear 

regression test is done in SAS on parameters g and m. The variables used to test for the 

linear relationship are tester (V_Tester) and target internal variance (V_Target), 
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compositional variance between tester and target patterns (V0), μ (Mu), absolute 

difference between tester target internal variance (VT – VTe) and if the tester and target 

are of similar organism (variable equal 1 if yes, 0 if no). Different models were tested 

using SAS enterprise 4.3 on parameter g and m as well as different k-mers (di-, tri-, 

tetra-). The model with the best R-squared value was chosen using the stepwise 

selection method.  

 

 

Fig. 15. Graph showing the relationship between di-mer g parameter, μ, variance of target and variance of tester. 

Each line showing the linear relationship of g corresponds to the other three parameter present (μ, Vtarget, Vtester) 

within the model. We can see a general trend which majority of the combinations of tester target follows (Linear 

Relationship). 

 

Figure 16 shows the multivariate linear regression analysis result of parameter 4g (tetra-

mer g parameter) with 80 data points each representing one combination of tester and 

target in association with a μ value. The adjusted R-squared value is 67.91% which 

shows that the variables used to model parameter 4g is not good enough as the model 

only explains 68% of the dataset. The bottom table of figure 15 also gives the 

significance of each variable within the model in which a high p value (Pr > |t|) indicate 

the variable being insignificant. Using a 5% level of significance cutoff, three variables 

namely VT – VTe, Related and Mu shown to be less useful in the model compared to the 

rest of the variables (V_Tester, V_Target and V0).  
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Considering figure 14 where extreme outliers were present, a new dataset was 

constructed by filtering out these combinations. To speed up the process, selection 

methods (Forward, Backward and Stepwise) were used to eliminate insignificant 

variables which affects the adjusted R-squared value (adjusted R-squared value is 

calculated according to the amount of variables within the model) therefore reducing 

potential variance increase caused by an increase of variables within model (Figure 17). 

Through selection, the g parameter function chosen at 99% confidence level for each 

variable is in the form:  

 

 

And similarly, m parameter function is of the form: 

 

 

Where a, b, c are all estimated constants using multiple linear regression and VTester 

being the internal variance of tester sequence, VTarget  being the internal variance of 

target sequence, V0 the variance between the tester and target sequence and μ the 

average mutation rate of tester. 

 

The new fitted model achieved an adjusted R-squared value of 91.01% which is a 

significant increase from the previous model and is an acceptable value to say that the 

fitted model explains parameter g well. Other parameters (2g, 3g, 2m, 3m and 4m) were 

modeled the same way using multivariate linear regression (Table 4). The general form 

of the two parameters estimation functions are: 
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Fig. 16.Multi-variate regression analysis with all combinations of tester, target and μ. The adjusted R-squared value (a 

coefficient of determination of how well the model explains the data) which takes into consideration the number of 

variables used is a better measure to use than the normal R-squared value. The adjusted R-squared value for the 

model with regards to this dataset is poor in which only 67,91% of the data is explained by the model fitted. 
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Table 4. Multivariate Linear Regression analysis results for different parameters 

Parameters Variables Adjusted R-squared 

2g V_Tester, Mu 76.26% 

3g V_Tester, Mu 79.91% 

4g V_Tester, V_Target, Mu 91.01% 

2m V_Tester, V0, Mu 81.40% 

3m V_Tester, V0, Mu 89.40% 

4m V_Tester, V0, Mu 93.66% 
2g: Di-mer g parameter, 3g: Tri-mer g parameter, 4g: Tetra-mer g parameter, 2m: Di-mer m parameter, 3m: Tri-mer m 

parameter, 4m: Tetra-mer m parameter, V_Tester: Tester internal variance, V_Target: Target internal variance, Mu: μ, 

V0: Compositional variance between tester and target pattern. SAS output in Appendix Figure 7, 8, 9, 10 and 11. 

 

Through the different selection methods, we can see that all three of them achieved the 

same model (Figure 17). Since the model is identical in all three cases, we can assume 

this is the best model in terms of the dataset used. Three variables were eliminated (VT-

VTe, V0 and Related) in which they all only contribute less than 0.5% increase in R-

squared value therefore insignificant within the model. Other three variables make up 

the most simplistic model in which parameter 4g can be modeled with the highest 

accuracy. 

 

Taking a more in depth analysis, what if more combinations of tester and target are 

added, will the model be sufficient enough to explain the parameters or will more 

variables be added in order to compensate? Figure 18 displays three different dataset 

analysis each using different numbers of tester and target combinations. The three 

dataset consists of two tester five target combinations, three tester five target 

combinations and four tester five target combinations. The same multivariate linear 

regression analysis was done on all three dataset displaying similar results. The first 

dataset two tester five target combinations show a 90.39% adjusted R-squared value 

with variables V0, V_Tester, V_Target and Mu being significant. Similarly, second dataset 

three tester five target combinations model achieved 90.93% adjusted R-squared with 

the same variables. The only difference between the three models is the third dataset 

four tester five target combinations model had one less variable V0 for the model but 

still achieved an adjusted R-squared value of 91.01%. From these results, we can assume 

that the model itself is sufficient in explaining the estimated parameter with any 

number of tester and target combinations with the exception of the extreme outliers 

which the parameter function will estimate poorly.  
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Fig. 17. Different variable selection methods based on a 5% significance level. Six variables was taken into 

consideration from the hypothesis namely tester internal variance (V_Tester), target internal variance (V_Target), μ 
(Mu), related (if the tester and target organism is closely related, the variable takes the number one, if not then zero), 

V0 (Variance between tester and target composition pattern) and VT-VTe (Internal variance of target minus the tester 

internal variance). The final best model fitted by the three selection methods (backward elimination, forward 

selection and stepwise selection) are identical and shown by the first table with three variables (VT-VTe, V0 and 

Related) not being a significant factor explaining parameter 4g. 
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Fig. 18. Multi-variate linear regression fitting on parameter 4g (tetra-mer g parameter). Top left used 40 observation 

(different combinations of two tester, five targets and four μ values) initially and the model fitted achieved an 

adjusted R-squared value of 90,39%. Taking a 5% confidence level of significance, only variables V_Tester (Tester 

internal variance), V_Target (Target internal variance), V0 (Compositional variance difference between tester and 

target) and μ plays an important factor in explaining parameter 4g. Top right uses 60 observations which contain 

three testers instead of two achieved adjusted R-squared value of 90.93% with the significant variables remaining the 

same. Similarly, on the bottom results with 74 observations (removed 6 outliers); the adjusted R-squared value is 

91.01% even though one variable V0 is no longer needed within the equation. Hence parameter 4g can be sufficiently 

modeled by a function of V_Tester, V_Target and μ irrespective of an increasing number of testers based on the 

adjusted R-squared value. 
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Based on the results from the previous section, the Verhulst Equation fits well onto the 

simulated data for different combinations of tester and target with a few outliers as 

seen in figure 14. From figure 12b and 13, we can also deduce that there is some form 

of dependence between the characteristics of the tester target sequences with the 

Verhulst Equation parameters (Figure 18). In this section we proved that there is such 

dependence and by utilizing this and forming an equation, we can estimate the Verhulst 

Equation for any combinations of tester and target sequence from bacterial genomes 

with relative accuracy (Figure 17). This accuracy is affected by the outliers as seen in 

figure 16 and 17 where by removing the outliers causes a great increase in accuracy of 

the Verhulst Equation parameter estimate. This Parameter Estimation Function can then 

be used to estimate the Verhulst Equation which in turn estimates the time of insertion 

for any genomic island within any recipient genome. 

 

Time of Insertion Estimation 

Assuming that for every genomic island insert, there is a unique Verhulst Model 

explaining the amelioration process of that genomic island. Therefore based on the 

Verhulst Model, the parameters for each combination of tester and target should also 

be unique. Hence putting any variable as the subject of the formula with the other 

variables given, the estimated variable should only have one possible solution. Verhulst 

Equation uses the function of parameter g and K in order to estimate the iteration used 

for different composition variance between tester and target. Utilizing the parameter 

functions of g and m to create K for di-mer, tri-mer and tetra-mer, a time estimation can 

be made by varying different values of μ. Manipulating equation [6] such that the 

variable t is the unknown with other variables given, t is then the function as follows: 

    

    [9] 

 

In equation [9], two parameters are calculated from the GI sequence. V0, the 

compositional pattern variance between the donor of the tester sequence and the 

target and V(t) is the compositional pattern variance between the tester and the target 

sequence. Equation [7] and [8] are used to calculate g and K according to the regression 

parameters of the data set. This is done for each K-mer pattern (di-, tri- and tetra-) 

creating three Verhulst Equations with t being the subject of the formula and resulting 

in three t values. The μ value which gives the lowest standard deviation measure 
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between the three t values is considered and the time of insertion is equal to the mean 

of the three t values.  

