
Modeling the Volatility of the Dow Jones Islamic

Market World Index Using a Fractionally Integrated

Time Varying GARCH (FITVGARCH) Model

Adnen Ben Nasr ∗ Ahdi Noomen Ajmi † Rangan Gupta ‡

Abstract

Appropriate modeling of the process of volatility has implications

for portfolio selection, the pricing of derivative securities and risk man-

agement. Further, a large body of research has suggested that both

long memory and structural changes simultaneously characterize the

structure of �nancial returns volatility. Given this, in this paper, we

aim to model conditional volatility of the returns of the Dow Jones

Islamic Market World Index (DJIM), interest on which has come to

the fore following the need for renovation of the conventional �nancial

system, in the wake of the recent global �nancial crisis. To model the

conditional volatility of the DJIM returns, accounting for both long

memory and structural changes, we allow the parameters in the con-

ditional variance equation of the Fractionally Integrated Generalized
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Autoregressive Conditional Heteroskedasticity (FIGARCH) model to

be time dependent, such that the parameters evolve smoothly over time

based on a logistic smooth transition function, yielding a Fractionally

Integrated Time Varying Generalized Autoregressive Conditional Het-

eroskedasticity (FITVGARCH) model. Our results show that, in terms

of model diagnostics and information criteria, the FITVGARCHmodel

performs better than the FIGARCH model in explaining conditional

volatility of the DJIM returns, thus, highlighting the need to model

simultaneously long-memory and structural changes in the volatility

process of asset returns.

Keywords : Volatility modeling; Long memory; Structural changes;

Model speci�cation
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1 Introduction

The recent global �nancial crisis has exerted enormous negative impacts on

conventional �nancial institutions and markets. Hence, a need has been felt

for a renovation of the conventional �nancial systems through creating viable

alternatives that allow opportunities to reduce investment risks, increase re-

turns, enhance �nancial stability, and reassure investors and �nancial mar-

kets. Given this, following the crisis, one has observed a steady increase

in renewed interest in Islamic �nance,1 based on Sharia rules, as a viable

�nancial system that can be used as an opportunity to diversify away the

systematic risk in conventional portfolios. In essence, it is believed that Is-

lamic �nance may o�er products and instruments that are driven by greater

social responsibility, ethical and moral values, and sustainable �nance, and

hence, can possibly endure �nancial crises better than the conventional sys-

tem.

Against this backdrop, in this paper, we aim to model conditional volatil-

ity of the returns of the Dow Jones Islamic Market World Index (DJIM),

accounting for both long memory and structural changes in the volatility

process. The choice of the DJIM is justi�ed by the fact that it is the most

widely used, most comprehensive representative, and has the most adequate

time series for the Islamic stock market (Hammoudeh et al., 2013). Note

that, appropriate modeling of volatility is of importance due to several rea-

sons: (i) When volatility is interpreted as uncertainty, it becomes a key input

to many investment decisions and portfolio creations. Given that, investors

and portfolio managers have certain bearable levels of risk, proper modeling

(and forecasting) of the volatility of asset prices over the investment holding

1Assets in the Islamic industry have grown 500% in the last �ve years and reached 1.6

trillion U.S. dollars in 2013 (Hammoudeh et al., 2013).

