Long-run relative importance of temperature as the main driver to
malaria transmission in Limpopo Province, South Africa - a simple
econometric approach

Kibii Komen?!*, Jane Olwoch?, Hannes Rautenbach?, Joel Botail and Adetunji Adebayo3

1 Geoinformatics and Meteorology - Center for Environmental Studies, Department of Geography, University
of Pretoria, Pretoria, 0002, South Africa

2SANSA Earth Observation, South African National Space Agency (SANSA), Pretoria, South Africa

3Department of Town and Regional Planning, University of Pretoria, Pretoria, South Africa

*correspondence author: Kibii Komen Email: kibii.komen@gmail.com

Abstract

Malaria in Limpopo Province of South Africa is shifting and now observed in originally
non-malaria districts and it is unclear whether climate change drives this shift. This study
examines the distribution of malaria at district level in the province; determines direction
and strength of the linear relationship and causality between malaria with the
meteorological variables (rainfall and temperature) and ascertains their short and long
run variations. Spatio-temporal method, Correlation analysis and econometric methods
are applied. Time series monthly meteorological data (1998-2007) were obtained from
South Africa Weather Services while clinical malaria data came from Malaria Control
Centre in Tzaneen (Limpopo Province) and South African Department of Health. We find
that malaria changes and pressures vary in different districts with a strong positive
correlation between temperature with malaria, r = 0.5212, and a weak positive
relationship for rainfall, r= 0.2810. Strong unidirectional causality runs from rainfall and
temperature to malaria cases (and not vice versa): F (1, 117) = 3.89, p =0.0232 and F (1,

117) = 20.08,p<0.001 and a bi-directional causality exists between rainfall and

temperature and temperature to rainfall and from rainfall to temperature, F (1, 117) =
19.80; F (1,117) = 17.14 with p < 0.001respectively in both cases. Results show evidence

of strong existence of a long-run relationship between climate variables and malaria,
with temperature maintaining very high level of significance than rainfall. Temperature,
therefore, is more important in influencing malaria transmission in Limpopo Province.
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INTRODUCTION AND PURPOSE

Malaria is the most nagging parasitic infection affecting humans, accounting for an
estimated 300-500 million cases of malaria worldwide with 90% of annual cases
reported in sub-Saharan Africa (Reiter, 2008). A recent resurgence of malaria in the East
African highlands involves multiple factors, ranging from climate and land use change, to
drug resistance, variable disease control efforts, and other socio-demographic factors
(Patz et al., 2002; Pascual et al., 2006). Malaria epidemics have long been reported to
occur among vulnerable populations where immunity is often non-existent or poorly
developed. It is estimated that epidemic malaria causes between 12% and 25% of
estimated annual worldwide malaria deaths, including up to 50% of mortality in persons
less than 15 years of age (Thomson et al., 2005).

Malaria is an extremely climate-sensitive disease (Rogers and Randolph, 2000) common
in the tropics, (Patz and Olson, 2006), but also reported in mild-to-cold climates (Hulden,
2009). Rainfall and temperature anomalies are widely considered to be a major driver of
inter-annual variability of malaria incidence in the semi-arid areas of Africa (Connor et al,,
1999), and Thomson et al. (2005), recently recorded a warming trend in the East African
highlands that corresponded with concomitant increases in malaria incidences (Pascual
et al.,, 2006). Further, Siraj et al., (2014) provides evidence that an increase in the altitude
of malaria distribution in warmer years will increases malaria burden in the densely
populated highlands of Africa and South America. Ebi et al., 2005) studies on malaria in
Zimbabwe assert that by 2050, the projected warming would make Zimbabwe’s entire
highland area climatologically more favourable to malaria. Large epidemics of malaria
elsewhere have been associated with climate anomalies, such as in Colombia, the Indian
subcontinent, and Uganda (Bouma and van der Kaay, 1996). Recently, it has been shown
that in Botswana, indices of El Nifio-related climate variability can serve as the basis of
malaria risk prediction and early warning (Lindblade et al., 1999).