 

The resulting t value will represent how many iteration it took for the donor sequence 

(origin of the GI sequence) to reach the state of the GI sequence. A python script is 

written for this procedure where the μ value used to calculate g and K are rounded off 

to 6 decimal places. The range of the μ value is determined by the user. For this project 

specifically, four genomic islands (PAGI1, PAGI2, PAGI3, PAGI4 – PAGI: P.aeruginosa 

Genomic Island) were used with the origin sequence (PKLC 102) being the donor for all 

four GIs with μ value range of [0.000001; 0.0001]. 

 

From the parameter equation [7] and [8] from the method section, we can estimate 

parameter g, m and K (where K = g/m) when given the variables VTarget, VTester, V0 and μ. 

Subsequently with g and K calculated, an amelioration model can be made based on the 

Verhulst Equation when given V0 (Compositional variance between donor sequence of 

GI and target sequence), g, t (number of iterations to achieve composition V(t)) and K. 

Changing the subject of the formula by letting t be the variable and V(t) (Compositional 

variance between tester and target sequence at time t) given, we can calculate the time 

of insertion for any combination of tester and target if we have V0.  

 

Table 5 shows the results of 4 genomic island inserts PAGI 1, PAGI 2, PAGI 3 and PAGI 4 

with the origin sequence for all 4 GIs PKLC and their time of insertion. The table was 

calculated using excel along with g, k values (di-mer, tri-mer and tetra-mer) from 

Verhulst Equation fitting of simulation data. Iteration (variable t) value was calculated 

using equation [9] for different K-mers (2, 3 and 4) for each GI insert. Four different μ 

values were used which gave different time estimates and each K-mer. The time of 

insertion estimate for each GI is shown in the last table with label “T” which took the 

lowest standard deviation measure as the criteria for the four μ values used. The V0 

value between PAGI 2 and origin sequence were shown to be the furthest followed by 

PAGI 1, 3 and 4 and this is also reflected by the “T” variable where the time of insertion 

is the most out of all the GIs in the analysis. PAGI 4 which has a higher V(t) than V0 

calculated a negative T value which is correct in the sense of vector signs (negative 

meaning the opposite direction) showing sequence PKLC requires 42 iterations to 

achieve the same composition as PAGI 4 or from PAGI 4. We can also say that the 
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corresponding μ value is the true average substitution rate for the GI sequence 

amelioration process. 

 

Table 5. Time of Insertion Estimation Results 

Mu 2K 2g 3K 3g 4K 4g 

0.00001 0.99684 0.000346 1.54217 0.000795 1.99905 0.001428 

0.00004 0.51 0.000371 1.13 0.001095 1.77 0.002269 

0.00008 0.52 0.000539 1.05 0.001353 1.72 0.002889 

0.0001 0.4904 0.000585 1.0522 0.001436 1.7003 0.003604 

 

Mu: 0.00001 2t 3t 4t Std Dev 

PAGI 1 412.113728 518.566167 720.659124 156.72372 

PAGI 2 8931.19813 - - - 

PAGI 3 117.523322 99.9094962 48.4275954 35.9046245 

PAGI 4 -156.295694 -142.671988 -172.120966 14.7381983 

             

Mu: 0.00004 2t 3t 4t Std Dev 

PAGI 1 156.979076 195.483716 263.047387 53.6934873 

PAGI 2 1405.61648 1858.35832 - 320.136824 

PAGI 3 46.1178622 40.6640126 21.0915241 13.1601949 

PAGI 4 -63.0218118 -60.5114349 -78.462327 9.72064841 

             

Mu: 0.00008 2t 3t 4t Std Dev 

PAGI 1 110.626395 139.204404 187.126677 38.6556164 

PAGI 2 997.119789 1100.68528 - 73.2318605 

PAGI 3 32.4843438 29.2469093 15.3647134 9.09466957 

PAGI 4 -44.3703468 -43.7840766 -57.5998967 7.81282691 

             

Mu: 0.0001 2t 3t 4t Std Dev 

PAGI 1 94.9590908 131.62521 144.438802 25.680194 

PAGI 2 839.692797 1044.83987 - 145.060883 

PAGI 3 27.9237968 27.6473342 11.9609959 9.13736521 

PAGI 4 -38.193555 -41.3828649 -44.9685464 3.38942764 

  Min Std Dev T Mu 

PAGI 1 25.680194 123.674367 0.0001 

PAGI 2 73.2318605 1048.90253 0.00008 

PAGI 3 9.09466957 25.6986555 0.00008 

PAGI 4 3.38942764 -41.5149888 0.0001 
2: Di-mer, 3: Tri-mer, 4: Tetra-mer, K and g: Verhulst Equation parameters, T: Time of insertion estimation in terms of 

iteration, t: estimated iteration based on Verhulst Equation, Std Dev: standard deviation, Mu: μ, PAGI: P.aeruginosa 

Genomic Island. 
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Instead of using the parameters of the fitted Verhulst Equation which potentially uses a 

longer time due to simulation process, estimated g and m parameters was done using a 

python script by varying the μ variable between a range of [0.000001;0.0001] (Figure 

19). Utilizing the parameter function and the variables estimated using regression, g and 

m were calculated and in turn T the same way as Table 5. The estimated time of 

insertion from the python program show a definite difference to the results from table 5 

but the trend in the result remains the same (PAGI 4 being negative, PAGI 1 being more 

distant than PAGI 3 hence the longer time of insertion). This difference could be caused 

by the error from the multivariate regression where the model used to estimate the 

parameters were not 100% (adjusted R-squared) but still serve as a good estimate of the 

time of insertion. Another interesting point that is shared by both the empirical and 

theoretical method is the contribution of standard deviation between the three t values 

(2-mer, 3-mer and 4-mer t estimate). Tri-mer and tetra-mer t estimates are very similar 

compared to the di-mer t estimate which has a large difference.  

 

 

Fig. 19. Python script output for estimation of time of insertion by minimizing standard deviation. Genomic island 

sequences used were P.aeruginosa genomic island (PAGI) 1, 2, 3 and 4 all with origin sequence PKLC. The script 

output include name of genomic island sequence, time estimated (time of insertion based on minimizing standard 

deviation), di-mer, tri-mer and tetra-mer time estimate, minimum standard deviation and mu value used to 

calculated the time of insertion. PAGI 2 was not displayed due to the estimated capacity value were higher than the 

V0 difference hence no time was able to be calculated. 
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There is a significant difference between the simulation data inferred Verhulst Equation 

and Parameter Estimation Function inferred Verhulst Equation in terms of time of 

insertion estimate. This is caused by the imperfect parameter estimation function as 

shown in figure 16 from previous section. But both methods give a good estimation in 

terms of giving a relative idea to how long ago the genomic island was inserted within 

the recipient genome (Table 5 and Figure 19). Though the empirical method is more 

accurate in terms of the lowest standard deviation criteria, this method is very time 

consuming due to the unknown average mutation value used within the simulation 

process hence a trial and error approach must be used. On the other hand, the 

theoretical methods is much faster but less accurate and the average mutation value 

can be estimated. 

 

Mutation Rate Estimation for Different Genomic Loci 

If we view the amelioration process as a change in the mutation rate of the tester 

sequence within the target throughout time, then can we think of a way to analyze the 

mutation rate of any genomic loci within the genome sequence? Changing the current 

algorithm slightly by letting the tester sequence be the genomic loci sequence and 

target the whole genome sequence, we attempt to estimate the rate of mutation of the 

genomic loci sequence in terms of differential equation. By analyzing different genomic 

loci sequences from the same genome sequence by their difference in OU composition, 

we can analyze the trend between these combinations of tester and target. This trend 

can be measured in terms of differential and can be viewed as the rate of mutation of 

the genomic loci sequence relative to other genomic loci of the same genome sequence.  

