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Abstract

This paper discusses the maintenance plan optimization problem for the energy efficiency purpose in the building energy
efficiency retrofitting context. A subproblem namely the Building Retrofitted Facilities Corrective Maintenance Planning
(BRFCMP) problem is proposed, where the corrective maintenance for malfunctioning retrofitted items are involved.
The aggregate performances of the homogeneous retrofitted item groups, instead of the individual item performances,
are the main consideration of the optimization issue. An aggregate population level optimization model is proposed to
address the BRFCMP problem. When further taking into account the uncertainties, the optimization problem is cast
into an optimal control problem to reduce the consequent adverse impact, given the dynamic nature of the aggregate
performances of the item groups during operation. Both the optimization and control system approaches are applied to
solve the BRFCMP problem without or considering uncertainties. An actual building retrofitting project is used as the
case study to investigate the important role of maintenance to the building energy efficiency. The effectiveness of the
proposed approaches is verified by simulation results.

Keywords: Energy efficiency, building retrofitting, facilities maintenance, control system framework, optimal control,
model predictive control

1. Introduction

Building energy efficiency is one of the most popu-
lar research areas today. One major topic in this area
is the energy efficiency retrofitting in existing buildings.
The focuses of energy efficiency retrofitting research at the
current stage are the implementation of energy conserva-
tion technologies [1, 2, 3, 4, 5, 6] and the optimization of
retrofitting plans [7, 8, 9, 10, 11, 12]. However, only a few
studies have been conducted on the maintenance part of
an energy efficiency project [13, 14, 15]. The asset main-
tenance for reliability purpose is a widely studied topic in
the reliability engineering area, whereas the maintenance
for energy efficiency purpose lacks exploration.

For a building energy efficiency retrofitting project,
maintenance is required for the sustainability of the energy
performances. In practice, the performances of the energy
efficiency retrofits can deteriorate subject to usage and fail-
ures of the retrofitted items [16]. According to the Mea-
surement and Verification (M&V) principles [17, 18], the
energy efficiency of a retrofitting project can be evaluated
by its aggregate energy saving. The energy saving cannot
be directly measured, since they represent the absence of
energy use. Instead, savings are determined by comparing
measured use before and after implementation of a project,
making appropriate adjustments for changes in conditions.
Taking advantage of the corresponding energy audit re-
sults, the retrofitting plan can be optimized to maximize

the aggregate energy saving of the project, subject to a se-
ries of constraints. However, most existing studies ignore
the possible dynamics of the retrofits’ energy performances
during operation. From the energy efficiency point of view,
a malfunctioning retrofitted item contributes less or even
zero energy saving. Wang et al. [11] takes into account
such impact when optimizing the long-term energy saving
of a retrofitting project. From the management perspec-
tive, the increase of malfunctioning items, i.e., the decrease
of the population of available items, implies the inconsis-
tency of the aggregate energy performances of the project.
Given the absence of the maintenance actions, such energy
efficiency deterioration cannot be reversed, resulting in the
inefficiency of the retrofitting project and even worse, the
violation of the energy performance contract. In conclu-
sion, it is necessary to take into account maintenance in
building energy efficiency retrofitting projects.

The scope of maintenance actions includes the activ-
ities required to operate and maintain the facilities and
their supporting infrastructures in a condition to be used
to meet their intended function over the operating period
1. In the reliability engineering area, maintenance and
replacement problems of deteriorating systems have been
studied for many years [19]. Maintenance actions are gen-
erally classified into two categories: Corrective Mainte-

1Comprehensive Facility Operation & Maintenance Manual, 2013,
http://www.wbdg.org/om/om_manual.php
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nance (CM) and Preventive Maintenance (PM). CM in-
volves the repairs and replacements against failures and
PM refers to all actions performed in an attempt to retain
an item in a specified condition, according to MIL-STD-
721C2. Usually, CM occurs when the need arises, while
PM is a planned program based on periodic inspections,
adjustments, and replacements. Besides the usual CM and
PM, emergency maintenance, such as restoring lost elec-
trical power, can be taken into account in some projects.

From the perspective of building energy efficiency, the
implementation of CM and PM actions adjusts the ag-
gregate population and condition of the available items
to preserve the energy performances of the retrofitting
project. Moreover, the operation of the retrofits can in-
fluence the fatigue and energy performance of an item
over the long term, and consequently the available item
population dynamics and aggregate energy performances.
Given a retrofitting project, both the maintenance plan
and the operating schedules of the retrofitted items can
be optimized to support the sustainability of the building
energy efficiency. However, a retrofitting plan is usually
optimized based on the performance characteristics that
are estimated over a long time period, e.g., 10 years, the
population of the retrofitted item group manifests a dy-
namic change in one or two years due to the maintenance
actions, and the operation usually concerns issues of short
intervals such as days or hours. In addition, budget limits
are introduced in many practical cases, which also restrict
the implementation of the maintenance actions. Therefore,
building energy efficiency retrofitting optimization prob-
lems with multiple time scales and substantial magnitude
could become complex if the maintenance and operation
of the retrofitted facilities are taken into account, due to
the complexity and interplay of the retrofitting planning,
maintenance and operation.