Empirical studies have reported rainfall (Githeko and Ndegwa, 2001; Thomson et al.,
2005; Nkomo et al,, 2006) and temperature (Paaijmans, 2010; Ngomane and de Jager,
2012) as the main climate factors that influence malaria transmission; however, other
studies have included other variables such as humidity and vegetation (Haque et al.,
2010;; Alemu et al,, 2011). Recent sensitivity analysis by Lunde et al., (2013) of some
malaria-transmitting anopheline mosquitoes of the Afrotropical region shows that
relative humidity can be very important for malaria transmission. Rainfall provides
condusive site conditions for mosquito breeding, and humidity and temperature together
affects mosquito survival (Poveda et al., 2001).

Warmer temperatures shorten the mosquito life cycle, thereby increasing its population
(Patz et al., 2005; Patz and Olson, 2006). High temperature shortens the development
time of vector-borne pathogens; and combined with favourable climate conditions, the
population of carrier-mosquitoes increases (Atul and Nettleman, 2005; Naqvi, 2009).
Alongside drug resistance and land-use patterns, this increases the incidence of malaria
(Harrus and Baneth, 2005; Pascual et al,, 2006; IOM, 2008; Relman et al., 2008). Mordecai
etal., (2013) concludes that as temperatures increase due to climate change, vector
control will likely become more important, difficult and expensive in temperate areas but
some warm areas may simply become too hot to support malaria. Studies report the most
efficient and optimal transmission to occur at 25°C (Lunde et al., 2013, Mordecai et al.,



(2013), but at extreme high or low temperatures (above 28°C or below 16°C), the cycle
cannot be completed and transmission decreases dramatically or cannot occur
((Mordecai et al., 2013, Zucker, 1996; Williams et al., 1999)

In both theory and literature, variation in rainfall and temperature will affect observed
malaria cases. Apart from climatic influence in malaria transmission, social and economic
factors—e.g., population and migration—also play a significant role (Haines et al., 2000;
van Lieshout et al., 2004). Moreover, a combination of mutating malaria parasites,
resource constrains, and weak health systems, implies low adaptive capacity (Kovats and
Haines, 2005).

South Africa has a warm climate, and much of the country experiences average annual
temperatures of above 17°C (DST, 2010). M Malaria transmission is distinctly seasonal
and limited to warm and rainy summer months. Case notifications generally increase
from November, peak in late March to May, and then decline by the end of June. Craig et
al. (2004) report that, in South Africa, the average seasonal pattern in malaria incidence
follows periodicity in rainfall and temperature with a three to four month lag. Although
we find this lag time rather long, elsewhere, the response time is not uniform. In the East
African Highlands for example, Zhou et al. (2004) finds a one to two and two to five month
lag for minimum and maximum temperature respectively, while Briet (2008) and
Hashizume et al. (2009) report rainfall lag time of zero to three months and two to three
months for Sri Lanka and Kenya, respectively.

Malaria is endemic in the low-altitude areas of South Africa at the border with
Mozambique and Zimbabwe. Specifically, transmission is prevalent in three provinces:
KwaZulu-Natal, Limpopo, and Mpumalanga province (Sharp et al., 1988; Gerritsen et al.,
2008; Ngomane and de Jager, 2012; Kondo et al., 2002). Limpopo Province
(Approximately 22-252S, 27-329E) lies in the low altitude area pre-disposed to malaria
due to warm conditions. The occurrence of malaria cases in the province has been
reported to be highly dependent on seasons (Bouma and van der Kaay, 1996).
Interventions through the malaria control program in South Africa rely heavily on the
intermittent use of indoor residual spraying in periods shortly after heavy rains when
malaria cases tend to rise. This program continues despite no empirical evidence that
rainfall drives malaria in the province. Therefore, there is a need to establish the relative
importance of rainfall and temperature in malaria transmission for effective malaria
control. It is important to understand the relative importance, strengths, and direction of
causality of climate-malaria drivers, as well as the role of rainfall and temperature as it
relates to malaria dynamics in the short and long run. This is central in enhancing malaria
control policy measures and informing the design of malaria early warning systems. Due
to the fact that climate change by itself will increase vulnerability (Bohle et al., 1994;; van
Lieshout et al,, 2004), target planning is necessitated by careful consideration of all
factors.