 

Utilizing the different output parameters from the simulation process, an estimation of 

the mutation rate of different compositional pattern can be done. Assuming the tester 

sequence to be a specific sequence of genomic loci and target being the rest of the 

genome sequence, a rate of mutation measure can be estimated for different genomic 

loci using a similar approach as the Verhulst Equation with some slight variations to the 

algorithm. Using the different genomic sequences at different iterations of the 

simulation process (at each iteration, the composition between the genomic sequence 

and target differ) as an imitation of different genomic loci, a differential equation 

representing the mutation rate at each composition pattern variance can be estimated. 

For this study, three different simulation processes with different μ values (0.00005, 

0.0001 and 0.0002) were used to create different sequences with different compositions.  
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The dataset consist of 60 sequences (2000 iteration simulation each with sequence 

saved at every 100 iteration period using combination of P.aeruginosa genomic island as 

tester and P.aeruginosa whole genome as target). Each sequence represents a 

theoretical genomic locus (tester) with different composition to the same target. 

Compositional statistics are then recorded for each combination of tester and target 

which are sorted in ascending order according to internal variance and then used for the 

estimation of the differential equation. The variation comes in during the differential 

equation estimation where the 2 dataset used for the estimation are the composition 

variance between tester and target and a measure called the forward mutation ratio. 

The forward mutation ratio is calculated as: 

 

!"#$�#%	&'(�()"*	+�()" = Distance	Between	Tester	and	Target
Internal	Variance	of	Tester  

 

In this study specifically, only the tetra-mer distance and variance is considered and 

used to calculate this ratio. For each genomic locus, the forward mutation ratio is 

calculated with the corresponding composition pattern variance between loci and target. 

Using multiple points from each genomic locus, a differential equation can be calculated 

using the same method as in figure 10. However the form of the differential equation 

will differ from equation [5] depending on the dataset given. The resulting differential 

equation will be an estimate of the mutation rate for any given composition variance 

between genomic loci and target as represented in equation. This mutation rate 

measure is a relative measure compared to other genomic loci sequences to how more 

likely it will mutate compared to the target sequence. 

 

60 sequences simulated with three different μ values were used as a representation of 

different genomic loci (tester) with the same target (see appendix table 2). Five 

randomly selected sequences are shown in table 6 with the composition statistic 

displayed which are needed to calculate the mutation rate for each sequence. The two 

parameters that determines the mutation rate (differential = mutation rate) are V0 and 

forward mutation rate (FMR) and in turn, FMR is calculated from VTester and distance. 

Therefore with the three compositional statistics present, a mutation rate estimate can 

be done for any combination of tester and target.  
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Analyzing the function (mutation rate is a function of the three compositional statistics) 

in which the mutation rate is estimated for different genomic sequences, we can 

determine the relationship of the differential equation based on the three parameters. 

Looking at table 5 in more detail, three trends can be seen that influences the resulting 

mutation rate. A decrease in differential can be caused by an increase in VTester, decrease 

in distance and decrease in V0 between tester and target. Thinking in a biological sense, 

a smaller distance and V0 between tester and target means that the tester sequence is 

compositionally similar to the target sequence. Therefore the tester sequence should 

undergo less mutation due to the sequence reaching a more stable state (higher 

selection). Hence the relationship between distance, VTester and mutation rate makes 

sense here.  

 

Table 6. Mutation rate estimation for 5 simulated sequences 

Internal 4V Distance V0 FMR Differential 

5.17 7.67 2.97 1.483559 0.884918 

5.63 6.12 2.33 1.087034 0.696544 

5.83 5.53 2.1 0.948542 0.62334 

6.06 5.5 1.91 0.907591 0.571682 

6.28 6.02 1.86 0.958599 0.515892 

Internal 4V (VTester): Tetra-mer internal variance of tester, Distance: Absolute distance measure between tester and 

target (See section 2.2 in Literature Review), V0: Variation between composition pattern between tester and target, 

FMR: Forward Mutation Ratio, Differential: Empirical differential calculated based on FMR and V0, also equivalent to 

mutation rate, Number of Mutations: Differential multiplied by loci sequence size. 

 

Figure 20 displays the estimated differential equation estimated from the 60 simulated 

sequences. The linear differential equation also follows the trend stated above and can 

be used to estimate the mutation rate based on the V0 between tester and target. 

However this estimate is a relatively poor indication due to the non one to one 

relationship between V0 and mutation rate (for the same V0, there could be multiple 

mutation rate estimates). As seen at the lower left part of the blue dot plot in figure 20, 

one V0 measure can result in two different differential values. Hence the differential 

equation can serve as a trend indicator but not a good estimator of mutation rate. 

Therefore empirical methods work more accurately than using the differential equation 

in to estimating the mutation rate.  
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By creating a new measure FMR in combination with V0, the change of each individual 

with respect to the other can be thought to be the change in composition (V0) with 

respect to the individual characteristics of the genomic loci sequence (FMR). Hence this 

measure can be thought as the mutation rate estimate of the genomic loci sequence 

under study. This algorithm is similar to the Verhulst Equation estimate with the tester 

and target sequence being the genomic loci sequence and whole genome sequence 

respectively. The rate of mutation estimate for genomic sequence in this case can only 

be measure relatively to other genomic loci sequence of the same genome and an 

increase in the sample number will also increase the accuracy of the mutation rate 

estimate. Though in theory this measure can be thought of as the rate of mutation 

estimate, no biological application has been used to prove it being so hence lack the 

core knowledge to make conclusive statements regarding the use of this algorithm to 

estimate the rate of mutation for genomic loci.  

 

 

Fig. 20. Empirical Estimation of the differential equation based on the different genomic loci sequences represented 

by simulation sequences. Each point on graph is plotted by a genome locus (tester) V0 against the same target on the 

x-axis with the forward mutation ratio on the y-axis. The differential equation estimated follows a linear function 

where with any given V0 between tester and target, the differential is estimated. The differential in this case is 

equivalent to the mutation rate of the genomic locus with the specific V0 and forward mutation rate. The linear 

function is a decreasing function with a decrease in V0 leading to a decrease in mutation rate. Although the r-squared 

value is high, the linear function is not a good indicator of the relationship between V0 and mutation rate. This is 

caused by the non one to one relationship where one V0 measure can lead to two mutation rates (caused by different 

forward mutation rate). 
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Discussions 

 

Choosing Combinations of Tester and Target 

The primary aim of the project is to create an amelioration model which applies to all 

bacterial genomes. To achieve the maximum accuracy of model, choosing the correct 

combinations of tester and target is vital. Due to time constraints of the project, five 

targets and four testers were chosen and each were carefully selected. The five targets 

were selected first and it is chosen to represent as much of a variety of bacteria as 

possible. The targets include Bacillus subtilis 168 (BS), Pseudomonas aeruginosa PA01 

(PA), Escherichia coli K12 (EC), Xylella fastidiosa 9a5c (XF) and Streptomyces griseus 

NBRC 13350 (SG). Each target originates from different taxa, found in different 

environments and has different compositional statistics (GC content, genome size). EC is 

a gram-negative proteobacteria, most well studied bacteria and found in the human gut. 

XF is also a proteobacteria and an important plant pathogen which causes phoney peach 

disease. BS is a gram-positive bacterium of bacilli class which can live in extreme 

conditions due to its structure. PA is another proteobacteria which is a disease causing 

bacteria to both animals and humans and can be found in many environments 

throughout the world. SG is a gram-positive actinobacteria commonly found in the soil 

with some strains from the deep sea. The GC content varies highly between the targets 

(EC with 43.51% to SG with 72.2%) with the longest genome size of SG being three times 

longer than XF (Table 7). 

 

Table 7. Target genome details (UCSC Genome Browser) 

 Targets GC Content Length Gene Number 

B. subtilis 168 43.51 4215606 4422 

S. griseus NBRC 13350 72.2 8545929 2674 

X. fastidiosa 9a5c 52.67 2679306 2838 

E.coli K12 50.79 4639675 4466 

P. aeruginosa PA01 66.56 6264404 5682 

 

The four testers include P. aeruginosa, B. subtilis, E. coli and S. coelicolor (SC) which was 

selected for three purposes. First is to test if the tester and target combination 

belonging to the same organism will affect the outcome of the Verhulst Equation (e.g. 