The main purpose of this paper is to propose a method
to incorporate the maintenance planning optimization into
the building energy efficiency retrofitting project. At the
current stage, a subproblem of the maintenance planning
optimization problem that is adopted from [13], namely
the Building Retrofitted Facilities Corrective Maintenance
Planning (BRFCMP), is investigated for this purpose. The
retrofitted facilities refer to the totality of the retrofitted
items involved in the retrofitting project. The BRFCMP
problem considers only the planning of CM actions that
restore the malfunctioning items from failures and break-
downs to normal working conditions. For simplicity, it is
assumed that the BRFCMP issue addressed here is plan-
ning the repair and replacements of the malfunctioning
items according to predefined maintenance time schedule.
The optimization of maintenance periodicity is therefore
excluded at the current stage. The maintenance actions
are planned at the aggregate population level, rather than

2MILITARY STANDARD: DEFINITIONS OF TERMS FOR
RELIABILITY AND MAINTAINABILITY, 1981, http://www.

everyspec.com/MIL-STD/MIL-STD-0700-0799/MIL-STD-721C_1040/

at the level of individual items. In the BRFCMP prob-
lem, items of the homogeneous classes corresponding to
to different retrofits are aggregated to obtain the man-
aged retrofitted item groups. A hypothesis is made to
obtain the classification of homogeneous retrofitted items.
There are three kinds of related characteristics: the in-
herent energy and reliability performance, the operational
environment of the items and the corresponding operating
schedules. For example, a group of retrofitted items are
considered as one class when they are the same model from
the same producer, and they all work in a cool and dry
climate, with similar workloads. Items from the same ho-
mogeneous class are assumed to manifest same energy and
financial performances. The robustness of this hypothesis
in practice yet remains an open problem that requires fur-
ther exploration. Emergency maintenance is not an option
that can be planned, therefore the equipment concerning
emergency maintenance are not included in any of the ho-
mogeneous classes. The energy and financial performances
of these classes are thus the main concerns of the discussed
maintenance planning.

Based on the homogeneous item groups classification,
an aggregated population level optimization model for the
BRFCMP problem is proposed when uncertainties are not
taken into account. Given the BRFCMP a problem suc-
ceeding the retrofitting planning optimization that is often
multi-objective [20], two objectives are introduced: max-
imizing the long-term aggregate energy saving and maxi-
mizing the economy of the project over a finite period of
time. The objective functions are formulated according
to a series of performance measures, and a weighted sum
method is employed as the solution to the multi-objective
optimization problem, as the weighted sum method pro-
vides a basic and easy-to-use approach that gives an ac-
ceptable approximation of one’s preference function when
the preference information is not too complex [21]. One
of the key issues of applying maintenance planning opti-
mization method is the characterization of the population
deterioration of the homogeneous item groups, where the
building energy optimization brings in the reliability engi-
neering studies, where deterministic or stochastic models
of facilities reliability can be found. A series of common
failure distributions, reliability and hazard rate functions
for facilities with various reliability characteristics is pro-
vided by [22], according to which the population degra-
dation of various types of retrofitted items, e.g., the non-
repairable products and the repairable products, can be
characterized. It is expected that the research progress in
the reliability engineering area will facilitate the advance of
building energy optimization studies, and vice versa. The
characterization of item group population degradations
can also be found in some existing studies in the Clean
Development Mechanism (CDM) environment, which con-
sider the population degradation either by a simplified lin-
ear assumption [23] or an experimental data fitting [24].
The optimization model formulation is the first part of the
main work in this paper.
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Another issue of the BRFCMP problem is the adverse
impact of the uncertainties during operation. In practice,
the measurements of the retrofitted building, namely the
retrofitted plant, are usually done by the sampling and
estimation methods. As a result, sampling errors can be
introduced into the optimization model. The accuracy of
the population degradation models is also limited. Fur-
thermore, the influence of human behaviors, environmen-
tal factors and the stochastic reliability performances of
the products are involved in practical cases, which all re-
sult in performance uncertainties. The existing optimiza-
tion models lack the ability to address the problem of
the uncertainties. Given the dynamic nature of the ag-
gregate performances of the retrofitted plant, the control
system approach, which is an almost unexplored perspec-
tive to solve the building energy efficiency retrofitting op-
timization problems with uncertainties, can be brought
in. Several studies have been conducted to attempt to
employ the control system approaches to solve the main-
tenance optimization problem for reliability purposes [25,
26, 27], whereas most of which focused on single-unit or
two-component machines. The main concern of these ex-
isting studies is the control of single machine or unit. Re-
cently, Ye et al. [15] investigates employing the control
system approach to the optimal maintenance plan for en-
ergy efficiency lighting projects. This research focuses on
the replacements of the malfunctioning lamps, where the
population deterioration of the lamp groups, rather than
the performances of individual lamps, are taken as the
plant of the control system. Wang et al. [13] also employ
the control system perspective to investigate the mainte-
nance plan optimization in a building retrofitting context.
Similarly, for the BRFCMP problem, the totality of the
retrofitted item groups are taken to be our control plant,
where the population of available items from each homo-
geneous item group as the state variables of the system.
The corrective maintenance actions, i.e., the respective
numbers of maintained items from the homogeneous item
groups, are taken as the control inputs. The measured
output of the system can be the aggregate energy sav-
ings, capital investment or other performance measures in
different cases. Accordingly, the population deterioration
can represents the internal dynamics of the state variables.
The aforementioned uncertainty factors can be described
as disturbances on the state variables or measured out-
put. For simplicity, two further assumptions are made,
namely: the disturbances of the system are generally con-
sidered as a random noise on state variables; the sampling
errors are simplified as a random noise on the measured
output. In this way, the BRFCMP optimization prob-
lem considering uncertainties is cast into an optimal con-
trol problem, where the optimization objectives are trans-
formed into the control objectives. A Model Predictive
Control (MPC) based approach is employed to solve the
BRFCMP optimal control problem. The MPC approach
finds the optimal control inputs by predicting the future
based on the present state of the system, and is inher-

ently robust against disturbances. It has become one of
the most widely used control algorithms to solve many in-
dustrial control problems in the fields of engineering, food
processing, automotive applications, and aerospace appli-
cations [28], demand-side management [29] and dispatch
of power generation [30]. The control system approach is
the second part of our main work. As a case study, a prac-
tical building retrofitting project is used to test and verify
the feasibility of the presented optimization and control
approaches.