Despite reported reduction in malaria trends in South Africa through a combination of
various social, economic, and policy efforts (Blumberg and Frean, 2007); the impact of
recent climate change on malaria incidence remains poorly understood. Little is written
about climate impacts on malaria in Limpopo Province. While Shewmake (2008) does not
mention malaria in a study of household vulnerability to climate change, Gerritsen et al.



(2008), on the other hand, provide only an overview of seasonal malaria incidence and
mortality, and detect trends over time and places in the province.

This study uses Spatio-temporal, correlation, and econometric approaches (unit root tests
and causality tests) to achieve the above aims. The spatial method examines the
distribution of malaria at the district level within the province, while Pearson Correlation
determines the direction and strength of the linear relationship between malaria with the
meteorological variables. The econometric approach is applied to 1) validate and examine
the intrinsic characteristics (stationarity) of malaria cases, rainfall, and temperature; 2)
test the direction and relative strength of causation; and 3) ascertain the short run and
long run equilibrium relationship of the variables. The strength of econometric methods
lies in their ability to distinctively separate the effects of correlation from those that are
related to causality, thereby eliminating the common fallacy that correlation implies
causation. Causality is tested using the standard Granger Causality Test.

Conceptual framework

The conceptual framework for this study advances a multiple-factor explanation for
malaria, ranging from climate and land use change, to drug resistance, variable disease
control efforts, and other socio-demographic factors. Figure 1 below illustrates a
simplified, non-detailed interrelationship. This study looks at the climate-malaria inter-

relationship.
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METHODS
Data and sources

Monthly average rainfall and temperature along with the number of malaria cases from
January 1998 to July 2007 are used. Climate data was obtained from the South Africa
Weather Services, while malaria data were obtained from South African Department of
Health and Malaria control Centre in Tzaneen, captured through passive and active
surveillance systems. Details of the methods on how this data was collected can be
obtained from Gerritsen et al. (2008).

Description of the methods

a. Spatio-temporal and correlation
The spatial distribution of malaria at municipality and district levels were mapped
ArcGIS. Changes in the distribution were obtained using the Inverse distance weighted
(IDW) interpolation method. IDW routine assumes that each measured point has a local
influence that diminishes with distance. It gives greater weights to points closest to the
prediction location, and the weights diminish as a function of distance. Malaria records for
the various municipalities were spatially weighted and aggregated at the district level.
Weighted points at the centroid of each district were then interpolated using the Inverse
Distance Weighting model (Jorgensen et al., 2010; Messina et al., 2011; Hanafi-Bojd et al,,
2012). The model assumes that the mapped variable decreases in influence with distance
from its weighted location (Baltas, 2007). Given seasonalised climate variables, a linear
relationship between temperature, rainfall, and malaria cases, can be derived from the
Pearson Correlation coefficients as reported by Wilks (1995). The linear relationship
between temperature and malaria cases with the influence of precipitation can be
determined as a partial correlation Panofsky and Brier (1968) and Mardia et al. (1979).

b. Econometric approaches

Causality

In order to determine causality, Granger (1969) proposed a time series data-based
approach. Intuitively, the standard Granger-causality test examines whether past changes
in one variable, y, help to explain current changes in another variable, x, over and above
the information provided by the lagged values of x. If not, then one concludes that “y does
not Granger-cause x”.” To determine whether causality runs in the opposite direction,
from x to y, one basically repeats the experiment, but with the variables interchanged. The
null hypothesis that y does not Granger-cause x is rejected if the coefficients in the

equation are jointly significant based on the standard F-test.