3



period is of paramount importance in assessing investment risk; (ii) Volatility

is the most important variable in the pricing of derivative securities. To price

an option, one needs to know the volatility of the underlying asset from now

until the option expires; (iii) Financial risk management has taken a domi-

nant role since the �rst Basle Accord was established in 1996, making proper

modeling (and forecasting) of volatility a compulsory risk-management ex-

ercise for �nancial institutions around the world. Finally, �nancial market

volatility, as witnessed during the recent �Great Recession" for the returns

on DJIM (see Figure 1), can have a wide repercussion on the economy as a

whole, via its e�ect on public con�dence. Hence, market estimates of volatil-

ity can serve as a measure for the vulnerability of �nancial markets and the

economy, and help policy makers to design appropriate policies. Evidently,

appropriate modeling of the process of volatility has implications for portfolio

selection, the pricing of derivative securities and risk management. A large

body of research suggests that there is signi�cant evidence of long memory in

the conditional volatility of various �nancial and economic time series (Ding

et al., 1993; Baillie et al., 1996; Andersen and Bollerslev, 1997; Bollerslev

and Mikkelsen, 1996; Lobato and Savin, 1998; Davidson, 2004). Another

related discussion on �nancial time series suggests that there is strong evi-

dence for the occurrence of structural changes in the volatility process(Bos

et al., 1999; Andreou and Ghysels, 2002; Rapach and Strauss, 2008; Rapach

et al., 2008).2 In light of these two features (long memory and structural

2A related line of research on long memory and structural changes in the volatility dis-

cusses the connection between these phenomena. In fact, the volatility persistence may be

due to structural breaks in the volatility process, as �rst suggested by Diebold (1986) and

Lamoureux and Lastrapes (1990). This literature concludes that it is very di�cult to dis-

tinguish between true and spurious long memory processes. However, recent contributions

to this literature have attempted to discriminate between long memory and structural
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breaks), a body of research has suggested that both long memory and struc-

tural changes simultaneously characterize the structure of �nancial returns

volatility (Lobato and Savin, 1998; Beine and Laurent, 2000; Morana and

Beltratti, 2004; Martens et al., 2004; Baillie and Morana, 2007).

Motivated from the line of research that suggests the co-existence of both

long memory and structural change in the volatility process of �nancial mar-

kets data, following Ben Nasr et al., (2010), we estimate a model for the

DJIM returns that allows the volatility of the returns to have such behav-

iors. The idea is to allow the parameters in the conditional variance equation

of the Fractionally Integrated Generalized Autoregressive Conditional Het-

eroskedasticity (FIGARCH) model to be time dependent. More precisely, the

change of the parameters is assumed to evolve smoothly over time using a lo-

gistic smooth transition function, to yield us a Fractionally Integrated Time

Varying Generalized Autoregressive Conditional Heteroskedasticity (FITV-

GARCH) model. Our results show that, in terms of model diagnostics and

information criteria, the FITVGARCH model performs better than the FI-

GARCH model in explaining conditional volatility of the DJIM returns. To

the best of our knowledge, this is the �rst attempt in modeling the volatility

process for the DJIM returns. The rest of the paper is organized as follows:

Section 2 discusses the basics of the FITVGARCH model, while Section 3

presents the data and the empirical results. Finally, Section 4 concludes.

changes in the volatility process (St ric  and Granger, 2005; Mikosch and St ric , 2005;

Perron and Qu, 2007; 2008).
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2 The Fractionally Integrated Time Varying GARCH

(FITVGARCH) Model

2.1 The econometric framework

The Fractionally Integrated Time Varying GARCH (FITVGARCH) model

was introduced by Ben Nasr et al. (2010) as an extension of the FIGARCH

model of Baillie et al. (1996) by allowing the conditional variance parameters

to change over time. In fact, this new long memory model is capable of

detecting instability in the volatility structure, which makes it an interesting

tool for modeling �nancial market time series, exhibiting jointly long memory

and structural change in their dynamic properties over time.

The FITVGARCH(p, d, q) model is given by:

yt = εt (1)

εt = ηth
1/2
t , ηt ∼ N(0, 1) (2)

[1− ϕt(L)](1− L)dε2t = ωt + [1− βt(L)]vt (3)

where yt is the time series, ht is the conditional variance, vt = ε2t − ht,

ωt = ω1 + ω2F (t∗; γ, c), ϕt(L) = ϕ1(L) + ϕ2(L)F (t∗; γ, c); ϕ1(L) = ϕ1,1L +

... + ϕ1,qL
q, ϕ2(L) = ϕ2,1L + ... + ϕ2,qL

q, βt(L) = β1(L) + β2(L)F (t∗; γ, c);