PA and PA). The second is to analyze if closely related organisms will influence the 

parameters of the model (SG and SC) and lastly if changing the order of tester and target 



68 

 

combination will yield the same model. From the resulting Verhulst Equation fitting of 

all 80 combinations of tester and target, the first and second point does not prove 

significant (related variable being non-significant). The third point also did not yield the 

same parameters for different order of the same tester and target combinations (e.g. 

BS/PA and PA/BS). However the trend in the results does show that there are similarities 

for these types of combinations as shown in figure 12b and 14. 

 

The parameter estimation result from SAS indicates that there is still room for 

improvement. Based on figure 18, additional combinations of tester and target should 

not significantly change the model itself as well as the accuracy in which it predicts the 

parameters. Hence adding more combinations of tester and target should increase the 

accuracy of the model even more. But taking into mind the criteria (bacteria taxa, 

composition and other factors e.g. environment, origin, pathogeneity) in picking these 

combinations will greatly influence the significance of the model as well as identifying 

other potential interesting factors which was not found from the current project.  

 

Simulation Parameters 

Simulation step takes the longest period of time to run as well as the most important 

step in structuring the amelioration model. Careful planning needs to be done in order 

to get the most information out of the simulation data without wasting too much time 

on computation. Due to the computation complexity of the simulation program, the 

computation time is exponential when increasing the amount of iterations ran for the 

simulation. Hence a need to balance the choice of simulation parameters such that 

maximum information can be kept with the minimum amount of computational time 

used to calculate it.  

 

Analyzing the 10000 iteration simulation run data with respect to V0 change per 

iteration, we want to identify the smallest iteration cutoff point such that there is 

sufficient information to estimate the parameters of the Verhulst Equation (Figure 21). 

From the 10000 iteration simulation results, at 2000 iterations, we can identify majority 

of the change in the curve (slope) which is used to estimate parameter g and also close 

to the minimum capacity V0 point which is parameter K. Considering four testers, 5 

targets and four μ combinations there will be at least 240 simulations runs. 2000 

iteration simulation run takes five days to complete and four simulations can be run 
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simultaneously (adding any more simulations at the same time will affect computation 

time) therefore it is feasible to do all simulations within a one year period (estimated 

time taken for all simulations is 300 days). 

 

 

Fig. 21. 10000 iteration simulation V0 graph for different K-mers at 0.00001 μ. Majority of the decrease occurs before 

2000 iterations and then start to tend to equilibrium. Hence by adding iterations more than 2000 will not greatly 

increase the information needed to estimate the parameters (g – slope of the curve and k – Minimum limit V0 value) 

for the amelioration model. 

 

Four μ values were chosen such that the μ values within the specified range do not 

follow a specific trend (linear) and still able to determine if μ is a factor in estimating the 

parameters of the Verhulst Equation. From the Verhulst modeling and parameter 

estimation results, the μ values used were significant in determining the parameters but 

were poor in fitting the model to the simulation data. From the box and whisker plot of 

the residue differentiated by the different μ values (Figure 12a), the lowest μ value used 

(0.00001) were not a good choice as a simulation parameter. This could however be 

compensated by increasing the number of iterations used within the simulation to get 

more data for estimation or just use a higher μ value. A possible improvement to the 
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current existing model could be done by changing the simulation parameters (increasing 

iteration count, increasing μ value). 

 

Probability Logistic Function 

In order to construct a sensible amelioration model, the simulation data must be as 

close to a true amelioration process as possible. The Probability Logistic Function (PLF) is 

especially tailored for the simulation process to do this with two assumptions in mind 

which makes this function biologically suitable. The first assumption is the most 

important as well as the core idea of amelioration which is directional mutation. Based 

on literature review section 3.1, Lawrence and Ochman (1997) proved with their 

amelioration model that directional mutation occurs and drives the amelioration 

process. The simulation process utilizes this core concept and changes the 

compositional statistics of tester and target as a measure of probability of substitution 

at each base position. Meaning that depending on where the sequences (OU pattern) 

between tester and target are different, a likely substitution at that point will be a high 

in probability. Therefore the assumption of directional mutation is the fundamental core 

of the simulation process. 

 

Second assumption is that every bacterial genome should differ in some way and hence 

the way they ameliorate should differ. Hence the PLF should be able to adjust itself 

depending on the biological fact of the sequence. This is done with parameters “a” and 

“b” where parameter “a” is a function of μ which directly controls the likelihood of 

substitution and “b” which controls the conservations of the sequence. Though “a” in 

this case is a constant mutation rate where under no directed mutation or selection 

occurs, the mutation probability or likelihood of mutation is never constant for any base 

position of the tester sequence due to mutation pressure of the target genome. This is 

an important consideration as some sequences tend to have a different mutation rate 

than other regions. Using different combinations of “a” and “b” will give you a unique 

representation of different amelioration process simulations for different combinations 

of tester and target. This will also give more flexibility in which the function can be 

manipulated to represent as closely to real life applications. 

 

For the 80 combinations of tester and target combination simulations, “a” parameter 

was being varied by the change of μ with “b” parameter all equal to 1. Based on the SAS 
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results from figure 16, the adjusted R-squared was very low and was a poor fit. This poor 

fitting was caused by the outliers from specific combinations of tester and target. 

Looking at it from another perspective, these outliers could potentially be caused by the 

incorrect usage of parameter “b” and hence create bias within the simulation step. 

Therefore, the correct choice of parameter “b” could increase the accuracy of the 

amelioration model as well as the parameter estimation of the model. For future 

research, the connection between parameter “b” and the Verhulst model could enhance 

the biological significance of the model. 

 

Verhulst Equation 

Overall, the fitting of the Verhulst Equation on the simulation data of 80 combinations 

of tester and target was on average a good fit. Due to the nature of the amelioration 

process (directional mutation), the logistic curve fit well to the simulated data. Some 

combinations were shown extremely good fits where the residue value between the 

actual simulation data and estimated model was 0.4003 (absolute measure of 

difference). However some shown to be not compatible with the Verhulst Equation on 

two reasons with the first being the actual simulation data. When the composition of 

the tester and target differ significantly (e.g. BS/SG and SC/BS combinations), the 

simulation data becomes extreme which result in high minimum V0 value and extreme 

difference between initial V0 and minimum V0 (causes extreme slope hence high 

parameter g). Therefore when fitting a Verhulst Equation with irregular parameters K 

and g (as seen in figure 15 with the outliers) which forms the core of the shape of the 

equation, the residue value will naturally be high which proves it to be a none good fit. 

The second reason is the estimation of the differential equation where the fitting of the 

Verhulst Equation is strictly dependant on. However the differential equation is also 

derived from the simulation data hence the first reason will also apply here. The actual 

estimation of the differential equation works by transforming the differential dataset 

into a linear function and then estimating both g and K (see methods). In order to 

estimate a sensible K value from the linear function, all values which are close to 

equilibrium are removed and a cutoff point is set. To get this cutoff point, two criteria 

were considered and only one was used in the python script. The first criteria was that 

all points lower than a certain percentage change from the previous iteration was set as 

the cutoff while the second criteria which was used within the python script sets the 

cutoff at the point when the differential is positive. 
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Fig. 22. Simulated amelioration process of combination P.aeruginosa tester and X.Fastidiosa strain 9a5c target. 2000 

iteration and μ value of 0.00001 was set as the input parameter. At 300 iterations, a “mountain peak” structure 

occurs which is caused by a substitution away from target instead of towards it. This causes a shift in the cutoff value 

being at 300 iterations instead of 2000 hence the K value estimation will be around 2.9 instead of 2.1. Therefore 

setting the count number of differential sign changes (change from increase – positive to decrease – negative or vice 

versa) to 2 in this case will prevent the premature setting of the cutoff. Hence investigating the simulation data before 

hand and manually setting the criteria will improve the accuracy of the Verhulst Equation fitting to simulation data. 

