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ABSTRACT

The problem of unsteady natural convection heat transfer in
a vertical open ended porous cylinder heated with a sinusoidal
time variation of the lateral wall temperature has been
investigated numerically The used flow model is the classical
Darcy model. In the case of constant wall temperature two
types of flows, with and without fluid recirculation, depending
on the filtration Rayleigh (Ra), the aspect ratio (A) and the
inlet-outlet conditions (Bi) have been obtained. For the low
dimensionless amplitudes case (XA<0.5), a large equivalence in
the heat transfer between the sinusoidal time variation and the
constant wall temperature is demonstrated with a difference is
less than 5%. For high Ra, the difference increases.

INTRODUCTION

Several devices are transiently provided by energy such as
the solar energy collectors, circuits’ alimented by alternating
current, storage in ambient conditions, etc. Therefore, the
knowledge of the mechanisms of heat transfer by transient
convection becomes necessary, especially as it is difficult to
predict the behaviour of a fluid submitted to variable conditions
of heating, from results obtained with conditions of
temperatures or fluxes imposed constant.
Many papers dealt with constant time-variation of temperature
or flux in fluids (Patterson and Imberger [1], Vasseur and
Robillar [2]). In the case of periodical heating conditions,
Kazmierezak and Chinoda [3] were interested to the transient
natural convection in a square cavity, due to a periodical
variation of the temperature of the hot vertical wall. The
opposite wall was maintained cold. All the obtained transients’
solutions were periodic on time and showed that in spite of the
dependence of the boundary conditions on time and the
variations of the dynamical and thermal fields, the average heat
transfer evaluated on one temporal cycle, was roughly equal to
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the value obtained when the hot wall was at constant
temperature.

Time-dependent heating in porous medium has been the subject
of relatively few previous studies. Thus, S6zen and Vafai [4]
analyzed compressible flow through a packed bed with the inlet
temperature or pressure oscillating with time about a nonzero
mean. They found that the oscillation had little effect on the
heat storage capacity of the bed. Bradean et al. ([5], [6]) gave
an analytical and numerical treatment for a periodically heated
and cooled vertical or horizontal plate. They found that for the
vertical plate, a row of counter-rotating cells formed close to
the surface, but when the Rayleigh number increased above 40,
the cellular flow is separated from the plate. For the horizontal
plate, the separation did not occur.

The aim of the present work is to treat numerically the problem
of unsteady natural convection which occurs in a vertical silo of
granular storage, opened at both ends. The lateral wall is
maintained at a sinusoidal temperature to simulate the scrolling
of the days and the years (by changing the period).

MATHEMATICAL FORMULATION

The problem under consideration (natural convection in open
geometry) seems to be of a particularly delicate numerical
resolution. Indeed, the flow rate of the fluid in the channel is
fixed only indirectly by the intensity of the heated wall.
Consequently, most of the authors do not apply the same
boundary conditions for the resolution of the problem. An
illustration of the inaccuracy, the recent established benchmark
problem of chimney effect was discussed by Desrayaud et al.
([7]. The difference remains also for the same problem with
different boundary conditions and a flow reversal in the channel
exit is obtained by several authors (Krishnan [8], Hernandez
and Zamora [9]).
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Figure 1 Geometrical configuration.

The physical domain of the flow through the vertical porous
cylinder is given in Figure 1. It is assumed that the flow in the
cylinder is axis-symmetric allowing a two-dimensional
approach. The porous medium is considered to be
homogeneous, isotropic and saturated with a pure single phase
fluid, which is in thermal equilibrium with the solid matrix.
The fluid thermo-physical properties are assumed to be
constant, except in the body force term of the momentum
equations invoking the Boussinesq's approximation. The
current study assumes the validity of the Darcy flow model.
The analysis is performed in terms of non-dimensional
parameters that successfully cast together all the pertinent
influencing effects. To this end, the non dimensionalization of
the governing equations and boundary conditions at a
macroscopic scale are carried out on the basis of the following
references:

L,=H; AT, =T,-T/ ; P, =(n-0,/K): U, =0, /H

and t  =H/a, (1)
The non-dimensional quantities are:
(x,1)=(x",r)/ L :(U,V)=U, VYU, ;T=(T-T,)/AT,:

P_( dn’b)/Ret = t'/t (2)

The resulting dlmenswnless continuity and the energy
equations are as follows:

o’P 10( oP aT
= - Ra 3
(axl i rar( ar)] ax &
JaT aT oT J°T 10( dT
o (Ua_x VE) R [8}( * rar( 5))
4)

The velocity components are deduced from the obtained
pressure field:

oP oP
U=Ra T-—;V=- — 5a,b
ox or Gab)
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where Ra is the filtration
(Ra=gBAT KH/(v-a,), also

ref

Rayleigh ~ number
called Rayleigh-Darcy

number), R, and G are respectively the conductivity and
calorific capacity ratios (between effective and fluid values).
The dimensionless initial and boundary conditions become:

at t <0, it is assumed that the pressure and temperature in the
cylinder are considered uniform and equal to the ambient
conditions:

P(x,r,O) =T(x,r,0)=0 6)

at t >0, the inlet and outlet fluid are at the ambient pressure,
P

P(0,r,t)=P(1,r,t) =0 (7a,b)

Owing to the symmetry requirement at the centreline (I = 0)
and the impermeable lateral surface of the cylinder, it follows
that:

P/, =oP/ar| , =0 (8a,b)
AT/, =0 ©

The raison which enlightens this study is the problem of the
high ambient temperature fluctuations in some regions. Many
authors give the ambient temperature as a sum of sinusoidal
functions (Boland [10] for the region of Laverton in Australia).
The lateral wall temperature is supposed at the ambient one and
can be approached by a sinusoidal time-variation (Figure. 2):

T(x.A,t)=1+XA-sin((2n/7)-t) (10)

where A is the cylinder aspect ratio A=R/H, XA and T are
respectively the dimensionless oscillation amplitude (a/ AT,
where a = (T

. —TMm)/ 2), and the period of the sinusoidal
variation of wall temperature.

The period can simulate both the scrolling of the days or the
years (Tgy=Tye,/365). The amplitude gives the maximum
variation of the temperature which depends on the geographical
situation. To consider the general physical conditions at the
bottom and upper surfaces, expressing the interaction between
the natural convection through the porous media surfaces and

the external ambient fluid, we use:
t+1/4t

l||\a
-1- -3- XA=0, Constarft Températue
t, 12t x
T, 4 4
T,

T t+3/4T min
.
4-

Temperatue Iof the heatedI wall

-

Figure 2 Time evolution of the heated wall temperature



For top surface:
if U>0 (outgoing flow) 9T/ 0x| (1o =BXT(LLD (11-0)

if U<0 (ingoing flow) T(1,r,t) = 0 (11-b)
For bottom surface:
if U>0 (ingoing flow) T(O,r,t) = 0 (12-a)

if U<0 (outgoing flow) 0T/ aX| (0x0) =+BixT(0,r,t) (12-b)

where Bi = h-H/k  represents the equivalent Biot number of

the porous matrix-air interface. h is the convective exchange

coefficient and k

Heat transfer is represented in term of local Nusselt number
defined as:

Nu(x,t) ==0T(x,r,t)/0x|_, (13)

The space averaged Nusselt number along the cylinder:

the porous media effective conductivity.

1
Nu=Nu(t)= Nu(x,t) =INu(x,t)-dx (14)
0
And the time-averaged total Nusselt number:
T
NuT=1fNu(t)~dt (15)
T 0

The chimney effect and the resulting transient dimensionless
total flow rate is expressed as:

Q, ()=21 [U(Lr.t)r-dr (16)
0

NUMERICAL PROCEDURE

The governing equations (Egs. 3-5) with the associated initial
and boundary conditions (Egs. 6-12) are solved using the finite
volumes method, introduced by Spalding (see Patankar [11]).
The resulting algebraic system could be solved by an iterative
procedure using the alternate direction implicit method (ADI).
The numerical program is tested for both the pure conduction
and the classical Darcy natural convection problem in a square
porous cavity.

We underline the existence of singularities at the cylinder wall
corners, where the cold and hot surfaces are in direct contact,
i.e., the local temperature gradient tends to infinity. In physical
situation, the relaxation phenomenon induces a connection
domain on which the temperature decreases from hot to cold
values. To reach the grid independence and convergence to
unique solution, essentially for the cases of low Rayleigh
numbers, the singularity is treated using temperature
regularization on the wall as (see for instance Bennacer et al.

