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ABSTRACT

The numerical two-dimensional free-surface steady flow of
an incompressible inviscid fluid, over an obstacle lying on the
bottom of a channel, is examined. The Finite Volume Method
is used for a supercritical regime. The results obtained from the
numerical method are confronted with those of experiments
carried out in a hydraulic channel for various obstacles.

INTRODUCTION

The effect of the shape of the bottom of a hydraulic channel
on the free-surface profile has a great importance in fluid
dynamics. Indeed, from the mathematical point of view, the
free-surface is not a priori known and two boundary conditions,
one being nonlinear, must also be satisfied on it. This problem
has been investigated by many authors as [1], [2], [3], [4], [5],
for example. Unfortunately, few papers, dealing with
experimental works, are published ([13], [15]).

In this paper, we consider supercritical flows in a hydraulic
channel on the bottom of which lies obstacles of different
shape.

We recall, first of all, the mathematical formulation of the
nonlinear problem and its resolution by a volume element
method.

MATHEMATICAL FORMULATION
Governing equations
We consider the steady 2-D flow of an inviscid
incompressible fluid over an obstacle of maximum height b
lying on the bottom of a channel.
Far upstream, the flow is uniform with a constant velocity U
and a depth h.
The fluid being incompressible, one can introduce a stream-
function ¥ (x,y) such as:
- - _ 3Y a¥
(u>V):(_—a'_—) (1)
oy  0x

where u and v represent respectively the horizontal and the
vertical components of the fluid velocity.

Due to the uniformity of the flow, far upstream of the
obstacle, the theorem of Lagrange ensures us its irrotationality.
AY =0 (@)

The fluid being inviscid, it slips on the bottom of the
channel which is then a streamline taken as:

¥ (x,y)=0 3)
where ;/f (;) denotes the equation of the bottom.

The free-surface ;10(;) is also a streamline. The value of

the streamfunction, on it, is determined by the conservation of
the flow discharge.
Y (x,yo)=Uh 4)

In addition to this kinematic condition, we must express the
conservation of the energy of the fluid on this free-surface
where the pressure is constant (atmospheric pressure). The
Bernoulli's equation gives:

gyo+ ¥ (V-U? = gh (5)
g is the acceleration due to gravity and V the free-surface
velocity.

We note that this dynamic condition is non-linear and that
there is no radiation condition downstream, especially for a
subcritical regime with surface waves, except that the velocity
of the flow and the height of the free-surface must be bounded.

The problem may be non-dimensionalized with respect to
the velocity U and the height h by introducing the following
variables:

(xybysyo) = (X,y,b,ys yo/h; (u, v) = (u,v)/U; ¥=

W /Uh.

The equations (2) to (5) are then written as follows:
AY =0 (6)
Y(x,y)= 0 (7.1)

503



2 'Topics

o 2
(E)yo = /1+§(1—Y0) (7.2)

Y(x,y0)=1 (7.3)
where F=U/,/gh is the far upstream Froude number and 1 the

outward normal vector.

Experiments carried out in channels show that, according to
the value of the Froude number, the free-surface has the aspect
of:

- a unique elevation over the obstacle then gradual going back
to the undisturbed level (yo = 1) for a supercritical flow
upstream (F >1) .

- a depression in the vicinity of the obstacle followed or not by
surface waves for a subcritical flow (F<1).

Figure 1 Sketch of the domain

The problem is therefore, in the domain ¢ , described by the
equation (6) and boundary conditions (7.1) on * (7.2) and
(7.3) on + |, and that of uniformity of the velocity upstream:
Y=y on I, (7.4)
o¥/ox=0 on I'} (7.5)

The relations (7.2) and (7.3) are known as, respectively,
dynamic and kinematic condition. The existence of these two
free-surface boundary conditions allows us to consider two
iterative processes: associate (7.3) to the problem and then
determine the free-surface position verifying (7.2) or the
inverse. Due to the fact that our experiments are carried out in
a hydraulic channel for a supercritical regime (F>1), we use the
second approach because a simple example [14], shows that is
stable.

Let us denote M the actually point on the free-surface, N
the point just beneath it and M' the determined new location
verifying the condition (7.3), for which we choose a linear
extrapolation:

lv(N)-y(M)] y(M') = [1-y(M)] y(N)-[1-y(N)] y(M)  (8)

As we mentioned it in [14], the stream function y(x,y) and
the free-surface yy(x) are finally the solution of two problems
P, and P,. The problem P, consists on determining y(x,y),
which is solution of the preceding system of equations, for a
known free-surface yy(x). The problem P, allows the
determination of a new free-surface location, i.e. yp(x), solution
of the equation (8).
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Numerical results
The finite volume method is applied for the resolution of the
Laplace equation for the streamfunction * .
For this, it is expressed in a conservative form [14], [16]:
¢« » =div[F(-)]=0 (6)
with : F = grad- )
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Figure 2 Free-surface profile calculated for a triangle

The figure 2 shows the free-surface profile obtained for a
triangular obstacle of height 0.28 at a Froude number F = 2.41
corresponding to the experimental data.
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Figure 3 Free-surface profile for a trapezoidal obstacle

The figure 3 is similar to the preceding one but for a
trapezoidal obstacle with the same height and Froude number.
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Figure 4 Theoretical free-surface profiles for steps of various
heights
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The figure 4 shows the evolution of the free-surface profile
for a given Froude number and step length with the obstacle
height.