 

Looking at both criteria, there are certain situations when the simulation data will create 

flaws when estimating parameter K. For the first criteria, if the composition of both 

tester and target are relatively close (e.g.EC/EC combination) then the percentage 

change per iteration will naturally be very low (V0 per iteration change of less than 0.5%), 

hence this will cause the K estimation to be higher than it actually is (cutoff set too 

early). For the second criteria, in rare circumstances, some combinations show irregular 

change in their V0 per iteration such as a “mountain range” structure (Figure 22). This 

structure means that within the amelioration process, at some iteration the change of 

V0 is moving away from the target instead of towards it. Therefore the shape of the 

amelioration process will not be a continuous decreasing graph but an increasing and 

decreasing graph like the shape of a mountain range. In this case, the cutoff point will 

also be set too early and hence the estimation of parameter K will be bigger than it 

should be. In order to avoid these circumstances, manual inspection of the simulation 

takes priority in the sense of knowing what type of data you are dealing with. Changing 

the criteria to suit the simulation data under study such as increasing the count number 

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

V
a
ri
a
n
c
e

Iteration

PA/XF Variance per Iteration

2V

3V

4V



73 

 

in which the differential is positive (count number 2 was used within study) in the 

second case and for the first case, you can use a smaller percentage change to match 

the simulation data. Other changes which could improve the Verhulst Equation fitting 

would be the usage of parameter “a” and “b” for different combinations of tester and 

target. From figure 12a, a change in parameter “a” improved the fitting of the Verhulst 

Equation for the same tester and target combination. 

 

Parameter Estimation and Selection Methods 

Taking into account all combinations of tester and target data and possible influence 

factors which contribute to the estimation of the parameters, the estimated model fit 

the data poorly as seen in figure 16. The core philosophy of the amelioration model was 

to create a simplistic equation from simulation data that applies to all bacterial genomes. 

If data were to be eliminated to get a better fitting as in figure 17, then the model itself 

is not a reflection of what is intended from the aim and the model itself is biased. Hence 

improvement needs to be done in order to achieve the results of figure 17 without the 

removal of the extreme combinations which causes the bad fitting of the parameter 

function.  

 

Two core problems can be seen from the above problem with the first being the cause 

of the extreme outliers and the second is the variable selection of the model. Through 

the discussion of “Verhulst Equation” and “Probability Logistic Equation” section, the 

first problem can be reduced through the control of the simulation and fitting process. 

Second problem can be seen by comparing figure 16 and 17. If you consider the variable 

to be significant at 5% confidence level, then in figure 16 the variables that are 

significant are V0, V_Tester and V_Target while in figure 17, variables V_Tester, 

V_Target and Mu are significant. This example implies two points with the first being the 

variables considered for the model will influence the effects of other model (collinearity 

effect). For instance in figure 16, six variables are considered hence the variable V0 

effect in the model overtake the effect of Mu therefore Mu is less significant than V0. 

However in figure 17 after non-significant variables are removed, the effect of Mu is 

more apparent than when there was 6 variables in figure 16. This problem can be easily 

solved through different selection methods to choose the best model suitable for the 

data under study. 
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Three selection methods were used in the study and the stepwise selection methods 

was chosen and used for all parameter rather than the other two selection methods on 

two reasons. Stepwise selection methods take less computation time (Though in this 

study, computation time does not apply due to the small number of variables used) and 

are a combination of both forward and backward selection method. By setting an entry 

and exit level of significance for variables under consideration for the model, stepwise 

selection method takes a “jumping” approach. The method start off with analyzing each 

variable and according to the entry level of significance, it will accept the variable within 

the model. While accepting each variable, it will also calculate the contribution of the 

variable to the model and select the most significant variable. At each step, the 

significance of the other variables is calculated according to the already selected 

variables and any non-significant variables are removed according to the exit level of 

significance. In this way the first core problem stated from the above example can be 

cleared.  

 

Another issue with the above problem is choosing the best level of significance that is 

needed to be considered for the variable to be used within the model. From figure 16, 

the hypothesis was that related tester and target should be a factor influencing the 

parameter of the Verhulst Equation (PA/PA combination had a very low K value). This 

idea is reinforced in figure 17 where the level of significance of the related variable is at 

7.38%. For this study specifically, a 5% level of confidence is used as both entry and exit 

level but with a difference of 2.38%, can we disregard the related variable as 

insignificant to the model? Hence the question of setting the level of confidence can be 

debatable. However 5% level of confidence was still chosen as a strict criterion to 

reduce bias from large number of variables used (adjusted R-squared value). In terms of 

the related variable example, from the parameter estimation function estimated from 

SAS in figure 17, 0.37% partial R-squared value was lost due to elimination of the related 

variable. The significance of 0.37% relative to the whole model (91.37% R-squared value) 

is very low but the significance cannot be regarded and can be considered contextual 

based. Many other potential variables which could be of interest were not considered in 

this study such as sequence size, sequence region (Nakamura et al. 2004) and multiple 

average mutation rate (Snir, 2014). These can be tested in future to further enhance 

current model for parameter estimation. 
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Time of insertion estimation 

In order to get a sensible measure of time of insertion, a criterion is set for two reasons. 

For any genomic island (tester) insert at any point in time, the tester sequence can be 

expressed as compositional characteristics (OU pattern of 2-mer, 3-mer and 4-mer). 

Hence with these statistics and using the Verhulst Model, time estimation can be done 

for the tester in question. In the perfect theoretical word where the amelioration model 

is perfect, the estimated time for all three patterns (2, 3 and 4-mers) should be exactly 

identical and therefore the time of insertion should be the estimated time value. But in 

practice, there is a discrepancy between the three estimated time values and this is 

caused by two reasons. The first is random noise substitution where biological data does 

not always follow the strict rules of a mathematical model. The second is the imperfect 

model where the model itself cannot accurately measure the variable in question (not 

100% R-squared regression fitting, high residue during Verhulst Model fitting). 

Therefore the lowest possible deviation between the three time estimates is considered 

as the set criterion for estimating the time of insertion. However analyzing the standard 

deviation measure yielded interesting result where the contribution of standard 

deviation from the three time estimates is shown to be quite different. Tri-mer and 

tetra-mer time estimate was similar compared to the di-mer estimate which was 

significantly different. This difference could be caused by the poor Verhulst Model fitting 

on the di-mer dataset which resulted in the biased t estimate. Hence possible 

improvement to the current method is by applying a weighting model (give tetra-mer 

and tri-mer t estimate a higher percentage weighting instead of the average weighting 

which is used currently in this study) or add higher k-mers into consideration (more t 

estimates to get a clearer idea of the true time of insertion), the time of insertion 

estimate might be more accurate. 

 

The second reason behind the set criterion is to assure that the estimated time value is 

in fact the most correct estimate. To do this, the analysis of the relationship between μ 

and standard deviation is needed. In order to identify the most correct estimate, there 

should only be one minimum standard deviation value for all μ values (Figure 23). 

Consider the opposite where there are multiple low points of standard deviation values, 

there is no specific way in telling which time estimate is true for the tester sequence in 

question. Hence the criterion of lowest standard deviation will not be able to estimate 

the most correct time of insertion. Therefore the criterion set is sufficient in identifying 

the most accurate time of insertion based on the Verhulst Model. 
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Fig. 23. Relationship between the change in Mu and its effect on the standard deviation measure of the set [2t, 3t, 4t]. 

From the red curve, we can deduce a parabola curve where the others are more of a linear decreasing curve. Based 

on the trend, a change in mu will vary the standard deviation value such that at some value of mu, the standard 

deviation will achieve a minimum value (Red Curve).  

 

Comparing the empirical estimation of the time of insertion and the theoretical 

approach using the parameter estimation method based on table 5 and figure 19, there 

is still a significant difference in the estimation. The poor estimation of the theoretical 

approach is largely responsible by the bad estimations of the parameters using the 

parameter estimation functions from SAS (Low R-squared values on parameter 

estimation models). This estimation could however be improved if the parameter 

estimation is done individually on the combination instead of all possible combinations 

(specific combinations does not follow the trend of the parameter equation e.g. PA/PA 

combination has much lower g and K values empirically compared to theoretical 

estimate). Although the empirical estimation is better in estimating the time of insertion 

for the simulated sequences compared to theoretical approaches, it is very time 

consuming in both simulation and calculation step while the theoretical approach is 

much faster in the sense of given a few input parameters for an output. Hence a better 

parameter function is needed which was explained in earlier discussions. 