The remainder of the paper consists of five sections.
Section 2 gives the formulation of the multi-objective BR-
FCMP optimization problem. Section 3 introduces the
weighted sum method as a solution to the BRFCMP prob-
lem. Section 4 introduces the control system approach to
the BRFCMP optimal control problem when considering
uncertainties, and the MPC approach as a solution. Sec-
tion 5 provides the details of the case study and the sim-
ulation results and analysis. Section 6 draws conclusion
and discusses future research.

2. Multi-objective BRFCMP Problem

2.1. Variables definitions

Assumed there are I groups of homogeneous retrofitted
items involved in a building energy efficiency retrofitting
project. Let tk = kS, k = 0, 1, 2, ..., T denote the sampling
instants over the a finite decision horizon [0, TS), namely
the sustainability period, where S indicates the sampling
interval. The population of the item group i at time tk
is represented by xi(tk), and accordingly the system state
can be described:

x(tk) = (x1(tk), x2(tk), ..., xI(tk))T . (1)

x(t0) = x0 indicates the initial state of the retrofits that
is decided by the retrofitting plan. In practice, xi(tk) with
k > 0 are obtained by the inspection at tk. For the en-
ergy conservatism, xi(tk) is considered the state over in-
terval [tk−1, tk). The maintenance action for item group
i is decided based on the inspection result xi(tk) and im-
plemented over interval [tk, tk+1). Let ui(tk) denote the
maintenance action applied to item group i over inter-
val [tk, tk+1). The aggregate population level maintenance
plan at tk can be represented by:

u(tk) = (u1(tk), u2(tk), ..., uI(tk))T . (2)

For the convenience of further derivation, x and u are
employed to represent the system states and maintenance
actions over the sustainability period, where u are the de-
cision variables in the BRFCMP problem. The system
state at the next sampling instant can thus be estimated:

xi(tk+1) = Di(xi(tk)) + ui(tk). (3)

where Di(·) denotes the population degradation of the
item group i over [tk, tk+1). Given Di(·) with i = 1, 2, ..., I
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known a priori and taking advantage of equation (3), it is
possible to find a series of maintenance actions, i.e., the
optimal maintenance plan, that maximizes the selected
performance measures. In our model, two types of per-
formance measures, the energy performance indicator and
the economy performance indicator are selected. The for-
mulations are given in the next section.

2.2. Performance measures formulation

The performance measures are computed by estimat-
ing the system states over the sustainability period. The
energy performance indicator in this model is the long-
term energy saving i.e., the aggregate energy saving over
the sustainability period. The economy performance indi-
cator is the Internal Rate of Return (IRR). To obtain the
two performance measures, a series of performance char-
acteristics of the involved retrofitted items are defined and
utilized. Given the energy saving of the retrofitted item
a performance characteristics known a priori, let a(tk) de-
note the saving amount over interval,

a(tk) = (a1(tk), a2(tk), ..., aI(tk))T , (4)

where ai(tk) denotes the energy saving that an item from
item group i contributes over [tk−1, tk). Similarly, the cost
savings can be represented,

b(tk) = (b1(tk), b2(tk), ..., bI(tk))T , (5)

and the maintenance costs per item at instant tk are given:

c(tk) = (c1(tk), c2(tk), ..., cI(tk))T . (6)

Taking advantage of these characteristics, the aggregate
long-term energy saving can be obtained:

ES|all =
T∑
k=1

ES(x(tk), tk) =
T∑
k=1

I∑
i=1

ai(tk)xi(tk), (7)

and the aggregate cost saving:

CS|all =

T∑
k=1

B(x(tk), tk) =

T∑
k=1

I∑
i=1

bi(tk)xi(tk), (8)

where B(x(tk), tk) denotes the aggregate cost saving over
interval [tk−1, tk). The cost saving in our model is consid-
ered the main income of the retrofitting project, thereby
B(x(tk), tk) also represents the cash inflow over [tk−1, tk),
from the economy point of view. The cash outflow is the
expenditure of the maintenance actions given as following,

h|all = h0 +

T∑
k=1

h(u(tk), tk) = h0 +

T∑
k=1

I∑
i=1

ci(tk)ui(tk−1),

(9)
where h0 denotes the initial investment for the implemen-
tation of the retrofitting plan and h(u(tk), tk) the cash

outflow over [tk−1, tk). Taking advantage of the time-
dependent cash inflow and outflow, the IRR can be ob-
tained. The calculation of IRR is related to the Net Present
Value (NPV) which is computed as following,

NPV =

T∑
k=1

B(x(tk), tk)− h(u(tk), tk)

(1 + d)n−1
− h0, (10)

where d is the selected discount rate. n = 1, 2, ... repre-
sents that the sampling instant tk lies within the n-th year
after the implementation of the retrofitting project. IRR,
denoted by dR|T , refers to the discount rate that makes
the NPV over [0, TS) equal to 0. A larger IRR implies the
better economy of a project.

