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ABSTRACT Ve [m/s] Characteristic velocity
Steady-state laminar natural convection in triaagul %Y [ Cartesian coordinates .
. . . . . . X, Y [ Dimensionless Cartesian coordinates
enclosures is of interest in many engineering apptins such
as buildings and electronic equipment. Greek symbols
This paper presents an analytical and numerical « [m2/s] Thermal diffusivity .
computation of laminar natural convection in veatiapright- [1/K] Coefficient of volumetric thermal expansion
. . . . . . . AT [K] Temperature differences in the fluid
angled triangular cavities filled with air. The tieal wall is 0 4 Dimensionless temperaturie (T-Tc)/(q-Lu)
uniformly heated; a prescribed cold temperaturassigned at u [kg/ms] Dynamic viscosity
the inclined wall; while the upper horizontal wadl assumed v ["12/3]3 Kinematic viscosity
thermally insulated. The defining aperture anglis located at ~ * [kgém] Density |
the lower vertex between the vertical and inclimedls. v [rad] Aperture angle
The finite element method is implemented to perfdha Subscripts
computational analysis for three aperture anglds 15°, 30° A Adiabatic
and 45° and height-based Rayleigh numbers ranfgorg a ﬁ ﬁg'td
low Ra= 0 (pure conduction) to a high ®.0Numerical results X,y Components in thx andy direction
are reported for the buoyant velocity and tempeeafields as X, Y Components in the dimensionlééandY directions
well as the mean convective coefficient at the drbatertical
wall. The numerical computations are also focused tiwe
determination of the value of the maximum or calic INTRODUCTION

temperature along the hot vertical wall.

NOMENCLATURE

g [m/s] Gravitational acceleration

k [W/mK] Thermal conductivity

L [m] Length of wall

Nu [-] Nusselt numbenNu = gy-Lu/(k- (T-Tc))

Nuy [-] Minimum Nusselt number along the hot wall
Nuw, [-] Mean Nusselt number along the hot wall

p [Pa] Pressur¢

P [-] Dimensionless pressung/(p-V.)

Pr [-] Prandtl numbe

q [W/m?] Heat flux

Ra [-] Modified Rayleigh numbeiRa= g-gu-Ln*/(a-0-k-T)
S [m] Distance along the wi

T K] Absolute temperature

u [m/s] Velocity

U [-] Dimensionless velocity) = u/V,
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Natural convection in enclosures is encountereanany
engineering applications. Because of this, it hasome an
important area for theoretical, computational ardegimental
research resulting in a vast number of publicatidns
mainstream journals. Typical applications, such resural
convection in house attics, solar collectors, detgane
windows and electronic equipment can be mentioned.

There are many theoretical, numerical and experiahen
studies in the open literature concerning natuoavection in
two dimensional enclosures of square, rectangulad a
triangular cross sections. State-of-the-art reviefisnatural
convection in enclosures were published by Ostrfith
Raithby and Hollands [2] and Jaluria [3] in chaptesf
specialized handbooks. Most of the studies are tddvdo
natural convection in enclosures with different rthal
boundary conditions either for laminar or turbulesgimes [4-
9.



Though different thermal boundary conditions hawerb
studied, most papers are focused on the consideraif
prescribed uniform temperatures at selected wéltheocavity.
Usually, one of the walls is modeled as a hot wétt uniform
temperature, a second one is the cold wall alsb witiform
temperature and the remaining walls are assumedeto
thermally insulated. However, in some cases, asidoin
cooling of electronic components, a more realigtitalysis
would be obtained if the hot wall is modeled asnifarmly
heated wall. Obviously, in these situations an enev
temperature profile is obtained along the hot waliowledge
of the value and location of the maximum or critica
temperature along the hot vertical is crucial faoarect design
of the heat rejection mechanism of these components

This paper addresses the analytical and numerical
computation of laminar natural convection in veatiapright-
angled triangular cavities filled with air. This rd@uration
may find application in the miniaturization of elemic
packaging subjected to space and/or weight conssraas
stated by Simons et al. [10] and Bar-Cohen etlal}.