[12)):
F0=T (A0 =(1=(1-2-x)"" )| +XA sin((2/7)-0)

a7
The ‘n’ value controls the domain affected by the temperature
transition. It is found that n=50 is enough to reach an
asymptotic situation, where no grid effect and only a small
domain is affected by the temperature transition (AX less than
0.001).

Heat and mass transfer

In the case of the steady state pure conduction and for a
constant applied temperature, the analytical solution is obtained
using variable separation and expressed as:

T(r,x)= mZ:T[E2n (m)-I, (X, -1)-sin(X,, -x)] (18)

where I is the zero order Bessel function , 7\,m the solutions of
the equation —A = Bi tg(A
coefficients taking into account the external applied irregular
temperature condition.

Equation (18) combined with the Nusselt expression (Eq. 14)
gives the analytical expression of the resulting heat transfer
(averaged Nusselt number) as:

N“:nia[EZH(m)'Il(?um-A)-(l—cos(km))] (19)
m=1

.,) and E(m) is the integration

where 1, is the first order Bessel function.
N
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Figure 3 Effect of the regularisation on the analytical
solution
The obtained series form solution (‘m’ in Eq. 19) is represented
in Fig. 3. The effect of m values on the corresponding Nu with
and without regularization (f(x)=1) are compared. We can
observe the convergence of the analytical solution with m in
case of regularization. The case with singularities at the corners
(without regularizationf(x) =T (x,A) =1) leads to an obvious

non convergence of the obtained analytical solution (Eq. 19).
The numerical resolution in such last case can exhibit a relative
convergence with grids refinement and induce to an inaccurate
conclusion. Details of the validation can be seen in the work of
Ameziani et al. [13]

RESULTS

The results are presented and discussed in terms of velocity,
pressure and temperature fields. Plots showing the evolution of
the space and time averaged Nusselt numbers are also
presented. Due to the numerous controlling parameters, all the
calculations have been performed for a conductivity ratio,
aspect ratio and calorific capacity ratio of unity Ry=A=c=1.
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Figure 4 Temperature lines and velocity vector field for
different Ra (Bi =0.01, A=1, XA=0).

Constant wall temperature:
Figure 4 illustrates temperature and velocity fields for different
Rayleigh-Darcy numbers in the case of Bi=0.01. The isotherms
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show a similarity with the case of a vertical heated flat plane in
a semi-infinite porous medium. The isotherms indicate that the
temperature is propagated from the heated vertical cylinder
towards the top of the cylinder, creating significant thermal
gradients in the horizontal/vertical direction. The flow intensity
decreases from the heated wall region to the centre, where
thermal buoyancy forces are weak.

The velocity vector field shows that for small filtration
Rayleigh number values (Ra =1 and 50), the weak flow is
ascendant on the entire domain. The fluid flow is mainly
unidirectional. When Ra increases, the thermal boundary layer
is tightened, generating a reduction of thermal gradients in the
core of the porous cylinder. In such situation, the velocity
values near the wall increase, and the fluid flow in the cylinder
is supplied both from the bottom and partially from the top
surface of the porous cylinder. This can be explained by the
fact that a pressure gradient occurs on the cylinder centre line
without buoyancy forces. The resulting volume forces induce a
counter-flow in the centreline domain. Such phenomena are the
direct consequence of the Ra increases, i.e. the thermal
boundary layer reaches an adequate scale in comparison to the
cylinder radius. The reverse flow is observed in both situations
of low and high Bi values and the needed Ra condition to
obtain such a reverse flow is highly dependent with Bi value
and the aspect ratio.
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Figure 5 Critical Rayleigh number versus the Biot number
for A=1, XA=0.

In the case of aspect ratio, A=1, Fig. 5 gives the critical
Rayleigh number for the appearance of the top fluid aspiration
depending on the different Bi values. We can categorize the
critical Ra behavior into three principal regimes; weak, high
and moderate Biot values.