As mentioned in the previous section, the nature of the
BRFCMP problem is a multi-objective optimization prob-
lem. Taking advantage of the aforementioned performance
measures, two objective functions are formulated: fe(x,u) =

ES|all
α

,

fr(x,u) = IRR,
(11)

where x and u are noted to emphasize the dynamic na-
ture of the aggregated performances. α denotes the tar-
geted energy saving amount that is contracted before the
retrofitting. A series of constraints are involved in the BR-
FCMP problem, including the energy performance agree-
ment, the maintenance budget limit, the payback period
limit, and the pre-decided maintenance time schedule. The
constraints are represented by the following equation,

ES|all ≥ α,
T∑
k=1

h(tk) ≤ β,

NPV |Tp

0 ≥ 0,

ui(tk) = 0, k /∈ Q,

(12)

where β denotes the overall maintenance budget limit.

NPV |Tp

0 denotes the NPV computed over [0, TpS) where
Tp represents the maximum acceptable payback period.
Q represents the maintenance time schedule, where Q =
{k1, k2, ...} denotes the set of time instants over [0, TS).
After an arbitrary time instant from Q, the maintenance
actions is planned and implemented over the following
sampling interval. Accordingly, if k /∈ Q, ui(tk) = 0.

2.3. Population degradation formulation

In the current BRFCMP problem, two types of pop-
ulation degradation models are employed to characterize
the population dynamics of different item groups [13]. One
corresponding to nonrepairable items such as the lighting
facilities and motion sensors, and the other to repairable
items such as heat pumps. Equations (13) and (14) de-
scribe these degradation models, respectively:

Di(xi(tk)) = bicixi(tk)2/xi − bixi(tk) + xi(tk), (13)
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Di(xi(tk)) = xi(tk)e−ζi , (14)

where the coefficients b, c, ζ are estimated by the Mean
Time To Failure (MTTF) of the nonrepairable items and
the Mean Time Between Failures (MTBF) of the repairable
items. The population degradation model for nonrepairable
products as described in equation (13) is taken from [24].
Let Li denote the MTTF, i.e., the rated lifetime of the
item from item group xi. The general form of the time-
domain degradation model Pi(t) = (ci + ebit−Li)−1 can
be found in [24], where Pi(t) is the proportion of surviv-
ing items in the whole group. For this degradation model,
given Li is known , bi and ci can be obtained by solving
out the following equations:{

Pi(0) = 1,
Pi(Li) = 0.5,

(15)

where bi and ci can also be identified from the experimen-
tal data. Equation (14) describes the degradation model
for repairable products. As the rated lifetime is usually
several times longer than the MTBF for such items, ac-
cording to the reliability bathtub curve, the failure rate
of such items is an approximately low constant before the
end of the lifetime. Therefore an exponential degradation
model is adopted from [22] in equation (14). Let θi de-
note the MTBF of the facility, ζi is then obtained from
the following equation:

ζi = (θi)
−1. (16)

Both equations (13) and (14) are actually statistical mod-
els considered as first-order Markov processes in the cur-
rent BRFCMP problem. Once again for simplicity of dis-
cussion, another important assumption is made: the re-
placed or repaired items and the malfunctioning items are
from the same respective homogeneous classes, they thus
share the same failure pattern. The MTTF and MTBF
are known a priori according to the model. Such informa-
tion can be obtained from the equipment producers or the
historical performances of the items.

3. The Weighted Sum Solution to the BRFCMP
Problem

3.1. The weighted sum of objective functions

At the current stage, a weighted sum method that has
been utilized in similar studies [10, 11] is employed to solve
the multi-objective BRFCMP problem. Taking advantage
of equation (11) and (12), the multi-objective optimiza-
tion problem is translated into the minimization of a util-
ity function, which is the weighted sum of the objective
functions associated with stationary penalty functions cor-
responding to the constraints, given by equation (17):

J = −λ1fe(x,u)− λ2fr(x,u) + ω

3∑
n=1

max(0, Pn), (17)

where λ1, λ2 are positive constants subject to λ1 +λ2 = 1.
ω is a large positive integer. Pn are the penalty functions
defined as following:

Pn =


α− ES|all, n = 1,
T∑
k=1

h(tk)− β, n = 2,

−NPV |Tp

0 , n = 3

(18)

The BRFCMP optimization problem is actually to find a u
to minimize the utility function in equation (17) and (18).
The DE algorithm is employed to solve this minimization
problem over the interval [0, TS). The details of the DE
algorithm is introduced in the following section.

3.2. A Differential Evolution algorithm solution

In existing studies, DE and other evolutionary algo-
rithms are widely and successfully applied to solve the en-
ergy optimization problems. The DE algorithm is easy
to implement, and it is verified to be effective for a simi-
lar optimization problem in [11]. Given the non-analytic
objective function in equation (11), the DE algorithm is
more feasible than conventional NLP algorithm. In DE al-

Algorithm 1 Pseudocode of the DE algorithm
Definition:
NP : the population size;
D: dimension of the problem;
X: the decision matrix with the size of NP*D;
F : the learning rate;
J : the function value vector with the size of np*1;
Mg: the maximum number of generations for stopping criterion.