There are three different types of situations in which a Granger-causality test can be
applied and four possible feasible outcomes. The situations are: (i) a simple Granger-
causality test with two variables and their lags; (ii) a multivariate Granger-causality test
with more than two variables and; (iii) Granger-causality in a VAR framework. For the
purposes of this study, we focus on the second situation (multivariate Granger-causality)
since we have three variables: malaria cases, rainfall, and temperature. The four feasible
outcomes are: 1) independence; here, neither malaria cases, rainfall, nor temperature,
Granger-cause each other; 2) unidirectional Granger-causality where rainfall or
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temperature independently Granger-causes malaria cases, but not the other way round; 3)
unidirectional Granger-causality where malaria cases cause rainfall or temperature
independently, but not vice versa; and 4) bi-directional (or feedback) causality where
malaria cases, rainfall, and temperature Granger-cause each other. Theoretically, it is
expected that rainfall and temperature influence malaria cases. A bi-directional causality
is expected between rainfall and temperature. We do not expect malaria cases to cause
rainfall or temperature.

Stationarity (unit root) test

As arequirement for time series analysis, this paper first studies the univariate
characteristics (stationarity) of rainfall, temperature, and malaria cases in this study
using the standard Augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1981) and
Kwiatkowski, Phillips, Schmidt and Shin (KPSS) tests (Kwiatkowski et al., 1992).
Stationarity is a process where the parameters of the process do not change with time;
i.e., the mean, variance, and autocorrelations are constant in time, while the non-
stationary variable is otherwise. A non-stationary variable can be transformed into a
stationary process by either adjusting for trends or including a time index as an
independent variable in the regression. Sometimes de-trending and inclusion of a time
index may not be sufficient to make the series stationary due to the possibility that
statistics for changes in the series between periods and seasons are constant, in which
case, the data is differenced. Differencing implies transforming the variables into a series
of period to period and/or season to season differences. A stationary series is denoted as
[ (0) but when the series is differenced once, it is said to be integrated to order one, i.e. |
(1) and a twice difference is I (2).

In econometrics, testing for stationarity is an indispensable requirement for two main
reasons. First, without stationarity tests, it is not possible to obtain any meaningful
sample statistics such as means, variances, and correlations with other variables.
Secondly, stationarity tests provide important clues in the search for an appropriate
methodology and forecasting model. Although it is known from the literature that
combining stationary variables with non-stationary variables in a regression model yields
spurious (non-sensical) results and, therefore, an unreliable outcome (Komen and
Kapunda, 2006; Gupta and Komen, 2009), models now exist that regresses both
stationary and non-stationary data. The recourse lies in the recently developed
Autoregressive Distributed Lag (ARDL)-Wald (Bounds) test framework by Pesaran and
Shin (1995, 1999), Pesaran et al. (1996), and Pesaran (1997).

Autoregressive Distributed Lag (ARDL)-Bounds Test Model

The ARDL methodology is applicable in testing causation and long relationship in cases
where not all variables are integrated to the same order. Cointegration (long-run
relationship) is a situation where two or more series are non-stationary, but a linear
combination of them is stationary. The advantage of using the ARDL-Bounds test in
testing cointegration is that while the conventional cointegration method estimates the
long-run relationships within the context of a system of equations, the ARDL method
employs only a single reduced form equation (Pesaran and Shin, 1995). Most importantly,
the ARDL framework avoids the larger number of specifications to be made in the
standard cointegration test, such as decisions regarding the number of endogenous and
exogenous variables to be included, the treatment of deterministic elements, as well as



the optimal number of lags to be specified (Duasa, 2007). The procedure can be applied
irrespective of whether the regressors are stationary or non-stationary, or mutually
cointegrated (Pesaran et al,, 2001).