 

There are also two more limitations to the time of insert estimation method. The first is 

the need of a point of origin sequence for the calculations to work. Within the given 

parameters of the Verhulst equation, the parameter V0 is needed to calculate the time 

variable. Although the origin sequence can be thought as the donor of the tester 
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sequence but sometimes this is not always the case. The tester sequence could be 

donated from any organism with such sequence hence the choice of which sequence to 

choose as the origin sequence can largely affect the time estimate. The other limitation 

is the inability to calculate a time estimate based on the Verhulst Model as seen in table 

5 and figure 19 (PAGI 2). This is caused by the simulation step where no simulations 

could cover the amelioration process of the tester sequence therefore the Verhulst 

Model cannot estimate the time of insertion for that tester sequence. To solve this 

problem, simulation step needs to be improved as discussed in earlier section. 

Ultimately, the time of insert estimation method is a good approach in getting an 

accurate time estimate but more test data is needed to test its practical uses on real life 

applications.  

 

There is one point of interest is that of the four GIs analyzed here, there are two 

different rates of mutation even though they all come from the same origin within the 

same target. This could potentially mean that there might be more than one possible 

Mu value for any given tester sequence or that there are more than one model of 

selection within the target with different stress level mutagenesis (Maclean, 2013). With 

this thought in mind, this could mean that within the amelioration model, there might 

be two or more mu parameters which also correspond to another study done by Snir 

(2014).  

 

Rate of Mutation Estimation 

A study by Martincorena (2012) states that there is a great variation in mutation rate 

across the genome which is non-random and depends on factors (DNA repair, 

transcription) which reduces risk of deleterious mutations. Codon positions also 

undergo different mutation rate (Knight 2001), hence combining the two there should 

be some connection between sequence patterns and rate of mutation. In attempt to 

find the pattern, three parameters distance (D), internal variance (Int V) and variance 

(V0) was used in attempt to characterize a sequence in a unique way such that for each 

sequence, there is a unique measure of mutation rate corresponding to that sequence. 

Analyzing each parameter individually, internal variance has the least impact in 

determining the mutation rate since the internal variance measure only applies to the 

tester sequence. This parameter serves as a normalizing constant for different genomic 

loci within the study such that it creates a third dimension to the calculations as well as 

maintain the unique characterization of each sequence (some genomic loci sequences 
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has got the same distance and V0 measures to the target but contain completely 

different internal variance). The distance parameter is a measure between tester and 

target calculated as the absolute distance between ranks of OU in the two patterns. 

Hence by normalizing the distance parameter by the internal variance gives you a 

relative ratio (Forward Mutation Ratio) of how close in terms of distance is the sequence 

with the specific internal variance is to the target sequence.  

 

The forward mutation ratio (FMR) makes biological sense in two ways. The first case is 

that lower distance value implies the tester sequence and the target composition are 

relatively similar. This is equivalent to a low FMR value due to the lower distance and 

hence lower mutation rate. The second case is where two tester sequences having the 

same distance measure with different internal variance where the higher internal 

variance sequence will have a lower FMR value. In such case, the higher internal 

variance sequence will always be closer in composition to the target than the lesser one. 

Therefore for each sequence there is a unique FMR measure which is relative to the 

mutation rate of that sequence (low FMR = low mutation rate).  

 

V0 is determined by the variability of word deviations between the tester sequence and 

target. It can be seen as how different is the tester and target sequence in terms of their 

composition. Assuming that V0 is the difference between the tester sequence and the 

target sequence and the FMR value determines the change needed between the two 

sequences, the differential between the two variables should equal to the mutation rate. 

Tetra-mer distance and V0 were chosen as the calculation parameters within this study. 

The choice of tetra-mer over di-mer and tri-mer was due to the complexity of the tetra-

mer pattern (256 word combinations over 16 and 81 respectively) to better reflect the 

sequence structure. But this assumption was not proven due to the lack of knowledge to 

determine which mutation rate estimate is more correct compared to others. Hence 

more in depth study is needed on different K-mer parameters (D, V, Int V) to determine 

the best approach and also real data (genomic loci sequence instead of simulated 

sequences) to test the practicality of the method (Comparing the number of mutation to 

biological sequence data). 

 

The main downside to the approach of estimating the rate of mutation is that it uses a 

relative approach. Multiple genomic loci sequences (preferably more than five 

sequences) with the same target (whole genome sequence containing the genomic loci 
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sequence) are required for the method to work. Increasing the number of genomic loci 

sequences within the calculation will increase the accuracy of the differential measure 

(Table 8). This is due to the differential being a function of the sample data where the 

trend of the data determines the differential measure. An advantage to increasing the 

number of genomic loci sequences is that for each genomic locus, the associated 

differential will form a differential equation which can be used for comparison between 

organisms (mutation rate function between organisms) or in depth analysis of the trend 

within the organism (linear or non-linear relationship between mutation rate and 

sequence composition). But this causes unnecessary calculations if you are only 

interested in one or two genomic loci sequences and their mutation rates with regards 

to the target sequence. Though a measure is calculated based on compositional 

statistics and is comparative to other genomic loci sequences, the lack of biological data 

to back up this measure will give inconclusive results. 

 

Table 8. Comparison between 5 genomic loci differential measure using different total numbers of 

 genomic loci used 

Internal 4V Distance V0 FMR Differential N = 5 Differential N = 60 

5.17 7.67 2.97 1.483559 0.884918069 0.884918069 

5.63 6.12 2.33 1.087034 0.699732181 0.696544331 

5.83 5.53 2.1 0.948542 0.677820406 0.623340175 

6.06 5.5 1.91 0.907591 0.633470643 0.571681541 

6.28 6.02 1.86 0.958599 0.590850028 0.5158925 
Internal 4V: Tetra-mer internal variance of tester, Distance: Absolute distance measure between tester and target 

(See section 2.2 in Literature Review), V0: Variation between composition pattern between tester and target, FMR: 

Forward Mutation Ratio, Differential: Empirical differential calculated based on FMR and V0, also equivalent to 

mutation rate, N: number of genomic loci sequence used for differential calculation 
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Conclusion 

 

The amelioration process of a genomic island insert (tester) in a recipient genome 

(target) is successfully represented through simulation using the probability logistic 

function (PLF) and the compositional characteristics of the tester and target. Utilizing 

the correct input parameters which characterizes the tester and target genome (PLF 

parameter “a” and “b” controlling the mutability of sequence and its conservativeness) 

allows the simulation to better reflect the true amelioration process of the tester within 

specific targets. The amelioration model which takes the form of a Verhulst Equation 

has proven to fit well to the simulation data sets within this study. Hence by knowing 

the parameters of the Verhulst Equation, the amelioration process can be expressed as 

a simple equation which can be used for further analysis such as time of insert 

estimation or amelioration model comparisons between different tester and target 

combinations.  

 

Parameter estimation model which was estimated through regression from 80 different 

combinations of tester and target was done in attempt to estimate the parameters of 

the Verhulst Model for any combinations of tester and target. Although the estimated 

parameter function is not 100% accurate but it is still within an acceptable range for it to 

make sensible estimations (parameter estimation model r-squared values all above 

70%). The time of insert estimations done through the estimated parameter showed a 

significant difference to the simulation and model fitting approach but the trend in the 

answers remains the same. Hence the parameter estimation method is a good way to 

get an estimated result in a short period of time (only the parameter equation is needed 

compared to empirical methods needing the simulation data which potentially requires 

a long time). But, there is room for improvement in all stages of the method (e.g. 

changing input parameters of PLF to better suit the tester and target for better 

simulation results, model selection technique during regression of parameter estimation 

function) where each improvement can increase the accuracy of the of the resulting 

estimate. 