1: BEGIN
2: Set CR = 0.5; F = 0.5; A = Ø;
3: Create a random initial population {Xi,0|i = 1, 2, ..., NP};
4: while g = 1 to Mg do
5: while i = 1 to NP do
6: Randomly select Xr1,g 6= Xi,g from current population

P;
7: Randomly select Xr2,g 6= Xi,g from current population

P;
8: Randomly select Xp

best,g as one of the 10% best vectors

from P;
9: Vi.g = Xi.g + F · (Xp

best,g −Xi.g) + F · (Xr1.g −Xr2.g);

10: Generate jrand = randint(1, D);
11: while j = 1 to D do
12: if j = jrand or rand(0, 1) < CR then
13: Uj,i,g = Uj,i,g ;
14: else
15: Uj,i,g = Xj,i,g ;
16: end if
17: end while
18: if J(Ui,g) ≤ J(Xi,g) then
19: Xi,g+1 = Ui,g ;
20: else
21: Xi,g+1 = Xi,g ;
22: end if
23: end while
24: end while
25: END

gorithm, a set of candidate solutions, namely individuals,
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are adopted to represent the possible values of the deci-
sion variables u. These individuals are moved around in
the search-space which is regulated by the boundary of the
problem. By implementing a series of mathematical opera-
tions including Mutation, Corssover and Selection (see [31]
for further details), a satisfactory solution can hopefully,
although not guaranteed, be discovered. The pseudo-code
of the employed DE algorithm is given in Algorithm 1.

In Algorithm 1, D denotes the dimension of the prob-
lem, G refers to the maximum step of iteration and NP
represents the population size. The CR and F are the
crossover probability and the learning rate respectively.
Xp
best,g is selected from the 10% best vectors of the cur-

rent population. Xr1.g − Xr2.g is a differential vector for
the mutation operation, where Xr1.g, Xr2.g are randomly
selected from the current population. The mutation vec-
tor Vi,g and the child vector Ui,g are accordingly gener-
ated. J(·) denotes the utility function in equation (17).
After Mg steps, the individual with smallest utility func-
tion value is the output of the DE algorithm.

4. The Control System Approach to the BRFCMP
Problem Considering Uncertainties

The aforementioned optimization model excludes the
uncertainties in the system, e.g., the model uncertainties
and the sampling uncertainties. As a result, such uncer-
tainties can deliver adverse impact to the maintenance
plan, causing further deterioration of the performances.
Therefore, we cast the BRFCMP problem into an opti-
mal control problem, based on which the control system
approach is introduced for the robustness of the perfor-
mances against uncertainties. The formulation of the op-
timal control problem is given in the following section.

4.1. The control system framework formulation

Taking advantage of the system states and decision
variable in equation (1)-(2), the control system formula-
tion that describes the system dynamics can be obtained
via rewriting equation (3):{

x(tk+1) = D(x(tk)) + u(tk) + w(tk),
y(tk) = ES(x(tk), tk) + d(tk).

(19)

The decision variable u(tk) hereby represents the control
input of the control system. The measured output y(tk) is
the measurement of the aggregate energy saving during the
sampling period [tk−1, tk). In practice, y(tk) is measured
according to the sampling of the item group populations
at instant tk and equation (7). The accuracy and confi-
dential level of the measurement is determined by the sam-
pling size [32]. w(tk) and d(tk) denote the disturbances
to the system states and outputs. Such disturbances are
employed to indicate the impact of the uncertainties. The
objective of the BRFCMP optimal control problem is thus
to find an optimal control law u that minimizes the per-
formance index in equation (17) for the control system in

equation (19), subject to the constraints in equation (12).
An MPC approach is employed to solve the BRFCMP op-
timal control problem. The details of the MPC algorithm
are given in the following section.

4.2. The MPC approach to the BRFCMP optimal control
problem

In MPC approaches, an open-loop optimal control prob-
lem is repeatedly solved over a finite horizon, namely the
control horizon, according to the plant performance pre-
diction. The obtained optimal open-loop control is then
used to generate the optimal control input for the problem
to be solved, with which the state variables executed over
the next finite horizon are estimated. As the optimal con-
troller over the next finite horizon is actually a function of
the system state from the previous control step, a closed-
loop feedback is thus obtained. Given the finite decision
horizon in our model, such MPC algorithm is employed:
let tm denote the current instant, consider a control hori-
zon that covers [tm, TS), i.e., the rest of the sustainability
period. A mathematical transformation of the BRFCMP
optimal control problem is applied, and the open-loop op-
timal control problem over the control horizon [tm, TS) is
accordingly defined as the following minimization problem:

min J ′ = −λ1f ′e|m(x,u)− λ2f ′r|m(x,u), (20)

where f ′r|m(x,u) indicates the discount rate that makes
NPV ′|m = 0, with

f ′e|m(x,u) =

m∑
k=1

ES(x(tk), tk) +

T∑
k=m+1

ES(x|m(tk), tk),

NPV ′|m =

m∑
k=1

B(x(tk), tk)− h(u(tk), tk)

(1 + d)n−1

+

T∑
k=m+1

B(x|m(tk), tk)− h(u|m(tk), tk)

(1 + d)n−1
− h0,

(21)
subject to

m∑
k=1

ES(x(tk), tk) +

T∑
k=m+1

ES(x|m(tk), tk) ≥ α,

m∑
k=1

h(u(tk), tk) +

T∑
k=m+1

h(u|m(tk), tk) ≤ β,

NPV |Tp

0 ≥ 0,

ui(tk) = 0, k /∈ Q,

(22)

where x|m(tk) denotes the predictive system states and
u|m(tk) the scheduled control inputs after tm. The em-
ployed MPC approach takes the existing performances be-
fore tm into account to estimate the long-term perfor-
mances of the project, based on which the open-loop con-
trol problem over the control horizon is solved. Given
the non-analytic component in equation (20), we continue
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to employ the aforementioned DE algorithm to solve the
open-loop control problem.