Model specification
The ARDL specification takes the following form:

n n n
Alnmala, =y + > aAlnrain_ + > SAlIntemp_; + > @ Alnmala, ; +

i=0 i=0 i=1
S Inrain_, + g, Intemp, , + g;Inmala, , + &, (1)

Where Inmala, Inrain and Intemp are natural logarithms of malaria cases, rainfall and
temperature respectively; A denotes first difference operator; and 77 is the optimal lag
length.

The ARDL estimation proceeds in two steps. First is estimation of equation (1) by
Ordinary Least Squares (OLS) in order to establish the existence of a long-run linear
relationship. Once cointegration is confirmed, the second step is to estimate the long run
coefficients (equation 2).

7 7 7
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The investigation of the long-run relationship using the ARDL approach involves the
estimation of equation 2, through an Unrestricted Error Correction Model (UECM). Since
specification assumes that the disturbances are serially uncorrelated, the choice of
appropriate lag order is important (Sultan, 2010). The appropriate lag length in the ARDL
model is selected by either Akaike Information Criterion (AIC) or the Schwarz Bayesian
Criterion (SBC). The lag length that minimises SBC is selected. The unrestricted model is
then estimated and progressively reduced, eliminating the statistically insignificant
coefficients, and reformulating the lag structure where appropriate, to achieve
orthogonality. The unrestricted ECM minimises the possibility of estimating spurious
relations, while retaining the long-run information, suitable for economic interpretation
(Greenidge et al., 2001). A battery of diagnostic tests can then be used to check the
performance of the UECM (Akinboade et al., 2008; Hendry et al., 1984 in Sultan, 2010).

The short run dynamics is derived from the ARDL specification, equation (3), by
constructing and Error Correction model (ECM), equation (4).
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Where ECM is the error correction term, defined as:
n . n n
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All coefficients of the short-run equation are coefficients relating to the short-run
dynamics of the model’s convergence to equilibrium, and o represents the speed of
adjustment.

The F test is used to test the existence of long-run relationship. The null hypothesis (Ho) of
no cointegration among variables in equation (1) is tested against an alternative
hypothesis (H1), presented below.

Ho=8=8,=p,=0
H1=ﬂ1¢ﬂ2¢ﬂ3¢0

The asymptotic distribution of the obtained F-statistic is nonstandard regardless of the
degree of integration of the variables. This however, depends on whether (1) the
variables included in the ARDL model are I (0) or I (1); (2) the number of regressors; (3)
the model contains an intercept and/or a trend; and (4) the sample size. Two sets of
critical F-values, representing the lower bound and the upper bound, have been provided
by Pesaran and Shin (1999) for large samples. Narayan (2004) presents the critical F-
values for sample size ranging 30-80. If the computed F-statistic for a chosen level of
significance lies outside the critical bounds, a conclusive decision can be made regarding
the cointegration of the regressors. If the statistic is higher than the upper bound, the null
hypothesis of no cointegration can be rejected and the next step is to estimate the ARDL
ECM where the short-run and long-run elasticities may be determined (Narayan 2004;
Pesaran and Shin, 1999 in Sultan, 2010).

Computed and critical bounds of the F-Statistic are provided by (Pesaran et al., 2001). The
F-statistics should lie outside the bounds for a long-run relationship to exist, but for short-
run, the coefficient of the error correction model (ECM) should be negative and
statistically significant.



RESULTS

In this section, we report spatial, correlation, time series, and short- and long-run results
respectively.

Spatio-temporal and correlation results

1998

2007
Malaria Cases

Figure 2 : Ten-year municipal and district spatial distribution of malaria in Limpopo Province

The number of malaria cases at the district level show that malaria is high in the Mopani
and Vhembe districts throughout the study period of analysis, 1998 to 2007. The Vhembe
district consistently shows more malaria cases. In the Mopani district on the other hand,
malaria cases appear to be erratic, as shown on the maps. The overall trend shows that,
whereas there were fewer cases in 1998, this was followed by a slight increase from 1999
to 2006. Very few cases were reported in Capricorn, Waterberg, and Greater Sekhukhune.