EXPERIMENTAL PROCEDURE

The experiments were carried out in a Plexiglas rectangular
channel (see [19]) of uniform section (width a = 7.5 cm and
length L = 6 m) allowing a complete visualization of the flow

Photo 1 View of the hydraulic channel

The upstream supercritical regime is generated by the
addition of a convergent (nozzle). It consists on a flexible PVC
sheet which thickness is 3 mm and 80 cm length; it is placed so
as it gradually directs the flow towards a narrowed exit (Photo
2). The distance between the entry of the channel and the end
of the convergent is selected so as to reach a fully supercritical
regime slightly disturbed. Indeed, we reduce the cross section
of the flow to a narrowed exit opening H = 2.5 c¢cm to allow
great velocities. The perfect rigidity of the canal is provided by
a box girder. The water supply is provided by a horizontal axis
closed-circuit pump. The flow control is done by a manual
valve which allows the variation of the water discharge. The
measurement is made using a flowmeter.

Photo 2 The hydraulic channel with a convergent at the entry

To fix the upstream depth H, we change the discharge Q
from 2 m*/h to 16m*/h, with a step of 2 m’/h, and this for each
Froude number Fr from 2 to 10. The various values of H are
given by the relation (10) [20].

Fluid flow

H=26 ()23 (10)
Fr

We used several types of obstacles of width a = 7.5 c¢cm, but
with different shapes and lengths: the first rectangular obstacle
is 8 cm length and variable maximum thickness; the second
obstacle has a trapezoidal shape with a maximum thickness s =
7 mm and length 1 = 8 cm; the third obstacle has a symmetrical
triangular shape with a maximum thickness s = 7 mm and a
length1=8 cm.

A liquid level recorder is used to measure the various free-
surfaces obtained.

A 1D Laser Doppler Anemometer (Flowlite of DANTEC
Dynamics) is also used to measure velocity profiles at various
sections of the channel, downstream and upstream of the
obstacles (photo 3).

Photo 3 The hydraulic channel with a velocimeter

EXPERIMENTAL RESULTS

Free-surface profiles

We have tested three obstacles with different shapes. The first
one, which is identical to that of [20], is triangular.
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Figure 5 Measured free-surface profile for a triangular obstacle

We remark on the figure 5 (Fr=2.7, S=s/h=0.28, L=1h
= 3.2) that, as for the obtained numerical results, the quasi
symmetry of the free-surface profile and the horizontality of
the level far downstream and far upstream of the obstacle.

The figure 6 shows an identical shape of the free-surface
profile for a localised step (Fr=2.7, S =0.28, L =3.2).
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For a given step and water upstream depth, the free-surface
profile doesn’t highly vary with the Froude number as it is
shown on the figure 9. The higher is the Froude number, the
weaker is the maximum free-surface height.

o Velocity profiles
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Figure 6 Measured free-surface profile for a step = - =
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Figure 7 Measured free-surface profile for a trapezoidal
obstacle

When we vary the obstacle’s thickness (S = 0.2 to S =
0.44), the allures of the free-surface profiles, for a given
Froude number (Fr = 2.7), are represented on the figure 8 for
steps with the same length and water upstream depth.
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Figure 8 Measured free-surface profiles for steps of same
length and various thicknesses
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Figure 9 Free-surface profiles at various Froude numbers
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far downstream section of a triangular obstacle, a trapezoidal
obstacle and a step respectively.

Let us recall that, in the mathematical formulation, the fluid
is assumed inviscid and, thus, the velocity profile is uniform
and constant far upstream.
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Figure 11 Velocity profiles for a step at various Froude
numbers

The velocity profiles represented on the figure 11 show that
their shape is very similar at different Froude numbers and
depends only on the position of the section (upstream or
downstream).

If we change the shape of the obstacle, we remark that the
velocity profile varies highly with it for a given section.
Indeed, as figure 12 shows it, the profiles are different even if
they correspond, for a given Froude number, to the same
section located above the obstacle.
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Figure 12 Velocity profiles above a triangle, a trapezoidal
obstacle and a step

CONCLUSION

The experimental study which was carried out shows the
symmetry which exists between the upstream and the
downstream free-surface of a flow for a mode everywhere
torrential.

We did not proceed to comparisons between numerical
calculation and the experimental values for several reasons: for
example, the assumed conditions in the mathematical
formulation (inviscid fluid, 2D flow and uniform velocity
profile far upstream) are not verified in the experiment, the
measurements are carried out in the centre of the hydraulic
channel, the Froude number is defined from the volume
discharge, and so on.
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