By applying DE algorithm, a series of optimal control
inputs are obtained, represented by u′|m = {u′|m(tk) : k =
m,m+ 1, ..., T − 1}. Only the optimal control action over
the first sampling period [tm, tm+1) is applied, represented
by û|m = {u′|m(tm)} = {û|m(x(tm), tm)}, where the last
equation is to emphasize the functional dependence of the
optimal control on the initial state x(tm) of the MPC for-
mulation in equations (20)-(22). After û|m is applied, the
predictive state x|m(tm+1) can be obtained. Due to the in-
fluences of uncertainties that is represented by disturbance
w(tm), the actual state x̂(tm+1) = x|m(tm+1) + w(tm).
In practice, x̂(tm+1) must be obtained by the inspection.
x̂(tm+1) then becomes the initial condition of the MPC for-
mulation over the next control horizon [tm+1, TS). When
m /∈ Q, the control input u(tm) = 0 is implemented as
a solution. These take place consecutively over the sus-
tainability period to obtain the optimal control inputs û.
The measured output y(tk) is obtained by equation (19).
x(tk+1) is also applied as the initial state for the open-loop
optimal control problem over the next control horizon. In
summary, the following MPC algorithm can be formulated:

4.3. The MPC Algorithm

Initialization: Let initial state x(t0) = x0 and m = 0.
(i) Compute the open-loop optimal solution {u′|m(tk)}
of the problem formulation (20)-(22), where k = m,m +
1, ..., T − 1.
(ii) The MPC controller û|m = {u′|m(tm)} is applied after
the sampling instant tm. The remains of the open loop
optimal solution {u′|m(tk) : k = m+ 1, ..., T − 1} are dis-
carded. The predictive state x|m(tm+1) is then obtained
according to:

x|m(tm+1) = D(x(tm)) + u′|m.

Given the impact of disturbance w(tm), the actual state
x̂(tm+1) = x|m(tm+1) + w(tm).
(iii) Let x̂(tm+1) be the initial state for the next predictive
horizon, m := m+ 1 and go back to step (i).

According to the constraint (22), u(tm) = 0 when m /∈ Q,
where step (i) is skipped and x̂(tm+1) = D(x(tm))+w(tm).
The above MPC algorithm will go over the sustainability
period to solve out the optimal control strategy.

5. Simulation and Verification

5.1. Case study

To verify the effectiveness of the proposed approaches,
a small retrofitting project for a government office build-
ing is introduced as our case study, where the investor and
the stakeholders are the same party. The financial benefit
of the project lies in the cost saving from the saved en-
ergy as well as from the investor taking into account the
maintenance cost as part of the investment. Therefore, the

overall investment is the summation of the initial installa-
tion cost and the maintenance cost during operation. The
cost saving from the energy saving is considered the main
income of the project. The calculation of NPV takes into
account these two cash flows. A full maintenance strategy,
i.e., all the malfunctioning items are repaired during the
maintenance, is introduced as the baseline performance.

The specifications of the retrofits are illustrated in Ta-
ble 1. There are 5 categories of retrofits involved, including
the motion sensors, the 20W retrofit Compact Fluores-
cent Lamps (CFL), the 23 inch LCD monitors, the 3kW
heat-pumps and the 23L microwave ovens. The retrofitted
items corresponding to the same homogeneous class are
from one item group. The population degradation of the
item groups of motion sensors, 20W CFL and 23 inch LCD
monitors are corresponding to the population degradation
model in equation (13), and item groups of heat-pumps
and microwave ovens the degradation model in equation
(14). Table 1 indicates different performance character-
istics of the retrofits, including the prices to apply the
retrofit to one item, the energy savings and cost savings
per retrofitted item, the corrective maintenance costs to
replace or repair one retrofitted item. To be noticed, the
illustrated energy savings and cost savings are the annual
average values. Table 1 also indicates the type of the pop-
ulation degradation model that corresponds to the retrofit,
and the quantities of the retrofitted item involved in this
energy efficiency retrofitting project, i.e., the initial state
x0. The parameters of the corresponding population de-
terioration models are given in Table 2.

In the present retrofitting project, the sustainability
period is 10 years, which is an average value in similar
projects. An inspection will be performed at the end
of every six months, implying that our decision horizon
k = {0, 1, 2, ..., 24}. As above-mentioned, for the sake of
the energy conservatism, the inspection result is consid-
ered to be the state of the item groups during the prior
sampling period [23]. The maintenance actions are sched-
uled to take place at the end of each year except the last
year, i.e., every two sampling periods. Therefore, Q =
{2, 4, 6, ..., 22}. The initial investment to implement the
retrofitting project is $176,650. The baseline energy con-
sumption in this year is 4,397,572 kWh, and the targeted
energy saving amount that is contracted to be achieved
by this retrofitting project is 15% of the the baseline con-
sumption in 10 years, i.e., 6,596,358 kWh. The desired
payback period is 3 years.