β1(L) = β1,1L+ ...+β1,pL
p, β2(L) = β2,1L+ ...+β2,pL

p, F (t∗; γ, c) is a logistic

smooth transition function de�ned as

F (t∗; γ, c) =

(
1 + exp

{
−γ

K∏
k=1

(t∗ − ck)

})−1

, (4)

γ > 0, c1 ≤ c2 ≤ ... ≤ cK .

where the transition variable is the standardized time variable t∗ = t/T

and T is the sample size. The transition function F (t∗; γ, c) is a continuous
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function bounded between 0 and 1. The parameter γ corresponds to the

speed of transition between the two regimes, while the parameter ck, known

as the threshold parameter, indicates when, in the range of t , the transition

takes place.

The roots of the polynomials [1 − ϕt(L)] and [1 − βt(L)] are outside the

unit circle for all t. This implies that [1−ϕt(1)] > 0 and [1−βt(1)] > 0. With

K = 1, the parameters of the FIGARCH model change smoothly over time

from (ω1, ϕ1,i, β1,j) to (ω1 + ω2, ϕ1,i + ϕ2,i, β1,j + β2,j), i = 1, ..., q, j = 1, ..., p.

The transition between regimes happens instantaneously when t∗ = c1 and

γ is large. When γ → 0, the FITVGARCH(p, d, q) model in (3) nests the

FIGARCH(p, d, q) model of Baillie et al. (1996) since the logistic transition

function becomes constant and equal to 1/2. Now, we will see how to test

whether the FITVGARCH(p, d, q) speci�cation could be suitable for the data.

2.2 Testing parameter constancy

The null hypothesis of parameters constancy can be expressed as equality

of the FIGARCH parameters in the two regimes. As in Lin and Teräsvirta

(1994), Eitrheim and Teräsvirta (1996), the alternative hypothesis is that the

parameters may change smoothly over time. Thus, the null hypothesis can

be stated as H0 : γ = 0 against alternative hypothesis H1 : γ > 0. Testing for

parameter constancy is complicated because of the existence of unidenti�ed

nuisance parameters under the null hypothesis H0. More explicitly, when

γ = 0, F (t∗; γ, c) = 1/2. This makes the parameters γ and c not identi�ed

when the null hypothesis is valid. The identi�cation problem is circumvented,

following Luukkonen et al. (1988), using a Taylor expansion for the transition

function about γ = 0. In practice, the LM test of parameter constancy may

be carried out using the following steps:
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1- Estimate the parameters of the conditional variance under

the null hypothesis and compute ût = (
ε̂2t
ĥ0
t

− 1), t = 1, ..., T, and

the sum of squares SSR0 =
∑T

t=1 û
2
t .

2- Regress ût on ẑ1,t and ẑ2,t, t = 1, ..., T and compute the

sum of squared residuals SSR1
3.

3- Compute the LM test statistic as

LMK = T
SSR0 − SSR1

SSR0

Under the null hypothesis, the statistic LMK of parameter constancy

test is χ2 distribution with K(p + q + 1) degrees of freedom. If the null

hypothesis of parameter constancy against smoothly changing parameters is

rejected, one can conclude that the structure of the conditional variance of

the process is changing over time.

2.3 Estimation

When the null hypothesis of parameter constancy is rejected, we can esti-

mate the FITVGARCH model using the Quasi Maximum Likelihood (QML)

estimation procedure which was adapted by Baillie et al.(1996) to estimate

the FIGARCH model. The QML estimates obtained with the assumption

that the innovations are normally distributed behave relatively well. Con-

sequently, the estimates for the parameters may be obtained by maximizing

the following Gaussian log-likelihood function

3ẑ1,t and ẑ2,t are the partial derivatives of the conditional variance ht with respect to

θ1 and θ2, respectively, where θ = (θ
′

1, θ
′

2)
′
is the vector of parameters in the conditional

variance equation obtained by replacing the logistic transition function by its Taylor ex-

pansion around γ = 0 and such that θ2 = 0 under H0. For more details, see Ben Nasr et

al. (2010), pp408-410.
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l(θ) = −T

2
log 2π − 1

2

T∑
t=1

[log(ht) +
ε2t
ht

] (5)

where θ = (ω1, ϕ
′
1, β

′
1, ω2, ϕ

′
2, β

′
2, c, γ, d)

′ is the parameter vector of the FITV-

GARCH model.

