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ABSTRACT 
The focus of this paper is on linear stability analysis of 

steady state solutions developing in horizontal or nearly 
horizontal pipes. Continuity and momentum equations for 
incompressible and isothermal flows are derived considering an 
arbitrary number of fluids. It is shown that the linearization of 
the governing equations around the steady state solutions and 
the assumption of a particular form of the perturbations yield an 
eigen-value problem, the roots of which represent complex 
wave speeds of the perturbations. The coefficients of the eigen-
value problem are derived for the most general case and given 
in analytical form. The effects of inertia of the fluids, gravity, 
interfacial tensions, shear stresses and wave length are included 
explicitly in the stability coefficients. Some general properties 
of the eigen-value problem are outlined. 

INTRODUCTION 
Mathematical solutions of fluid dynamical problems are 

supposed to obey the basic laws of fluid dynamics. However, 
within the whole set of mathematical solutions satisfying the 
equations of conservation of mass, momentum and energy for a 
particular problem, only those which are also stable can 
actually occur in Nature. It is therefore clear that methods 
capable of discerning between stable and unstable solutions are 
fundamental in many practical applications. 

The capability of predicting flow pattern regimes and flow 
pattern transition criteria for given flow conditions represents, 
for instance, a preliminary and fundamental step to the 
subsequent calculations of engineering quantities such as 
pressure gradients, phase fractions, mass and heat transfer rates, 
pressure oscillations and many others which are reasonably 
assumed to depend in an intimate way on the flow structure. 

A quite common approach to do this in horizontal and 
nearly horizontal pipes, is based on the hypothesis that 
stratified flow is the initial configuration from which all other 
flow pattern regimes depart. The existence of a specific flow 
pattern regime at given flow conditions is in fact believed not to 
be affected by the path through which the final state is reached. 
Indications as to the possibility for transition from stratified 
flow to other flow patterns may therefore be obtained from a 
stability analysis of the stratified flow configuration. 

Many of these transitions are strictly correlated to the 
possibility for interfacial wave growth. Clearly, any growing 
interfacial perturbation induces considerable pressure and shear 
stress variations, with respect to the undisturbed state, which in 
turn influence its growth. It is to be noted however that, 
although these phenomena are undoubtedly three-dimensional, 
at the present time, one-dimensional models are still the only 
feasible choice in many practical applications. 

In this work linear stability theory of stratified shear flows 
in pipes inclined from the horizontal will be fully developed. 
The analysis will be limited to incompressible and isothermal 
flows. It will be shown that the linearization of the governing 
equations around the steady state solutions and the assumption 
of a particular form of the perturbations yield an eigen-value 
problem, the roots of which represent complex wave speeds of 
the perturbations. The coefficients of the eigen-value problem 
will be derived for the most general case and will be given in 
analytical form. The effects of inertia of the fluids, gravity, 
interfacial tensions, shear stresses and wave length will be 
included explicitly in the stability coefficients, making the 
computation of neutral stability lines and amplification factors 
of the perturbations consequential. 

Different types of Kelvin-Helmholtz stability analyses 
which is possible to perform will be described and some 
general properties of the eigen-value problem will be outlined. 

 



 

 

NOMENCLATURE 
Make reference to Part 1 of “Multi-fluid stratified shear 

flow in pipes” presented at HEFAT 2007. 

GOVERNING EQUATIONS 
Consider the pipe geometry shown in Figure 1. At any time 

t  the flow of each phase is predominantly along the positive x  
direction and at any position the pipe is inclined at an angle θ  
from the horizontal. Only incompressible and isothermal flows 
are here considered, therefore a multi-fluid flow system can be 
modelled using a combination of one-dimensional continuity 
and momentum equations in integral form. 

 
Figure 1. Small interfacial flow perturbations. 
 
The integral form of the continuity equations gives: 
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Since the flow is incompressible, the continuity equations 
can be easily expressed in terms of the interfacial heights: 
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The pressure distribution is assumed to vary hydrostatically 
along the transverse section and thus, owing to the effects of 
interfacial tension, the pressure acting on the upper side of each 
interface differs from the pressure acting on the lower side by a 
small amount proportional to the interfacial curvature. 