In this work, the vertical wall is uniformly heatec
prescribed cold temperature is assigned at thenadtlwall;
while the upper horizontal wall is assumed thennisbsulated.
The numerical computations are obtained with
implementation of the finite element method in dtahle
computational grid. Numerical results are obtairfed the
velocity and temperature fields as well as the Hiissimber at
the heated vertical wall for different values oé theight-based
Rayleigh number. Two different Nusselt numbers are
determined: the first is based on the maximum teaipee
along the heated vertical wall, whereas the secomdis based
on the mean temperature along the vertical walbwledge of
the Nusselt as a function of the Rayleigh numbdt aliow
estimating the maximum or critical temperature gldhe hot
vertical wall.

the

PHYSICAL SYSTEM AND MATHEMATICAL MODEL

The physical system considered in the paper isctigpiin
Figure 1. It consists of air confined to a vertigariented
right-angled triangular cavity made with three impeable
walls. The aperture angle identifies the bottom vertex of the
triangular cavity. A uniform heat fluxy, is imposed at the
vertical wall of lengthLy, the inclined wall of length¢ is
maintained at a uniform cold temperatdig while the upper
connecting horizontal wall of length, is considered to be
thermally insulated.

Owing that the dimension perpendicular to the plahthe
diagram is long compared to the cavity height,dimenotion is
conceived to be two-dimensional. Because the gtiwital
acceleratiorg acts parallel to the hot vertical wall, the budyan
air convection may be modeled by the following sgstof
steady conservation equations:

Mass conservation:

auy Uy
ox oy
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Momentum equations:
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Energy conservation:
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Figure 1 Sketch of the upright-angled triangular cavity.

The Boussinesq approximation and constant physical
properties are considered in the previous equatiaere p
denotes a reference density evaluated at the tetuperof the
cold wall (T¢).

Assuming that the trapped air does not slip at daety
walls, the velocity boundary conditions avg =uy=0. The
temperature boundary conditions refer to a preedrilbow
temperaturd ¢ at the inclined wall and a uniform heat flugg)
at the vertical wall. At the top horizontal walhet heat flux
must be zero to comply with a thermally insulateshdition,
which impliesdT/oy = 0.

For convenience, the governing equations are espdes
terms of suitable dimensionless variables. In otdedo this, it
is necessary to introduce a characteristic velocithis
characteristic velocity can be obtained from theekic energy
gained by the fluid as a result of the work done thg
buoyancy forces. A measure of the buoyancy forarsupit
volume within the cavity is given bg-S-p-AT, whereAT is a
measure of the temperature changes existing ifluite The
buoyancy forces do work on the fluid as it flowside the
cavity; therefore, a measure of the work done @nflihid can
be obtained as the product of the buoyancy foraad a
measure of the distance over which these forcesia&cta
characteristic size of the cavity. In this papbke tavity height,
Ly, is considered as the characteristic size of #wty Then,
equating the measures of the work done by the mayyBorces
and the kinetic energy gained by the fluid, gives:
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Most natural convection problems can be includedna of
the following two categories:

- External flow configurations where the surface
temperature T,) and ambient temperaturd.jj are given as
input parameters. In these cases a measure oémmgetature
changes existing in the flow is simply given&y =T,, - T...

- Internal flow configurations that occur within dosed
regions where prescribed uniform hoty) and cold Tc)
temperatures are specified along some of its walken, a
measure of the temperature changes in the flowiviengby
AT = TH —Tc.

In the problem considered in this paper, a preedrib
uniform cold temperaturerl§) is considered along the inclined
wall and a uniform heat fluxqf) is considered along the
vertical wall. In this case, the vertical wall teempture
increases with height, and is expected to reacted@mum at
the upper edge of the wall. In order to obtain asnee of the
temperature changes in the flow, the heat fluxhat vertical
wall is related with fluid temperature field by wie of the
Fourier’s law:

L
Gy = k%

The order of the temperature gradient within thiédflalong
the vertical coordinate is given by:

al _ TC _Tw
ox L

y
whereT,, is the temperature of the vertical wall at theticat
positiony andL, is the horizontal distance from the vertical
wall to the inclined wall at positiory. As a result, the
temperature along the vertical wall is supposeddoease with
the vertical position, with a maximum located aé thpper
corner of the cavity. Then, the order of the terapge changes
existing in the flow is given by:

(6)

(7

Oy [La
k
Combining Egs. (6) to (8) and taking into accoumatt

L, ~ Ly, the value of the characteristic velocity of thewf is
obtained:

V.- /zwm}: @,

For convenience, we drop the factor 2 from the sejuaot
and replacd., ~ Ly, to obtain the following expression for the
characteristic velocity:

Vc: gwmlH Dlil
\ k

The governing equations can also be nondimensiethly
employing the characteristic velocityJ for the flow and the
following dimensionless variables:

(8)

AT =T, " Tc~

9)

(10)
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X = X ,Yzl (12)
u u
U =X, U :—y (12)
X Vc Y Vc
p="Te g e, p=_P (13)
AT qH |Il‘H p[vcz
Then,
v, :\/gme m—ii — gldy, Dlil (24)
¢ k Tk
Resulting:
Uy , 0y _g (15)
X aY
2 2
U, Vx4, QUX:_EJr\/ﬁ 0%y , 9%y (16)
oX ay oX JRal ox? oav?
2
U, QY 4y, Uy 9P VPr [0y U | (17)
oX aY aY JRal ax? oav?
2 2
U224y, 20 1 [gafuw] (18)

oX oY JPriRal|ox? ov?2

In the previous equations it has been considered th
B =1Mg):

Rz BT LS _ glay, I3,
vid Te R

(19)

The velocity boundary conditions for the dimensessl
governing equations atéy = Uy= 0. The temperature boundary
conditions are established by specifying prescribeldies of
6 =0 at the inclined wallpg/oX = -1 at the vertical wall and
00/0Y = 0 at the top adiabatic wall.

From the previous set of equations, it is seen ttiatflow
field (Uyx, Uy) and the temperature distributiof) @re governed,
for a given aperture angle)( by the Rayleigh number and the
Prandtl number.

The governing equations and boundary conditionsewgetved
numerically using the commercial finite element eod
COMSOL Multiphysics version 3.5 [12]. The problemasv
solved using the numerical solver UMFPACK [13].
Computational meshes consisting of roughly 2,4080® and
10,300 triangular elements were used to make aidecdn the
grid size. In all cases care was taken to incréseelement
density in vulnerable areas where high velocity tamdperature
gradients would occur, such as near the solid walls

Table 1 shows the results of the grid sensitivitglgsis for a
critical case corresponding to the widest aperangle ¢ =45°)
and the highesRa= 10. Important parameters such as the
maximum nondimensional velocity and temperatureesland



the Nusselt numbers at the hot wall are reportecan be seen
that results reported in Table 1 are similar andappreciable
differences (lower than 0.1%) are found when insirea the

grid size from 6,300 to 10,300. As a result, irstiork a mesh
consisting of roughly 6,300 triangular elements whesen to
carry out the entire numerical computations.

Table 1
Grid sensitivity forRa= 10 andyp =45°.
Mesh Unma Ny, Nu,
2404 4.44.18 14.89 29.32
6304 4.32-18 14.86 29.33
10334 4.32-16 14.86 29.33

RESULTS AND DISCUSSION

Results are reported for the velocityUy(Uy) and
temperature) fields as well as the Nusselt numbers at the hot
wall, based on the maximum and average hot walp&zaiure.

In this paper, numerical results are reported fioed different
aperture angleg = 15°, 30° and 45° and height-base Rayleigh
numbers that range from a ldRa= 0 (pure conduction) to a
high Ra= 10. All computations were performed at standard
atmospheric pressure. The cold wall temperafigeand the
heat uniform heat flux along the hot wall were set to fixed
values of 287 K and 20 WAn respectively. Perfect gas
behavior was assumed, so the thermal expansiofiiciesf 5

is given by 1T.. The thermophysical properties of air were
assumed constant and evaluated at the cold walldextureT
using the code REFPROP [14]. Consequently, alhtiraerical
computations share a same Prandtl number, so fgiven
aperture angleg the velocity and temperature fields are only
governed by the Rayleigh number.

Since for all geometries, fixed values of the hiat and
cold wall temperature are considered, the Rayleighber was
controlled through the variation of the gravitatibconstang.

In particular, the case fog= Ocorresponds to the limiting
conduction regimeRa= 0.

Figure 2 shows the nondimensional velocity and
temperature contours of the air flow for the 450ityaand a
low Ra= 1C. The figure shows that the velocity field for this
configuration contains a single clockwise rotatingrtex,
which takes the shape of the cavity. The vortex @sothe
warm fluid from the left vertical wall along thepgmf the cavity
and then down along the adiabatic inclined walis lalso seen
that the velocity field is zero at the boundarylsal