2.4 Misspeci�cation tests

At the evaluation stage, the estimated FITVGARCH model is subjected to

misspeci�cation tests. In this section we focus on testing serial dependence in

the squared standardized errors. We use the test proposed by Lundbergh and

Teräsvirta (2002) as a parametric LM type tests of no ARCH in standardized

errors. This test was adapted to FITVGARCH model in Ben Nasr et al.

(2010) by assuming that the misspeci�cation structure in this model has the

additive form

ht = ω1 + [1− β1(L)− (1− ϕ1(L))(1− L)d]ε2t + β1(L)ht

+
(
ω2 + [ϕ2(L)(1− L)d − β2(L)]ε

2
t + β2(L)ht

)
F (t∗; γ, c)

+π′νt (6)

where νt = (η2t−1, ..., η
2
t−r)

′ and π = (π1, ..., πr)
′. The null hypothesis of no

serial dependence in η2t up to the r-th order is de�ned as H0 : π1 = π2 =

... = πr = 0. In practice, the LM test for rth-order serial dependence in

the squared standardized errors can be performed in three stages as fol-

lows:

1- Estimate the parameters of the FITVGARCH model under

the null hypothesis and compute ût = (
ε̂2t
ĥ0
t

− 1), t = 1, ..., T, and

the sum of squares SSR0 =
∑T

t=1 û
2
t .
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2- Regress ût on ẑ1,t and ẑ2,t, t = 1, ..., T and compute the

sum of squared residuals SSR1
4.

3- Compute the LM test statistic as

LM = T
SSR0 − SSR1

SSR0

which under the null hypothesis is approximately χ2 distributed with r de-

grees of freedom.

3 Empirical results

3.1 Data

In this subsection, the FITVGARCH model is estimated for the Global Dow

Jones Islamic Market World Index (DJIM). The data spans the period of Jan-

uary 1, 1996 to July 22, 2013, implying a total of 4,579 daily observations.

Note that, the start and end date for the index is governed purely by data

availability at the time of writing this paper. The time series for the index

is sourced from Bloomberg. The DJIM index measures the global universe

of investable equities that have been screened for Sharia compliance. The

companies in this index pass the industry and �nancial ratio screens. The

regional allocation for DJIM is classi�ed as follows: 60.14% for the United

States; 24.33% for Europe and South Africa; and 15.53% for Asia (Ham-

moudeh et al., 2013). In order to get a preliminary idea about the data set,

we present, in Figure 1, the daily index in levels and returns, as well as,

4ẑ1,t and ẑ2,t are the partial derivatives of the conditional variance ht in (6) with respect

to θ and π, respectively, where θ = (ω1, ϕ
′
1, β

′
1, ω2, ϕ

′
2, β

′
2, c, γ, d)

′ and π = (π1, ..., πr)
′.
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Figure 1: Graphical presentation of DJIM index, returns and autocorrelation.

the autocorrelation functions for daily returns and for daily squared returns.

Note that daily returns are obtained by taking 100 times the �rst di�erence

of the natural log of the index. The plot in the upper panel shows that

daily returns are, in general, highly volatile, with it being highest during the

month of October in 2008.