Table 2: Parameters for the corresponding population dete-
rioration models

Retrofits type MTTF bi ci ζi
/MTBF

Motion sensor I 1.13 1.299 0.895 N/A
20W retrofit CFL I 1.49 1.2165 0.9494 N/A
23 inch LCD Monitor I 2.71 1.115 0.996 N/A
3kW Heat-pumps II 2.08 N/A N/A 0.24
23L Microwave oven II 1.98 N/A N/A 0.25
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Table 1: Characteristics of involved retrofits
Pre-retrofitting Retrofits Type Quantities Unit Price Unit Energy Unit Cost Corrective

($) Saving (kWh) Saving ($) Cost ($)
No motion sensor Motion sensor I 123 196 1140 121.1 196
Halogen Classic 75W 20W retrofit CFL I 408 14 105.6 11.9 14
Old CRT Monitor 23 inch LCD Monitor I 250 150 87.8 10.8 150
Electrical geyser 3kW Heat-pumps II 85 1250 8640 973.3 201
Inefficient oven 23L Microwave oven II 35 88 72 8.3 45

Our simulation involves five different cases, including
the no maintenance case that reveals the adverse impact
of the deterioration, the full maintenance case that is con-
sidered the baseline performance, and three optimal cases
that employ different weights. The three optimal cases
are: the Optimal balance case with λ1 = 0.5 and λ2 = 0.5,
the Energy prior case with λ1 = 1.0 and λ2 = 0, and
the Economy prior case with λ1 = 0 and λ2 = 1.0. The
Energy prior case and Economy prior case actually cast
the BRFCMP problem into a constrained single objective
optimization problem. For the optimal cases, there are
two different maintenance budget limits, denoted by tight
and sufficient. The tight budget is $125,000 over the sus-
tainability period and the sufficient budget $200,000. Per-
formances with different objectives under different budget
limits will be given to illustrate the effectiveness of the op-
timal maintenance strategy and our optimization model.
The disturbances are represented by a random noise in our
simulation. As system output feedback is employed in the
applied MPC approach, this noise is added as a total on
the system states. The range of the noise is ±0.1x(tk).

5.2. Illustrative results and analysis

The performances of the maintenance plan without
considering disturbances are illustrated in Table 3. Ta-
ble 3 illustrates the following information: the aggregate
energy saving (kWh) and the percentage saving in compar-
ison with the energy baseline, the IRR, the payback period
(years), the NPV ($), the maintenance cost ($) and the
total investment of the project ($). First of all, the perfor-
mances where no maintenances are applied, are unaccept-
able. The no maintenance performances are illustrated to
manifest the important role of maintenance. Then the full
maintenance performances are given as the baseline per-
formances. The performances of the Optimal balance case,
Energy prior case and Economy prior case with different
budget limits are illustrated following the full maintenance
performances. An interesting result can be observed from
the cases with sufficient budget. In the Energy prior case,
the solutions are same with the full maintenance solution.
In the Optimal balance case, the IRR is slightly improved
with a little lose of the energy saving. Even in the Econ-
omy prior case, there are no significant differences. Such
performances imply that, when budget is sufficient, the
full maintenance strategy is one of the best choices. How-
ever, in practice, the maintenance budget can often be
insufficient to support full maintenance strategy. In cases
with tight budget limits, maintenance plan optimization is

Figure 1: Energy performances of the maintenance plans with and
without feedback in Optimal Balance case with sufficient budget.

necessary. In our case study, the obtained optimal main-
tenance plans in the three optimal cases with tight budget
are the same one. This reveals that the two objectives
employed in our optimization model are not very contra-
dictory. The energy savings are well preserved while the
maintenance costs are significantly reduced in comparison
with the full maintenance case. The performances of the
optimal maintenance plan with tight budget limits verify
the effectiveness of our optimization method.

Table 4 illustrates the performances of the maintenance
plan under the impact of uncertainties, where the Bal-
ance open-loop, Energy open-loop and Economy open-loop
represent that, in these cases, the open-loop maintenance
plans that are obtained without considering uncertainties
are applied when there actually are uncertainties during
operation. In contrary to the open-loop cases, Balance
with feedback, Energy with feedback and Economy with
feedback represent that the applied maintenance plan are
obtained via the control system approach with state feed-
back. The random noises in the corresponding open-loop
cases and with feedback cases are the same for a clear com-
parison of the performances. Generally, from Table 4, the
performances in with feedback cases outperform the ones
in open-loop cases, showing that the proposed control sys-
tem approach is robust against uncertainties. The results
can prove the effectiveness of the control approach to re-
duce the adverse impact of uncertainties during operation.

Figs. 1-6 illustrate the energy and economy perfor-
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Table 3: Comparison of the performances of cases without disturbances
Cases Budget Energy Percentage IRR Payback NPV Maintenance Total

limit ($) savings (kWh) saved period (years) ($) cost ($) investment ($)
No maintenace N/A 2,065,742 4.69% 0.69% N/A -18,755.68 0 176,650
Full maintenace N/A 8,830,340 20.08% 40.54% 2.71 314,556.3 179,223 355,873
Optimal balance 125,000 8,219,041 18.69% 40.56% 2.7 310,439.4 124,963 301,613
Optimal balance 200,000 8,827,172 20.07% 40.65% 2.7 315,168.6 178,233 354,883
Energy prior 125,000 8,219,041 18.69% 40.56% 2.7 310,439.4 124,963 301,613
Energy prior 200,000 8,830,340 20.08% 40.54% 2.71 314,556.3 179,223 355,873
Economy prior 125,000 8,219,041 18.69% 40.56% 2.7 310,439.4 124,963 301,613
Economy prior 200,000 8,737,285 19.87% 40.79% 2.69 318,225.4 162,328 338,978