Correlation of rainfall and temperature with Malaria— A graphical outlook
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Figure 3 : Correlation of rainfall and temperature with malaria—a graphical outlook

Figure 3shows a scatter plot for rainfall and temperature with malaria cases. More
observations are scattered away from the fitted line in the first panel (rainfall) than in the
second panel (temperature). This indicates a high positive correlation with temperature
than rainfall with an R-squared of 57.8%.

Figure 4 illustrates the trend relationship between average rainfall and average
temperature in relation to malaria cases.

Plot for Average Rainfall, Average Temperature and Malaria Cases
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—— LOG_MALARIA_CASES
—— LOG_AVERAGE_TEMP
—— LOG_AVERAGE_RAIN

Figure 4 : Plot for average rainfall, average temperature, and malaria cases



This reveals a very strong positive correlation between rainfall and temperature with
malaria cases, although higher rainfall does not increase malaria cases significantly (e.g.
1999, 2001 and 2005). An increase in temperature is, however, consistent with an
increase in malaria cases. The actual influence is further validated by statistics using the
cross correlation method. This study finds a strong positive correlation of climate
variables to malaria cases, with temperature exhibiting a stronger influence as compared
to rainfall. The coefficient for temperature and rainfall is found to be 0.5212 and 0.2810
respectively.

Results for causal relationships

Table [ presents Granger causality test results.

Table I : Causal Relationships.

Pairwise granger causality tests
Date: 06/23/13 time: 23:50
Sample: 1998M01 2007M12

Lags: 2

Null hypothesis Obs F statistic Prob.
@ RAINFALL does not Granger-cause Malaria 117 3.89071 0.0232

MALARIA does not Granger-cause RAINFALL 1.44730 0.2396

TEMPERATURE does not Granger-cause MALARIA 117 20.0805 |4.E-08
MALARIA does not Granger-cause TEMPERATURE 0.07211 |0.9305
TEMPERATURE does not Granger-cause RAINFALL . 19.7996 |4.E-08
RAINFALL does not Granger-cause TEMPERATURE 17.1410 |3.E-07

(b)

(c)

a. Rainfall versus malaria cases

We find a unidirectional causality from rainfall to malaria cases. For 117 observations, at a
5% significance level, the computed F-statistic is equal to 3.89071 with o = 0.0232

implies that the null hypothesis that rainfall does not granger-cause malaria is rejected.
Rainfall, therefore, influences malaria but reverse is not true. We do not reject the null
hypothesis that malaria granger-causes rainfall since the F-statistic equal to 1.44730 with
p =0.2396.

b. Temperature versus malaria cases

We also find a unidirectional causality from temperature to malaria cases. The computed
F-statistic is 20.0805 with  p < 0.001 implying that reject the null hypothesis that

temperature does not granger-cause malaria cases while from malaria cases to
temperature, the-statistic is 0.07211 with p > 0.001, implying malaria cases does not

granger-cause temperature.
c¢. Temperature versus rainfall

This study finds a bi-directional causality between temperature and rainfall at a 1% level
of significance. The F-statistic for the causation from temperature to rainfall and from



rainfall to temperature is 19.80 and 17.14 respectively with p < 0.001in both cases
meaning that rainfall influences temperature and vice versa.

Stationarity (unit root) results

Table Il is a summary of the stationarity test.

Table II : Unit Root Test Results.

Log of malaria Log of rainfall Log of temperature
Test First First

Levels l_rs Levels l-I‘S Levels First difference

difference difference
ADF, -7.926%** -2.252 -11.029%***
ADF; -4.283***
KPSS, 0.620 0.033%** 0.027%***
KPSS-
. |Stationary at Stationary at Non- Stationary at first

Conclusion ) _

levels: 1(0) levels: [(0) stationary |difference: I(1)

Computed ADF Augmented Dickey-Fuller (Dickey and Fuller 1981), KPSS Kwiatkowski, Phillips, Schmidst
and Shin tests (Kwiatkowski et al. 1992).