Examination of the sample autocorrelation functions for daily returns and

for daily squared returns, illustrated in the lower panel of Figure 1, indicates

that daily returns seem to be slightly autocorrelated, especially with positive

autocorrelation at lag 1 and with weak negative autocorrelation at lag 2.
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Table 1: LM-type tests for parameter constancy of FIGARCH model against

FI-TVGARCH model

LMk LM statistic p-value

LM1 5.800 0.1217

LM2 15.8328 0.0147

LM3 17.1142 0.0469

Note: The table contains LM statistics and p-

values of parameter constancy test where LMK ,

K = 1, 2 and 3, denotes the LM-type test for pa-

rameter constancy based on the Kth-order logistic

smooth transition regression.

However, the autocorrelations of the squared returns show strong temporal

dependence and exhibit a hyperbolic rate of decay. These features may sug-

gest that long-range dependence of squared returns could be modeled by a

fractionally integrated process. Thus, we propose to use the Autoregressive

Moving Average (ARMA) and the FITVGARCH to model the mean and the

volatility processes respectively. The FITVGARCH model is able to capture

both long memory and structural change in the volatility process. To iden-

tify the ARMA structure, we use the Bayesian Information Criterion (BIC).

After �tting various ARMA(p, q) models to the mean returns, the lowest

BIC value is obtained for p = 2 and q = 0.

3.2 Testing for parameter constancy

We begin the modelling procedure by testing parameter constancy in the

standard FIGARCH(1, d, 1) model, applied to the residuals from the AR(2)

model, against smoothly changing parameters (FITVGARCH(1, d, 1)model).

The results are given in Table 1. The null hypothesis of parameters con-
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stancy is rejected at 5% level forK = 2, 3. We conclude that there is evidence

of change over time in the FIGARCH parameters and thus the FITVGARCH

model may be a correct model to use for the data.

3.3 Estimation results

Table 2: Summary of estimated models for DJIM daily index returns

Parameters AR(2)

α0 0.0215 (0.0156)

α1 0.1399 (0.0148)

α2 -0.0652 (0.0148)

FITVGARCH(1, d, 1) FIGARCH(1, d, 1)

d̂ 0.474 (0.050) 0.489 (0.043)

ĉ 0.732 (0.029) � �

γ̂ 96.907 (302.313) � �

ω̂1 0.028 (0.005) 0.030 (0.004)

ϕ̂1,1 0.092 (0.031) 0.027 (0.025)

β̂1,1 0.530 (0.056) 0.503 (0.050)

ω̂2 0.004 (0.015) � �

ϕ̂2,1 -0.249 (0.077) � �

β̂2,1 -0.177 (0.073) � �

Q(20) 23.1906 [0.2795] 24.4184 [0.2246]

Q2(20) 11.7691 [0.9238] 12.4682 [0.8990]

LMSC 26.9826 [0.1358] � �

AIC 11892.696 11899.471

Log Lik -5937.3480 -5945.7354

Note: Standard errors are given in parentheses.
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The second stage of the analysis is the estimation of AR(2)-FITVGARCH(1, d, 1)

for the DJIM. We use a two step estimation procedure, i.e. estimating an

AR(2) model �rst, and then taking the residuals to �t the FITVGARCH(1, d, 1)

model. The estimation of the FITVGARCH(1, d, 1) is based on the quasi

maximum likelihood estimation procedure. The results are presented in the

�rst two columns of Table 2. Columns 1 shows parameter estimates while

standard errors are given in columns 2. For comparison purposes, we also

estimate an AR(2)-FIGARCH(1, d, 1) model where the parameter estimates

and their asymptotic standard errors are reported, respectively, in the last

two columns of of Table 2. The long memory parameter d̂ is signi�cantly

di�erent from zero for both models; of about 0.474 for the FITVGARCH

model and 0.489 for the FIGARCH model. The signi�cance of d indicates

strong evidence of long memory in the volatility process. The conditional

variance parameters of the FITVGARCH model are highly signi�cant, ex-

cept for the ω̂2 parameter which indicates that there is no change in the

constant coe�cient of the variance equation. For the FIGARCH model, the

parameter ϕ̂1 is not signi�cant, while the parameters ω̂ and β̂1 are signi�-

cant at 5% level. Looking now at the transition function parameters in the

FITVGARCH model, the estimated threshold parameter ĉ = 0.732 is highly

signi�cant and indicates that the structural change of the volatility structure

occurred at about the time point t̂ = 0.732×T, (t̂ ≃ 3350, i.e., November, 4,

2008), where T is the number of observations. The value of the smoothness

parameter (γ̂ =96.907) implies a smooth change in the parameters of the

variance equation. This can also be observed from the �rst panel of Figure

2 which plots the logistic transition function. It is clear that the transition

between the extreme regimes is smooth.