Table 4: Comparison of the performances of cases including disturbances
Cases Budget Energy Percentage IRR Payback NPV Maintenance Total

limit ($) savings (kWh) saved period (years) ($) cost ($) investment ($)
Balance open-loop 125,000 7,685,571 17.47% 38.43% 2.65 274,193.7 125,361 302,011
Balance with feedback 125,000 7,878,323 17.92% 38.78% 2.81 287,191.1 125,179 301,829
Balance open-loop 200,000 8,051,623 18.31% 39.24% 2.64 272,539.8 180,795 357,445
Balance with feedback 200,000 8,810,725 20.04% 40.97% 2.59 307,000.8 196,249 372,899
Energy open-loop 125,000 7,167,616 16.30% 33.54% 3.16 232,309.7 125,585 176,650
Energy with feedback 125,000 7,467,160 16.98% 35.29% 3.05 254,924 124,999 301,649
Energy open-loop 200,000 7,719,358 17.55% 37.33% 2.68 249,480 180,144 356,794
Energy with feedback 200,000 8,674,394 19.72% 39.63% 2.58 293,014.1 199,996 376,646
Economy open-loop 125,000 7,063,163 16.06% 36.69% 2.77 258,692 80,259 256,909
Economy with feedback 125,000 7,512,802 17.08% 37.60% 2.81 277,871.4 94,552 271,202
Economy open-loop 200,000 7,368,024 16.75% 36.04% 2.73 233,466.1 165,144 341,794
Economy with feedback 200,000 7,640,285 17.37% 39.55% 2.71 282,598.7 112,158 288,808

Figure 2: Energy performances of the maintenance plans with and
without feedback in Energy Prior case with sufficient budget.

Figure 3: Energy performances of the maintenance plans with and
without feedback in Economy Prior case with sufficient budget.
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Figure 4: Cash flows of the maintenance plans with feedback in
Optimal Balance case with sufficient budget.

Figure 5: Cash flows of the maintenance plans with feedback in
Economy Prior case with sufficient budget.

mances of the Balance with feedback, Balance with feedback
and Economy with feedback cases, where the performances
are influenced by uncertainties. The energy savings and
cash flows during each sampling interval in the three cases
are illustrated. In Figs 1-3, the thin dashed lines represent
the performances in the with feedback cases. In contrary
to the maintenance plan with feedback, the thick dash-
dot lines represent the energy savings from the open-loop
cases, showing that the open-loop maintenance plan lose
more energy savings with uncertainties during operation.
In Figs. 4-6, the cash flows from the with feedback cases
are chosen to be illustrated. The solid lines represent the
cash inflows and the dashed line the cash outflows which
indicate the level of the corrective maintenance efforts dur-
ing operation.

Figure 6: Cash flows of the maintenance plans with feedback in
Optimal Balance case with sufficient budget.

6. Conclusion

The main work of this paper is to investigate the impor-
tant role of maintenance to the building energy efficiency
in the building energy efficiency retrofitting context, and
the potential of improving the performances of an energy
efficiency retrofitting project by the maintenance plan op-
timization. A subproblem namely the Building Retrofitted
Facilities Corrective Maintenance Planning (BRFCMP) is
adopted as our subject investigated at the current stage.
An aggregate population level optimization model is pro-
posed to address the BRFCMP problem without taking
into account the uncertainties. Given the BRFCMP a
problem succeeding the retrofitting planning optimization
that is often multi-objective, two objective are introduced
in the optimization model: maximizing the long-term ag-
gregate energy saving over the sustainability period and
maximizing the Internal Rate of Return of the project.
The objective functions are formulated according to a se-
ries of performance measures, and a weighted sum method
is employed as the solution to the multi-objective opti-
mization problem. Moreover, when taking into account
the uncertainties that can deliver adverse impact to the
actual performances of the project, the control system ap-
proach as an unexplored perspective is introduced, where
the optimization objectives are transformed into the con-
trol objectives. A Model Predictive Control (MPC) based
approach is employed to solve the BRFCMP optimal con-
trol problem.

A practical building retrofitting project is used to test
and verify the feasibility of the presented optimization
and control approaches, and the simulation results reveal
that, when the budget is sufficient, the full maintenance
strategy that have all the malfunctioning items repaired
becomes the best option. However, the proposed opti-
mization method can preserve the performances while the
cost is significantly reduced. Taking advantage of the pro-
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posed method, the objectives can be well achieved with
tight maintenance budget limit. Furthermore, the per-
formances of the maintenance plans with feedback out-
perform the open-loop strategy performances, showing ro-
bustness against uncertainties. The effectiveness of the
optimization and control approaches is thus verified.

Several topics call for further studies on the investi-
gated topic: the retrofitting planning optimization can
be combined with the maintenance planning optimization;
the robustness of the classification of the retrofitted fa-
cilities remains an open problem; the uncertainties factors
are possible to be recognized and taken into account in the
optimization; the operating schedule optimization can be
introduced to further improve the building energy perfor-
mance. Relaxing the assumption that maintenance actions
are kept within the homogeneous class of facilities may call
for new modelling and control of systems of varying dimen-
sions.
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