The two first behaviors (weak and high Bi values) are a direct
consequence of the two extreme situations, (i.e. independence
of the thermal field with the Biot number) isotherm (Bi>>1) or
adiabatic (Bi<<1) applied boundary conditions. The increase of
Ra. with Bi is an effect of the flow intensity (chimney effect)
reduction due to the modification of the thermal boundary
condition inducing a fluid cooling in the upper cylinder part.
Note that the weak and high Bi values exhibit two asymptotic
tendency where the needed critical Rayleigh number was
respectively Ra.=52 and 73.



Analytical Solution (Eq.22)
For considered Biot numbers
A=1

Nu

DIFFUSIVE

Eq(24)

BOUNDARY LAYER|

1
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Figure 6 The average Nusselt number versus Ra for

different Biot number for A=1, XA=0.

First, the space averaged Nusselt number (Nu,,), for steady
constant wall temperature (XA=0) is exhibited in the figure 6
versus Rayleigh and Biot numbers. This plot clearly indicates
the increasing of heat transfer with Rayleigh number. The flow
enhancement with the buoyancy force increases thermal
gradients near the lateral heated wall.

For low Rayleigh values, the heat transfer exhibits asymptotic
value corresponding to the diffusive regime. The obtained
conductive (low Ra) values are Bi dependent. The analytical
conductive heat transfer coefficients (Eq. 19) are plotted for the
different analyzed Bi. A good agreement has been obtained and
the two dependencies are well estimated.

Note that the heat transfer increases with the Biot number only
for low Rayleigh values and this dependence vanishes for high
Rayleigh numbers. In such situation (high Ra), the flow tends
to a boundary layer structure where the weight effect of the exit
boundary condition on the global flow decreases. Consequently
all the curves for different Biot numbers go up to a similar limit
of the convective mode heat transfer. Such heat transfer

variation ( Nu ~ 1/8) is predicted as:
Nu ~ Ra'? (20

The Nusselt number in the boundary layer situation is
represented by the dashed line on figure 6. The fitted Nu is
given by:

Nu = 0.695xRa’¥ 21)

Sinusoidal wall temperature:

Figure 7 (a, b) illustrates the temporal evolution of the space-
averaged Nusselt for different Rayleigh numbers and different
dimensionless amplitudes. The monitoring points (1, 2, 3, 4)
corresponding to the temporal position with the wall
temperature (see fig.2).

Initially, all the curves illustrate transition from the conductive
regime to an oscillatory behaviour. They show an exponential
damping of the heat transfer. The duration of such transition
growths with the increase of the Rayleigh number. After the
transition time, the curves show a periodical evolution where
the constant temperature formulation corresponds to the case of
very low dimensionless amplitude (XA<<1).

Heat and mass transfer

TS FTETRENY) A TTITEETE FTETERTEEL FRTRTETITE IRUTET

E [ Nu,,, +(Nu-Nu)/2*sin(2n/0*1)

0 1 6 7 8 9 10 11 ¢

a). Weak amplitude (I)scillatlion

L s
—O0— XA=0.8

50 Nut_ +(Nu-Nu)/2sin(@m/0°) |
4 :

Ra=10 | : PR

; “ Perfect Sinusoidal evolution -
i , % 2 3 1

0 1 6 7 8 9 10 1
t
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Figure 7 The space-average Nusselt number (Eqt 13)

In the conductive regime (Ra=0), the temporal evolution of
the heat transfer is mainly sinusoidal for all the considered
amplitudes, and the Nu evolution can be predicted as:

Nu = Nug,,, +((Nu, — Nu,)/2)xsin((21/t)x 1)

(22)
where Nugeqy 1s the obtained steady state Nusselt number with
constant temperature (XA=0). Nu, and Nuy, are respectively the
Nusselt numbers at the times 2 and 4.

The increase of Rayleigh number induces a loose of the
symmetry time evolution in comparison to the constant wall
temperature case, and this dissymmetry is more pronounced
with the increase of the dimensionless amplitude (XA). In this
case, Equation (22) is not valid. Note that the period is
maintained at the temperature variation oscillation period (t=3)
for all the considered parameters.