By using Leibniz’s theorem for differentiation of an 
integral: 
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the momentum equations can be expressed quite 
straightforwardly as: 
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or as: 
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depending on whether the hydrostatic pressure distribution 
is calculated in terms of the pressure condition existing at the 
bottom or top part of the pipe. 

Making use of continuity equations, subtracting the 
momentum equation of phase 1+p  from the momentum 



 

 

equation of phase p  and rearranging, the following combined 
momentum equations are obtained: 

( )

( )

( )

( )

( ) p
p

p
p

pp

p
pp

p
pp

p
ppp

p
ppp

p

p

j
p

ppp

p

p

j
p

ppp

p

j
p

ppp

p

p

j
p

ppp

p
p

p
p

F
xx

H
g

x
U

x
U

x

U
U

x

U
U

t

H

A

P
U

t

H

A

P
U

A

P
U

t

H

A

P
U

t

U

t

U

=
∂

∂
−

∂

∂
−+

∂

∂
−

∂

∂
+

∂

∂
−

∂

∂
+

∂

∂
−−

∂

∂





















−

+−

+

∂

∂
−−

∂

∂
−

∂

∂

+

+
++

+
+++

+

+

+
+++

+
+++

−−

+
+

κ
σθρρ

ψ
ρ

ψ
ρ

ψρψρ

ψρ

ψρ

ψρ

ψρ

ρρ

cos

1

1

1

1

1

12
11

2

1
111

1

1

1
111

1
111

11

1
1

 (7) 

where the shear stress functions pF  and the wall-fluid and 
fluid-fluid shear stresses are defined as in Part 1 of “Multi-fluid 
stratified shear flows in pipes”. 

LINEAR STABILITY ANALYSIS 
The problem of instability of parallel shear flows has been 

firstly recognised by Helmholtz in 1868 and then posed and 
solved by Kelvin in 1871. In their honour this kind of 
instability is now called Kelvin-Helmholtz instability. 

The condition of Kelvin-Helmholtz instability mainly 
represents an imbalance of the destabilising effects of inertia 
over the stabilising effects of gravity and interfacial tensions. 
Viscosity, instead, may play either a stabilising or destabilising 
role on flow stability depending on whether the energy 
dissipation or the momentum diffusion is predominant. Thus, 
for certain operational conditions, inviscid flows can be 
unstable while, for the same conditions, viscous flows can be 
stable and vice versa [16]. 

In order to analyse whether stability or instability occurs in 
a multi-phase flow system, we may consider the state of 
equilibrium slightly disturbed so that: 

pppppp UUUHHH ˆˆ +=+=  (8) 

where the superscript bar and the circumflex denote 
equilibrium and disturbance, respectively. 

Retaining only the first order terms in the continuity 
equations and in the combined momentum equations, 
differentiating the momentum equations with respect to the 
space coordinate and substituting from the continuity equations, 
the final result is: 
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where the coefficients of the differential equations are 
evaluated at fully developed flow conditions. 

Let us assume that an arbitrary disturbance may be resolved 
into independent modes of the form: 

( )( )tkxiHH pp ω±= expˆ )
 (10) 

The previous functions represent travelling monochromatic 
waves propagating in the positive or negative direction of the 
x  axis with wave celerity c : 
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where the circular frequency ω  and the wave number k  
satisfy equations: 
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in terms of the period T  and the wave length λ . The semi-
circular hats denote the amplitudes of the perturbations. 

Linear stability theory can provide the wave lengths and 
growth rates of the unstable modes. In temporal stability 
analysis, the wave number is fixed and real and the frequency is 
complex while in spatial stability analysis, the frequency is 
fixed and real and the wave number is complex. The 
information provided by these two analyses is obviously 
complementary, however in order to study the growth of a 
disturbance in time, the usual temporal stability analysis 
appears more appropriate. 

By making the appropriate substitutions and neglecting 
variations of momentum coefficients, the eventual result is the 
following linear system: 
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δ  being the Dirac’s delta function. 
Under the condition that the linear system (13) must admit 

non-trivial solutions, the dispersion relationship, written in 
terms of the wave celerity c , follows. Computation of wave 
speeds and modes satisfying (13) is fundamental for the 
stability analysis of multi-phase flows. 