 

Altering the methods for the estimation of the mutation rate of genomic loci sequence 

has shown to have not so significant results. Through the usage of the simulations 

sequences as genomic loci, relative approach was used in attempt to estimate the 
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mutation rate of each sequence. Although sensible mutation rate measures were 

estimated (in terms of trend between sequence composition and estimated mutation 

rate), there was no biological significance to the measure in which the mutation rate 

made enough sense to use it to make any form of conclusions. Therefore more research 

is needed here to bridge the result with biological data to make further assumption and 

could potentially result in interesting outcomes. 
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Appendix 

 

Table 1. Verhulst Equation Fitting Results (ALL) 

       Dimer   Trimer   Tetramer   

Tester/Target Mu m g m g m g 

Ecoli 0.00001 0.001026842 0.002034 0.00110737 0.002628 0.000917608 0.002566 

- 0.00004 0.001764815 0.002859 0.001975598 0.004129 0.001310417 0.003145 

PAGI 0.00008 0.001681203 0.002236 0.002201538 0.004293 0.001917447 0.004506 

     0.0001 0.00160251 0.001915 0.003472222 0.00715 0.002956853 0.007223 

9a5c 0.00001 0.000159945 0.000148 0.000413169 0.000825 0.000551452 0.001258 

- 0.00004 0.000424324 0.000314 0.000927381 0.001558 0.001297129 0.002711 

PAGI 0.00008 0.00100396 0.001014 0.0016 0.00272 0.002632536 0.005502 

     0.0001 0.001122227 0.001133 0.001997252 0.003489 0.002608159 0.005492 

Subtilis 0.00001 0.001263787 0.003804 0.001378711 0.004922 0.001155789 0.004392 

- 0.00004 0.001012736 0.002147 0.002205455 0.007278 0.001911494 0.006652 

PAGI 0.00008 0.001048667 0.001573 0.002548377 0.007849 0.002321515 0.007661 

     0.0001 0.001010093 0.001271 0.002816428 0.008538 0.002646329 0.00864 

Aeruginosa 0.00001 0.000347097 0.000346 0.000515507 0.000795 0.000714339 0.001428 

- 0.00004 0.000727451 0.000371 0.000969027 0.001095 0.001281921 0.002269 

PAGI 0.00008 0.001036538 0.000539 0.001288571 0.001353 0.001679651 0.002889 

     0.0001 0.001192904 0.000585 0.00136476 0.001436 0.002119626 0.003604 

Griseus 0.00001 0.000696129 0.001446 0.000734002 0.001717 0.000807158 0.002385 

- 0.00004 0.000948175 0.001299 0.000918519 0.001488 0.000915837 0.002024 

PAGI 0.00008 0.001449153 0.00171 0.001389542 0.002126 0.001296759 0.002801 

     0.0001 0.001599199 0.001837 0.001674015 0.002506 0.001457906 0.003053 

Ecoli 0.00001 0.000776085 0.001202 0.000783963 0.001707 0.000769204 0.002172 

- 0.00004 0.001455773 0.001315 0.001005546 0.001378 0.000952272 0.002085 

BSGI 0.00008 0.002756193 0.002192 0.001872621 0.002361 0.00187713 0.003966 

     0.0001 0.003293114 0.002702 0.002353124 0.003032 0.002016665 0.004187 

9a5c 0.00001 0.000793818 0.002111 0.000781195 0.00221 0.000826046 0.00256 

- 0.00004 0.00102073 0.001487 0.001012921 0.001803 0.001203159 0.002864 

BSGI 0.00008 0.001561995 0.001838 0.001653401 0.002659 0.002381293 0.005326 

     0.0001 0.001924911 0.00222 0.002204165 0.003472 0.002675843 0.005832 

Subtilis 0.00001 0.002406199 0.00354 0.001313106 0.002653 0.001140405 0.00279 

- 0.00004 0.005535173 0.007302 0.002238163 0.003947 0.001525763 0.003355 

BSGI 0.00008 0.004352866 0.005445 0.003222746 0.005469 0.002196179 0.004713 

     0.0001 0.003090641 0.003778 0.004004695 0.006995 0.003442809 0.0076 

Aeruginosa 0.00001 0.000706657 0.002243 0.000713649 0.002403 0.000799112 0.002808 

- 0.00004 0.001062861 0.001985 0.00102183 0.002186 0.001401433 0.003814 

BSGI 0.00008 0.001402204 0.002074 0.00160984 0.003102 0.002371602 0.00616 

     0.0001 0.001915596 0.002787 0.001901994 0.003501 0.002677713 0.006739 

Griseus 0.00001 0.000819463 0.002885 0.000814174 0.003226 0.000691756 0.002884 

- 0.00004 0.001215942 0.002758 0.001108942 0.002897 0.001133506 0.003408 

BSGI 0.00008 0.001643389 0.003024 0.001920728 0.004434 0.002043195 0.005856 

     0.0001 0.0017563 0.003011 0.002188104 0.004981 0.002365471 0.006774 

Ecoli 0.00001 0.000411539 0.000408 0.000462691 0.000599 0.00057094 0.000969 
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- 0.00004 0.00088627 0.000519 0.000988718 0.000964 0.001203063 0.001791 

ECGI 0.00008 0.001211374 0.000639 0.001114535 0.001049 0.001436026 0.002064 

     0.0001 0.001392143 0.000808 0.00123621 0.001143 0.001871695 0.00269 

9a5c 0.00001 0.000344612 0.000607 0.000490983 0.00104 0.000552343 0.001299 

- 0.00004 0.000612934 0.000508 0.000775343 0.001044 0.000895195 0.001634 

ECGI 0.00008 0.000813492 0.000533 0.000994662 0.001267 0.001124544 0.001972 

     0.0001 0.000973532 0.000743 0.001244454 0.001683 0.001423138 0.002582 

Subtilis 0.00001 0.000498192 0.000937 0.000907299 0.001933 0.000731941 0.001836 

- 0.00004 0.001089876 0.001842 0.00143898 0.002844 0.001322625 0.002989 

ECGI 0.00008 0.001262782 0.00205 0.00222532 0.00431 0.001866726 0.004216 

     0.0001 0.001134042 0.001643 0.002560522 0.004823 0.002306108 0.00504 

Aeruginosa 0.00001 0.000504911 0.001825 0.000556753 0.001963 0.000595248 0.002182 

- 0.00004 0.000652377 0.001397 0.000747801 0.001734 0.000777888 0.002108 

ECGI 0.00008 0.0008015 0.001282 0.001005982 0.002035 0.00111206 0.002734 

     0.0001 0.000974784 0.001469 0.001240126 0.002449 0.001287705 0.003142 

Griseus 0.00001 0.000612225 0.002462 0.00055478 0.002265 0.00055153 0.002405 

- 0.00004 0.00081185 0.002195 0.000820896 0.002442 0.000796819 0.002675 

ECGI 0.00008 0.001023211 0.002354 0.001056831 0.002821 0.001247257 0.003979 

     0.0001 0.001169973 0.002595 0.001424164 0.003831 0.001400519 0.004372 

Ecoli 0.00001 0.001434189 0.003866 0.004017142 0.015795 0.00161837 0.00678 

- 0.00004 0.001611431 0.003107 0.005829785 0.020673 0.002219329 0.008097 

SCGI 0.00008 0.001804491 0.002732 0.00470301 0.013967 0.002295806 0.007117 

     0.0001 0.001445747 0.001948 0.004844245 0.01482 0.002430858 0.007638 

9a5c 0.00001 0.001305809 0.002758 0.001641339 0.004385 0.001373618 0.004285 

- 0.00004 0.003267109 0.005953 0.003219562 0.007584 0.001725225 0.004542 

SCGI 0.00008 0.00347529 0.005239 0.003054996 0.006216 0.002593665 0.006272 

     0.0001 0.003800621 0.005387 0.003553715 0.007165 0.002783452 0.006459 

Subtilis 0.00001 0.000845369 0.002394 0.005188847 0.025718 0.004160507 0.021333 

- 0.00004 0.001018693 0.001891 0.006014738 0.025793 0.00531558 0.023514 

SCGI 0.00008 0.001121212 0.001591 0.006970816 0.027946 0.00688381 0.028764 

     0.0001 0.001091804 0.00142 0.00587597 0.02166 0.005082207 0.019474 

Aeruginosa 0.00001 0.001606986 0.002199 0.001329329 0.002501 0.001882804 0.004373 

- 0.00004 0.002148197 0.00227 0.001939501 0.003084 0.003384353 0.007341 

SCGI 0.00008 0.002336182 0.002132 0.002920371 0.004665 0.003820562 0.008521 

     0.0001 0.002998412 0.002644 0.002957222 0.004369 0.003210351 0.006848 

Griseus 0.00001 0.000603656 0.0007 0.000815391 0.001121 0.001316295 0.002328 

- 0.00004 0.001230469 0.00126 0.001585076 0.002137 0.004529634 0.008147 

SCGI 0.00008 0.001854088 0.001873 0.003258115 0.004346 5.30594E-05 0.000094 

     0.0001 0.003411514 0.00384 0.005952196 0.008442 3.60992E-05 0.000069 
PAGI: P. aeruginosa Genomic Island, BSGI: B. subtilis Genomic Island, ECGI: E.coli Genomic Island, SCGI: S.coelicolor 

Genomic Island, Ecoli: E.coli K12, 9a5c: X. Fastidiosa 9a5c strain, Subtilis: B.subtilis sub 168, Aeruginosa: P. aeruginosa, 

Griseus: S.griseus, m and g are both parameters of the Verhulst Equation where m = g/k (see methods). E. coli K12 

genomic island and S. coelicolor genomic island in combination with five targets are not displayed in this table. 
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Fig. 2. Graph plot of di-mer g parameter estimate of the Verhulst Equation of all 20 combinations of tester and target. 