Figure 8 demonstrates the effect of the dimensionless amplitude
on the relative heat transfer enhancement (ANu/Nu), for
different Rayleigh values. For low dimensionless amplitudes
(XA<0.5), we observe an equivalence between constant and
time dependent heating conditions (relative change is less than
5 %). For amplitudes greater than 0.5 we observe a significant
heat transfer enhancement. This observed enhancement
increases with the Ra number. For high Rayleigh number
values, the heat transfer difference goes from the reference
value to an increase of 19.5% when the dimensionless
amplitude reaches 0.99.

steady
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relative heat transfer enhancement

CONCLUSION
The problem of natural convection heat transfer in a vertical
cylinder with open ends, filled with a fluid-saturated porous
medium and heated with a sinusoidal lateral wall temperature,
compared to a constant wall temperature, was the main focus of
the present work. The dynamical results showed two types of
flows, the mainly one directional and the flow with counter-
flow.
The reverse flow (Ra and Bi dependent in the case of A=1) is a
consequence of the pressure gradient effect occurring outside
the thermal boundary layer.
The three principal domains of the Bi values (small,
intermediate and high) are illustrated as follows:
e The weak and high Bi values, exhibit a constant asymptotic
R, tendency.
e The intermediate Bi values exhibit an increase of Ra. with
Bi connecting the two asymptotic values.

For the low dimensionless amplitudes case (XA<0.5), the
obtained heat transfer in the sinusoidal time variation case is
equivalent with the case of constant wall temperature where the
difference is less than 5%. For high Rayleigh numbers, the
equivalence in the heat transfer difference vanishes, the heat
transfer difference goes from the reference value to an increase
of 19.5% when the dimensionless amplitude reaches 0.99.

REFERENCES

[1] Patterson J.C., Imberger J., Unsteady natural convection in a
rectangular cavity, Int. J. Fluid Mech. 100 (1980) 65-86.

[2] Vasseur P., Robillar L., Natural convection in a rectangular cavity
with wall temperature decreasing at uniform misses, Warme—und
Stoffubertragung 16 (1982) 199-207.

[3] Kazmierczak M., Chinoda Z., Boundary-driven flow in an
enclosure with time periodic boundary conditions, Int. J. Heat Mass
Transfer 35 (1992) 1507-1518.

[4] Sozen M. and Vafai K., Analysis of oscillating compressible flow
through a packed bed, Int. J. Heat Fluid Flow 12 (1991) 130-136.

[5] Bradean R., Ingham D. B., Heggs P.J., and Pop 1., Free convection
fluid flow due to a periodically heated and cooled vertical plate
embedded in a porous media, Int. J. Heat Mass Transfer 39 (1995)
2545-2557.

822

[6] Bradean R., Ingham D. B., Heggs P.J., and Pop I., Unsteady free
convection adjacent to an impulsively heated horizontal circular in
porous media, Numer. Heat Transfer A32 (1997) 325-346.

[7] Desrayaud G., Bennacer R., Caltagirone J. P., Chenier E., Joulin
A., Laaroussi N., Mojtabi K., Etude numérique comparative des
écoulements thermoconvectifs dans un canal vertical chauffé
asymétriquement. VIIIéme Colloque Interuniversitaire Franco-
Québécois. 28-30 mai, Montréal, Canada, 2007.

[8] Krishnan A.S.. Premachandran B., Balaji C., Venkateshan S.P.,
Combined experimental and numerical approaches to multi-mode
heat transfer between vertical parallel plates, Experimental Thermal
and Fluid Science 29 (2004) 75-86.

[9] Hernandez J., Zamora B., Effects of variable properties and non-
uniform heating on natural convection flows in vertical channels,
International Journal of Heat and Mass Transfer 48 (2005) 793—
807.

[10] Boland J.; The analytic solution of the differential equations
describing heat flow in houses; Building and environment 37 (2002)
1027-1035.

[11]Patankar S. V., Numerical heat transfer fluid flux,
Hemisphere/McGraw-Hill, New York, 1980.

[12] Bennacer R., El Ganaoui M., Leonardi E., Vertical Bridgman
Configuration Heated From Below: 3D Bifurcation And Stability
Analysis, Applied Mathematical Modeling 30 (11) (2006) 1249
1261.

[13] Ameziani, D. E., Bouhadef, K., Bennacer, R. and Rahli O.,
Analysis of the Chimney Natural Convection in a Vertical Porous
Cylinder, Numerical Heat Transfer, Part A: Applications, 54:1,47-
66 (2008)