Once these quantities have been computed, due to the 
linearity of the system, any arbitrary initial disturbance may be 
represented as a superposition of the normal solutions except 
for some multiplicative coefficients qw  which have to be 

determined in terms of the initial conditions: 
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Clearly, only the real parts of eigen-vectors represent 
physical quantities. The dispersion relationship result in a 
polynomial equation of order ( )12 −n , the roots of which can 
be either real or complex. If, for instance, progressive waves 
are considered, depending on whether 0)Im( >c , 0)Im( =c  or 

0)Im( <c  each mode is said to be unstable, neutrally stable or 
stable respectively. The opposite is true for regressive waves. 

As long as the imaginary part of each characteristic root is 
non positive the flow is deemed stable, conversely the flow is 
considered unstable when the imaginary part of at least one root 
is positive because in this case the most unstable mode will 
emerge and dominate the disturbance field. However, if more 
than one mode has large growth rates, many modes may 
appear. 

Since in the linear system (13) the effects of inertia, 
viscosity, actual velocity profiles, interfacial tensions, shear 
stress modelling and mutual interactions between the interfaces 
are taken into account, the resulting dispersion equation 
represents a rather wide-ranging formulation to investigate the 
stability of multi-phase flow systems. Hence, depending on 
which of the previous terms are considered and which are 
neglected, different stability analyses can be performed. 

Inviscid versus viscous analysis 
Basically the inviscid Kelvin-Helmholtz (IKH) analysis 

ignores the effects of the shear stresses on the growth of the 
perturbations [1,5,8,19] while the viscous Kelvin-Helmholtz 
(VKH) analysis accounts for such effects [2,3,13,14,15,17]. 
Both theories however are based on steady state solutions 
which are computed considering wall and interfacial shear 
stresses. 

It is worth noting that, when the fluids are assumed to be 
inviscid, the coefficients of the dispersion relation become real, 
thus, in such a case, solutions of the characteristic equation may 
either be real or occur in pairs of complex conjugate roots. 
Obviously complex conjugate eigenvalues are associated to 
complex conjugate eigenmodes. In other words, the inviscid 
theory implies that for each unstable mode there is a 
corresponding stable mode, consequently the flow is stable 
when all the ( )12 −n  characteristic roots are real. 

It is to be noted that for short wave length disturbances 
( ∞→k ) the neutral stability boundaries obtained from the 
viscous and inviscid theories tend to coincide as it has been 
observed in two-phase flow stability calculations [10]. It is also 
interesting to point out that in the general case, if interfacial 
tensions are ignored, the IKH neutral stability boundaries do 
not depend on the wave number, while the VKH neutral 
stability boundaries do. 

Complete versus simplified analysis 
The complete Kelvin-Helmholtz analysis assumes that 

perturbations are simultaneously present on all interfaces, so 
that the stability of each interface is influenced by the presence 
of a disturbance on the others and vice versa, while the 
simplified Kelvin-Helmholtz analysis hypothesises that when 
one interface is perturbed the others remain undisturbed or, in 
other words, the perturbations do not interfere with each other. 

The equations governing the complete case are the ones 
here reported. The equations governing the simplified case, 
instead, can be deduced from the general case simply 
neglecting the extra-diagonal terms. In such a case, the 
characteristic polynomial equation of order ( )12 −n  reduces to 
( )1−n  quadratic polynomial equations, each representing an 
eigenvalue relation for the single interface. Quite obviously the 
complete analysis requires much more theoretical and 
computational work than the simplified one. 

The physical implications of neutral stability boundaries 
obtained from both complete IKH and VKH analyses and 
simplified IKH and VKH analyses follow immediately from 
previous definitions. 

 



 

 

Physical considerations 
Kelvin-Helmholtz theory states the conditions under which 

infinitesimal waves appearing in stratified flows can be 
expected to grow or decay. Over the past few decades many 
authors [3,5,6,7,8,11,12,19] have dedicated large attention 
primarily to the stability analysis of two-phase flows and have 
recognised that neutral stability boundaries can be used to 
model flow pattern transitions in a variety situations. 