*, ** and *** Means significance at 10%, 5%, and 1%, respectively.

The results indicate that malaria and rainfall follow an autoregressive process with a unit
root as the null hypothesis is rejected for these variables, while for temperature, the null
hypothesis for existence of a unit root could not be rejected, implying that rainfall and
malaria cases are stationary, while temperature is non-stationary.

ARDL results

Short-run and long-run results

These are results of estimating equation (1). This stationarity test result pointed to ARDL
-Bounds Test as the appropriate methodology for analysis of the analysis of the short-run
(in this case, variation within months) and long-run (variation in years) dynamics of
rainfall and temperature as they relate to malaria. UECM results are summarised in Table
I11, following similar procedure by Hendry et al., (1984), and Akinboade et al., (2008).



Table III : Unrestricted Error Correction Model.
Variables Coefficient |Standard error
Constant -3.158603 |2.156372
D(LMALA(-2)) |-0.473095 |0.123357***
D(LRAIN(-1)) |0.745233 |0.248330***
D(LTEMP(-1)) 4.343676 |1.129335***
LMALA(-1) 0.249101 |0.104620**
LRAIN(-1) -0.499685 |0.300813*

Diagnostic tests: Rampsey RESET = 2.271595 (0.1350): null hypothesis that model has no omitted variable
is not rejected implying no omitted variables in the model. White’s test = 1.2668 (0.3869). Null hypothesis
of homoscedasticity is not rejected implying that variance of the variables in the model is homogeneous.
Breusch-Godfrey LM test = 0.868 (0.423). Null hypothesis of no serial correlation is not rejected implying
that the model does not suffer from serial correlation.

Computed LMALA logarithm of malaria, LRAIN logarithm of rainfall, LTEMP logarithm of temperature, (-1
and -2 indicate lags).

*, *k xik Means significance at 10%, 5%, and 1%, respectively.

The model passes all basic time series tests. There is no autocorrelation or serial
correlation, no omitted variables; variance is homogeneous and residuals are normally
distributed as confirmed by Durbin Watson statistic, Ramsey RESET test, Breusch-
Godfrey LM, White’s test and Jarque-Bera test. The R-Squared for the UECM is 50%, which
indicates a relatively good and satisfactory fit in this case. The appropriate lag-length
automatically selected by SBC is 3. Empirical studies report non-uniform lag time for
malarial response to climatic variation. There seems to be an average malaria response
within three months from the onset of the rainy season. Briet (2008) reports rainfall lag
time of zero to three months, while Hashizume et al. (2009) report two to three months.
Regarding temperature, Zhou et al (2004) finds minimum and maximum temperature lag
time to be between one to two months and two to five months, respectively.

Bounds test (cointegration) results are presented in Table IV.

Table IV : Cointegration Properties.

Critical bounds (5%)
Dependent variable F stat
Bottom Top

d (Imala) 8.29 13.23 435

k = 3. Computed, critical bounds are obtained from Narayan (2004). d (Imal) is the first difference of
logarithm malaria.

The F-statistic is outside the critical bounds (8.29 lies outside 4.35tp and 3.23pottom). We
therefore reject the null hypothesis of no cointegration at a 5% significance level, and
conclude that a long-run relationship (cointegration) exists between malaria and the
climatic variables.

The long-run relationship is reported in Table V, while the short-run results are reported
in Table VI.
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Table V : Long-Run Relationship Between Malaria Cases with Rainfall and Temperature.
Variable |Coefficient Standard error

C -6.155823 |0.0006***

LRAIN |-0.373873 |0.2648

LTEMP |4.557185 |0.0000***

LRAIN the logarithm of rainfall, LTEMP logarithm of temperature.
*** Means significance at 1%, respectively.