From the graph, no clear relationship can be stated between g and the other factors (μ, tester and target internal 

variance). Some combinations that show significant difference to the rest are BS/BS (B.subtilis), PA/SG 

(P.aeruginosa/S.griseus) and SC/EC (S.coelicolor/E.coli). This could be caused by extreme K values as stated in the 

results section.  
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Fig. 3. Graph plot of tetra-mer g parameter estimate of the Verhulst Equation of all 20 combinations of tester and 

target. There are clear differences to figure 2 and similarities to tri-mer g plot in figure 15 result section. There is a 

clear trend of linearity between g and the three factors μ, tester and target internal variance with some outlier 

combinations such as SC/BS (S.coelicolor/B.subtilis) and (S.coelicolor/ S.griseus).  
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Fig. 4. Graph plot of di-mer m parameter estimate of the Verhulst Equation of all 20 combinations of tester and target. 

Similar to the graph of parameter 2g in figure 2 with the same outliers but there is a clear trend of a linear function 

existence. Outliers include BS/BS (B.subtilis), PA/SG (P.aeruginosa/S.griseus). 
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Fig. 5. Graph plot of tri-mer m parameter estimate of the Verhulst Equation of all 20 combinations of tester and target. 

Similar to the graph of parameter 3g in figure 15 in result section with the same outliers and a definite linear function 

existence. Outliers include SC/BS (S.coelicolor/B.subtilis) and (S.coelicolor/ E.coli). 
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Fig. 6. Graph plot of tetra-mer m parameter estimate of the Verhulst Equation of all 20 combinations of tester and 

target. Exact same outliers as parameter 4g and has the same trend as parameter 2m and 3m. Since m parameter is 

calculated as g/K, the outliers’ existence is the same since the parameters are in proportion to each other. Outliers 

include SC/BS (S.coelicolor/B.subtilis) and (S.coelicolor/ S.griseus). 
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Fig. 7. Multi-variate regression analysis with all combinations of tester, target and μ for parameter 2g. The adjusted R-

squared value is 76.26% which shows that there is a linear relationship but the model is poor in estimating parameter 

g. The significant variables are V_Tester and μ where μ is only significant at a 15% confidence level. 
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Fig. 8. Multi-variate regression analysis with all combinations of tester, target and μ for parameter 2m. The adjusted 

R-squared value is 81.40% which is a better model than 2g in terms of estimating 2m with variables V_Tester, Mu and 

V0 where all three variables are significant at 5% confidence level. 
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Fig. 9. Multi-variate regression analysis with all combinations of tester, target and μ for parameter 3g. The adjusted R-

squared value is 79.97% which is a better model than parameter 2g but still a poor model where 20% of the data will 

be estimated with error. The variables are the same as parameter 2g including V_Tester and Mu where both variables 

are significant at 1% confidence level. In combination with results of parameter 4g in figure 15 results section, 

parameter g is a function of V_Tester, V_Target and Mu. 
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Fig. 10. Multi-variate regression analysis with all combinations of tester, target and μ for parameter 3m. The adjusted 

R-squared value is 89.40% which is a very good model in terms of estimating parameter 3m. The three significant 

variables are V_Tester, Mu and V0 where all three are significant at 1% confidence level.  
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Fig. 11. Multi-variate regression analysis with all combinations of tester, target and μ for parameter 4m. The adjusted 

R-squared value is 93.66% which is the best model out of all six parameters. Based on the R-squared value, we can 

assume that parameter 4m follows a multi-variate linear function. The significant variables are V_Tester, Mu and V0 

which are all significant at 1% confidence level. Parameter m for all K-mers also follows the same function of V_Tester, 

Mu and V0. 
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Table 2. Differential Estimate for different simulated sequences 

Internal 4V Distance V0 FMR Differential 

5.17 7.67 2.97 1.483559 0.884918069 

5.28 7.2 2.8 1.363636 0.833634975 

5.27 6.97 2.77 1.322581 0.841290623 

5.35 6.83 2.68 1.276636 0.817837767 

5.38 6.44 2.59 1.197026 0.810451008 

5.41 6.66 2.6 1.231054 0.792621145 

5.42 6.49 2.57 1.197417 0.786001884 

5.47 6.48 2.52 1.184644 0.768645337 

5.53 6.35 2.46 1.148282 0.751016954 

5.53 6.24 2.45 1.128391 0.7442572 

5.55 6.21 2.41 1.118919 0.731611437 

5.58 5.87 2.34 1.051971 0.726944162 

5.59 6.13 2.37 1.096601 0.717473583 

5.61 6.18 2.36 1.101604 0.707036492 

5.63 6.12 2.33 1.087034 0.696544331 

5.67 6.15 2.3 1.084656 0.683130736 

5.68 5.99 2.27 1.054577 0.67405555 

5.71 6.03 2.26 1.056042 0.664996225 

5.72 5.59 2.19 0.977273 0.663905307 

5.74 5.83 2.21 1.015679 0.65813006 

5.75 6.02 2.22 1.046957 0.649327844 

5.77 5.92 2.19 1.025997 0.641590694 

5.79 5.73 2.16 0.989637 0.637581008 

5.79 5.8 2.16 1.001727 0.632360139 

5.82 5.81 2.14 0.998282 0.626294694 

5.82 5.47 2.09 0.939863 0.624855445 

5.83 5.53 2.1 0.948542 0.623340175 

5.85 5.74 2.12 0.981197 0.619581157 

5.86 5.66 2.1 0.96587 0.616483633 

5.87 5.44 2.06 0.926746 0.615368196 

5.88 5.53 2.08 0.940476 0.614299524 

5.9 5.32 2.02 0.901695 0.613437464 

5.9 5.52 2.06 0.935593 0.611780512 

5.9 5.42 2.04 0.918644 0.610724923 

5.92 5.48 2.05 0.925676 0.609730404 

5.92 5.4 2.02 0.912162 0.608275093 

5.93 5.35 1.99 0.902192 0.606008331 

5.94 5.42 1.99 0.912458 0.602999982 

5.97 5.36 1.96 0.897822 0.599743379 

5.96 5.27 1.95 0.884228 0.597514959 

5.99 5.36 1.95 0.894825 0.594559652 

6 5.38 1.94 0.896667 0.591144048 

6.01 5.22 1.9 0.868552 0.58816412 

6.04 5.45 1.92 0.902318 0.583786152 

6.04 5.45 1.92 0.902318 0.579836481 

6.05 5.28 1.87 0.872727 0.575811842 
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6.06 5.5 1.91 0.907591 0.571681541 

6.08 5.59 1.9 0.919408 0.566520698 

6.09 5.52 1.89 0.906404 0.562199573 

6.1 5.31 1.86 0.870492 0.559338375 

6.14 5.31 1.84 0.864821 0.556181928 

6.16 5.37 1.82 0.871753 0.551806326 

6.2 5.48 1.82 0.883871 0.546960748 

6.22 5.69 1.82 0.914791 0.540414614 

6.24 5.82 1.82 0.932692 0.533239391 

6.25 5.9 1.84 0.944 0.526948598 

6.26 6 1.86 0.958466 0.521234098 

6.28 6.02 1.86 0.958599 0.5158925 

6.29 6.21 1.89 0.987281 0.510756658 

6.29 6.34 1.9 1.007949 0.505413194 
Internal 4V: Tetra-mer internal variance of tester, Distance: Absolute distance measure between tester and target 

(See section 2.2 in Literature Review), V0: Variation between composition pattern between tester and target, FMR: 

Forward Mutation Ratio, Differential: Empirical differential calculated based on FMR and V0, also equal to the 

mutation rate. 

 