Some of them [5,6,7,8], in particular, have given a physical 
interpretation of both the IKH and VKH analyses in gas-liquid 
systems, showing that although the neutral stability boundaries 
can delimitate quite different regions on a flow pattern map, the 
amplification factors predicted by both analyses are very 
similar. 

More precisely, in the region where both the IKH and the 
VKH analyses predict stable flow, the IKH amplication factor 
is zero while the VKH amplification factor is slightly negative 
so that stratified smooth flow regimes are expected to exist. 

In the region where both the IKH and the VKH analyses 
predict unstable flow, both the IKH and the VKH amplification 
factors are positive and rapidly growing, thus either slug or 
annular flow is expected to exist depending on whether the pipe 
filling is greater or lower than 50%. This condition follows 
from simple physical observations. Consider a finite amplitude 
sinusoidal wave appearing on a liquid layer. If this wave is 
supposed to grow, slug flow can take place only if the liquid 
level is large enough to provide the liquid needed by the wave 
to block the pipe section, otherwise, if the level is inadequate, 
the wave is swept up around the pipe wall and annular flow 
occurs. 

Lastly, in the region where the IKH analysis predicts stable 
flow and the VKH analysis predicts unstable flow, the IKH 
amplification factor is zero while the VKH amplification factor 
is slightly positive so that either slug or stratified wavy flow is 
expected to exist depending on whether the pipe filling is 
greater or lower than 50%. 

Comparison of predictions with available experimental data 
have then clearly shown that the IKH and VKH neutral stability 
boundaries and the half-pipe filling curve can be used to predict 
mechanistically the transition from stratified flow to either 
stratified wavy, slug or annular flow. 

Stability analysis of stratified three-phase flows, despite its 
practical importance, has been much less investigated and the 
few obtained results are far from being exhaustive [9,18]. It is 
conviction of the writers that much work is still to be done on 
this subject. 

DISPERSION EQUATION AND THE EQUIVALENT 
EIGEN-VALUE PROBLEM 

The dispersion equation worked out in the previous 
paragraph appears in matrix form as: 
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which is the well known form of an eigenvalue problem 
with Z  and I  being respectively the zero and identity 
matrixes of order 1−n . 

PROPERTIES OF THE EIGEN-VALUE PROBLEM 
Key properties of the eigenvalue problem are here outlined 

through simple and well known results of which proof is not 
given. 

 

Statement 1 
Let complex matrices 1S , 2S  and 3S  be associated to the 

eigen-value problems: 
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If +c  is an eigen-value and +Ĥ  the corresponding eigen-

vector for problem (22) then +− −= cc  is an eigen-value and 
+− ±= HH ˆˆ  the corresponding eigen-vector for problem (23). 

 

Statement 2 
Let real matrices 1S , 2S  and 3S  be associated to the eigen-

value problems: 
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If +c  is an eigen-value and +Ĥ  the corresponding eigen-

vector for problem (24) then also its complex conjugate +c  is 

an eigen-value and its corresponding eigen-vector is +Ĥ . 
If −c  is an eigen-value and −Ĥ  the corresponding eigen-

vector for problem (25) then also its complex conjugate −c  is 

an eigen-value and its corresponding eigen-vector is −Ĥ . 
 

Statement 3 
Let complex matrices +S  and −S  be the stability matrices: 
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Since the block matrices, which the stability matrices are 
made of, are commutative, it follows that: 
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CONCLUSIONS 
In this paper a general mathematical model aiming at 

definition and computation of stability characteristics of 
stratified flows in horizontal or nearly horizontal pipes has been 
developed. The model stems from 1-D continuity and 
momentum equations in integral form treating an arbitrary 
number of fluids. It has been shown that the linearization of the 
governing equations around the steady state solutions and the 
assumption of a particular form of the perturbations yield an 
eigen-value problem, the roots of which represent complex 
wave speeds of the perturbations. The coefficients of the eigen-
value problem have been derived for the most general case and 
given in analytical form. The effects of inertia of the fluids, 
gravity, interfacial tensions, shear stresses and wave length 
have been included explicitly in the stability coefficients. Some 
general properties of the eigen-value problem have been 
outlined. 