Table VI : Short-Run Relationship Between Malaria Cases with Rainfall and Temperature.
Variable Coefficient [Standard error

C -0.080311 |0.2668

D (LMALA(-2)) |-0.231066 |0.0047***

D (LMALA(-3)) |-0.205359 |0.0120**

D (LRAIN) -0.263281 |0.1509
D (LTEMP(-1)) 4.784184 |0.0000***
Ecm -1 0.005002 |0.9783

-1 and -2 indicate lags.
LMALA logarithm of malaria, LRAIN logarithm of rainfall, LTEMP logarithm of temperature.
** and *** Mean significance at 5% and 1%, respectively.

In both short- and long-run instances, temperature maintains a very high level of
significance: 4.784184 (0.0000) and 4.557185 (0.0000); while rainfall is low in both: -
0.263281 (0.1509) and 0.373873 (0.2648).

DISCUSSION

We report GIS results of five districts (Capricorn, Greater Sekhukhune, Mopani,
Waterberg, and Vhembe) in Limpopo Province. The Vhembe district consistently shows
more malaria cases, while very few cases were reported in Capricorn, Waterberg, and
Greater Sekhukhune throughout the period of analysis. In the Mopani district, malaria
cases appear to be erratic. Spatial differences could be explained by socio-economic
reasons, migration, malaria control programs, and even climate change. Understanding
the differences in spatial distribution and areas burdened is crucial for targeted control
measures.

In this study, rainfall and temperature are positively correlated with malaria, while
temperature shows a stronger influence as compared to rainfall. We find the correlation
coefficient of temperature and rainfall to be 0.5212 and 0.2810 respectively. Positive
correlation between malaria and climate variables has been reported elsewhere. Rainfall:
Huang et al. (2011); for Tibet: Briét et al. (2008), for Sri Lanka: Rainfall and temperature:
Craig et al., (2004); Githeko and Ndegwa (2001) studies on Kenyan Highlands in Eastern
Africa. Rainfall, temperature, humidity and vegetation cover: Haque et al., (2010) for
Bangladesh. In Ghana, a positive correlation was found to exist between malaria and
climate elements (Nkomo et al.,, 2006). The strength of the effect seems to flow from
humidity to temperature and rainfall. This result is consistent with Huang et al. (2011),
who found the correlation coefficient for Tibet to be 0.518 and 0.348 for temperature and
rainfall respectively, concluding that temperature had a greater influence on malaria.



Regardless of the greater influence of temperature, warming and rainfall would create the
conditions for malaria vectors to thrive (Epstein et al., 1997), boost the population of
disease-carrying mosquitos, and result in increased malaria epidemics (Lindsay and
Martens, 1998; Nkomo et al,, 2006). Increases in temperature generally accelerate vector
life cycles, and also decrease the incubation period of the parasite (Kovats and Martens,
2000; Huang et al,, 2011). However, at a very high temperature, the mosquito life cycle
cannot be completed and transmission cannot occur (Zucker, 1996; Williams et al., 1999).
It is interesting to observe a strong influence of temperature on malaria transmission in
Limpopo; Ngomane and de Jager (2012), however, have reported rainfall as the main
driver in the neighbouring Mpumalanga province.

The limitations of this study relates to the fact that temperatures in the study area is
limited to a range on the curve where it is linear. Also, the study did not show whether
year to year variations in malaria was driven by year to year variability in
temperature/precipitation. This will be the focus of the forthcoming paper.

CONCLUSION

This paper has utilised spatial, correlation methods as well as bound testing approach to
cointegration developed within an autoregressive distributed lag framework to test
spatial malaria distribution at district levels, test the strength of correlation, and
determine the existence of a long-run equilibrium relationship between climatic variables
with malaria. There is strong evidence that climate influences malaria significantly both in
the short and long run. We find that malaria pressure varies in different districts. We
recommend (1) a study to ascertain the thresholds of temperature and rainfall under
which malaria cases are probable; (2) the development and enhancement of early
warning systems for malaria at the district level; (3) strengthening collaboration,
partnership, and response integration with other principle sectors, such as
meteorological departments; and finally,4, (4) long-term public health planning to combat
malaria as a part of the key functions of the public health systems.
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