Some diagnostics on the residuals obtained from both models are shown
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Figure 2: Estimated logistic transition function from the FITVGARCH

model and conditional standard deviation.

in Table 2. The Ljung Box portmanteau tests for up to 20th-order serial cor-

relation in the residuals and squared residuals indicates that the hypothesis of

serial dependence, up to order 20, is strongly rejected for both models. In ad-

dition, the misspeci�cation test, according to LMSC statistic, indicates that

the squared standardized errors from the FITVGARCH model does not seem

to be autocorrelated up to the 20th order. Comparison of FIGARCH and

FITVGARCH in terms of the diagnostics and information criteria, reveals

that FITVGARCH model perform better than the FIGARCH model. In-
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deed, both log-likelihood and AIC values are favorable for the FITVGARCH

model relative to the FIGARCH model. Not surprisingly, similar results were

obtained for daily data on the returns for the NASDAQ composite stock in-

dex by Ben Nasr et al., (2010), thus, in turn, highlighting the need to model

simultaneously long-memory and structural changes in the volatility process

of asset returns.

4 Conclusions

In the wake of the recent global �nancial crisis, a need has risen for a renova-

tion of the conventional �nancial systems, and this, in turn, has resulted in

a steady increase in renewed interest in Islamic �nance as a viable �nancial

system that can be used as an opportunity to diversify away the systematic

risk in conventional portfolios. In essence, Islamic �nance may o�er products

and instruments that are governed by greater social responsibility, ethical and

moral values and sustainable �nance, and hence, can possibly endure �nan-

cial crises better than the conventional system. Given this, in this paper, we

aim to model conditional volatility of the returns of the Dow Jones Islamic

Market World Index (DJIM), accounting for both long memory and struc-

tural changes in the volatility process. The choice of the DJIM is justi�ed by

the fact that it is the most widely used, most comprehensive representative,

and has the most adequate time series for the Islamic stock market. Note

that, appropriate modeling of the process of volatility has implications for

portfolio selection, the pricing of derivative securities and risk management.

A large body of research suggests that there is signi�cant evidence of long

memory in the conditional volatility of various �nancial and economic time

series, while, another related discussion on �nancial time series suggests that
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there is strong evidence for the occurrence of structural changes in the volatil-

ity process. In light of these two features, a body of research has suggested

that both long memory and structural changes simultaneously characterize

the structure of �nancial returns volatility. Motivated from the latter line

of research, following Ben Nasr et al., (2010), we estimate a model for the

DJIM returns that allows the volatility of the returns to be characterized

by both long memory and structural changes. The idea is to allow the pa-

rameters in the conditional variance equation of the FIGARCH model to be

time dependent, by allowing the change of the parameters to evolve smoothly

over time using a logistic smooth transition function, which, in turn yields a

FITVGARCH model. Our results show that, in terms of model diagnostics

and information criteria, the FITVGARCH model performs better than the

FIGARCH model in explaining conditional volatility of the DJIM returns,

thus, in turn, highlighting the need to model simultaneously long-memory

and structural changes in the volatility process of asset returns. Given that

better in-sample �t does not necessarily translate into superior out-of-sample

forecasts (Rapach and Zhou, 2013), an immediate extension of the current

study would be to compare the forecasting ability of the FIGARCH and

FITVGARCH, and possibly other set of standard models describing volatil-

ity of asset returns, as in Lux (2008), Lux and Morales-Arias (2010),Lux et

al., (2011).
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