REFERENCES 
[1] Andreussi P. and Persen L. N, Stratified gas-liquid flow in 

downwardly inclined pipes, International Journal of Multiphase 
Flow, Vol. 13, 1987, pp. 565-575. 

[2] Andritsos N., Williams L. and Hanratty T. J., Effect of liquid 
viscosity on the stratified-slug transition in horizontal pipe flow, 
International Journal of Multiphase Flow, Vol. 15, 1989, pp. 877-
892. 

[3] Barnea D., On the effect of viscosity on stability of stratified gas-
liquid flow - Application to flow pattern transition at various pipe 
inclinations, Chemical Engineering Science, Vol. 46, 1991, pp. 
2123-2131. 

[4] Barnea D. and Taitel Y., Structural and interfacial stability of 
multiple solutions for stratified flow, International Journal of 
Multiphase Flow, Vol. 18, 1992, pp. 821-830. 

[5] Barnea D. and Taitel Y., Kelvin-Helmholtz stability criteria for 
stratified flow: viscous versus non-viscous (inviscid) approaches, 
International Journal of Multiphase Flow, Vol. 19, 1993, pp. 639-
649. 

[6] Barnea D. and Taitel Y., Non-linear interfacial instability of 
separated flow, Chemical Engineering Science,  Vol. 49, 1994, pp. 
2341-2349. 

[7] Barnea D. and Taitel Y., Structural stability of stratified flow. The 
two-fluid model approach, Chemical Engineering Science, Vol. 49, 
1994, pp. 3757-3764. 

[8] Barnea D. and Taitel Y., Interfacial and structural stability of 
separated flow, International Journal of Multiphase Flow, Vol. 20, 
1994, pp. 387-414. 

[9] Barnea D. and Taitel Y., Stratified three phase flow in pipes - 
Stability and transition, Chemical Engineering Communications, 
Vol. 141-142, 1996, pp. 443-460. 

[10] Brauner N. and Moalem Maron D., Stability analysis of stratified 
liquid-liquid flow, International Journal of Multiphase Flow,  Vol. 
18, 1992, pp. 103-121. 

[11] Brauner N. and Moalem Maron D., Flow pattern transitions in 
two-phase liquid-liquid flow in horizontal tubes, International 
Journal of Multiphase Flow, Vol. 18, 1992, pp. 123-140. 

[12] Brauner N. and Moalem Maron D., Analysis of stratified/non-
stratified transitional boundaries in inclined gas-liquid flows, 
International Journal of Multiphase Flow, Vol. 18, 1992, pp. 541-
557. 

[13] Brauner N. and Moalem Maron D., The role of interfacial shear 
modelling in predicting the stability of stratified two-phase flow, 
Chemical Engineering Science, Vol. 48, 1993, pp. 2687-2879. 

[14] Brauner N. and Moalem Maron D., Dynamic model for the 
interfacial shear as a closure law in two-fluid models, Nuclear 
Engineering and Design, Vol. 149, 1994, pp. 67-79. 

[15] Crowley C. J., Wallis G. B. and Barry J. J., Validation of a one-
dimensional wave model for the stratified-to-slug flow regime 
transition, with consequences for wave growth and slug frequency, 
International Journal of Multiphase Flow, Vol. 18, 1992, pp. 249-
271. 

[16] Drazin P. G. and Reid W. H., Hydrodynamic stability, Cambridge 
University Press, 2004. 

[17] Lin P. Y. and Hanratty T. J., Prediction of the initiation of slugs 
with linear stability theory, International Journal of Multiphase 
Flow, Vol. 12, 1986, pp. 79-98. 

[18] Taitel Y., Barnea D. and Brill J. P., Stratified three-phase flow in 
pipes, International Journal of Multiphase Flow, Vol. 21, 1995, pp. 
53-60. 

[19] Taitel Y. and Dukler A. E., A model for predicting flow regime 
transitions in horizontal ad near horizontal gas-liquid flow, AIChE 
Journal, Vol. 22, 1976, pp. 47-55. 

 
 