With respect to the temperature field, it can bensthat the
main orientation of the temperature isotherms isiced which
denotes that, for this low Rayleigh number, thecpss is
dominated by conduction. The maximum temperature
obtained at the upper edge of the hot vertical, wath a value
of Onax=0.508. This trend should be expected, since the
separation between the heated wall and the coldl gvaivs
from the bottom to the top of the cavity gradualtycan also be
observed that the isotherms are normal to the taf, wn
harmony with the imposed adiabatic boundary coouliti

is
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The same results for the slender 15° cavity arevshio
Figure 3. Once again a single clockwise rotatingteso is
obtained, which is qualitatively similar to the easf the 45°
cavity. However, two main differences are appredatvith
respect to the 45° cavity: the velocity values lasger (now
Umax = 2.61-10) and the vortex has moved up towards the top-
left-corner of the cavity. As a result, a similarmperature field
is expected, which is confirmed in the isothernmresented in
Figure 3. However, even though the velocity fietdweaker,
the maximum dimensionless temperature is reducedettalf
(Bmax = 0.220). This behavior must be attributed torareased
conductive heat transfer related to the small sejwar between
the hot and cold walls for the 15° configuration.

Figure 2 Streamlines and isothermsRa = 1C for ¢ = 45°
(Unmas= 2.66-1F, Ona= 0.508,A0 = 012, 10).

Figure 3 Streamlines and isothermsRa = 1C for ¢ = 15°
(Unmax = 2.61-1G, Onax = 0.220,A0 = 01/10).

Figures 4 and 5 illustrate the same results butafdrigh
Ra= 1¢®. When comparing the streamlines of the cavitigs fo
these figures with those in Figures 2 and 3, itlgar that the
vortices have moved to the bottom of the cavity.rédwer,
now the velocity field function values are incredse
significantly when compared with thRa= 10° case. This
increment in the velocity field translates into tfieid low
being dominated by natural convection. As a conseqge, we
should expect the temperature field to be strontfluence by
the velocity field, as confirmed in Figures 4 anditscan be
seen that now the isotherms in Figures 4 and Saewnged
horizontally instead of vertically in the core bktcavity. Since
higher velocities are obtained, a more effectivatheansfer is
expected, which is confirmed by the lower maximum



temperature values obtained along the hot vertiwall. wheres represents the distance along the wall,is the wall
However, it should be noted that now the maximum length,T(s) is the local temperature along the hot wall 409
dimensionless temperature is the same for bothiesvi is the local dimensionless temperature along theviad.
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Figure 4 Streamlines and isothermsRa = 1@ for ¢ = 45° 01 ] ,’/
(Unmax = 5.26-1G, Onax = 0.107,A0 = 01/10). 1,
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Figure 6 Temperature profile along the heated vertical Vall
Ra= 10 and the two aperture angles (L5° and 45°.
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Figure 5 Streamlines and isothermsRa = 10 for ¢ = 15° ]
(Umax = 5.09:1G, Opnax = 0.107, A0 = 012/10). = 0.06 | s
] --45
To have a clearer map of the temperature field, the 0.04 _
temperature profiles along the hot vertical wa# acrutinized I
for the cases considered previously. In Figure Be t 002 | /
dimensionless temperature along the hot wall idgteudofor a 1
low Ra= 10 for the 15° and 45° cavities. It can be seen that 0 ) ‘ ‘ ‘ ‘ ‘
dimensionless temperature increases nearly witstaohslope, o o2 04 06  os 1
except in the vicinity of the upper edge where tdraperature Y

profile changes smoothly to a zero slope valueh@mmony
with the with the top wall adiabatic boundary cdiuh).

Figure 7 shows the same results but for the iRglx 1¢°
case. Two main differences are observed with resjgethe
results shown in Figure 6. First, it can be seeat tthe
temperature profiles are nearly coincident for 1€ and 45°
cavities. The second main difference is that nowe th
temperature profiles present a nearly constantesipng the
middle part of the wall and abrupt temperature geasmear the

Figure 7 Temperature profile along the heated vertical Vel
Ra= 1 and the two aperture angles (L5° and 45°.

Two different Nusselt numbers are evaluated. Trst éine
is the minimum Nusselt number along the hot walk§, which
is readily determined from the maximum temperagalong the
hot vertical wall, as stated in equation (21). Beeond one is
the mean Nusselt numbeNwg) which is given by equation

edges. (22).
For the purpose of numerically analyzing the heatdfer 1 1)
features of the cavity the Nusselt numbers alorgy wértical Nul_gmax
walls are calculated as stated in equation (20)
_ oy _ 1 (20) -1 _ Ly (22)
Nuls)=—F———==—— Nuy=—=—=
& K{T(9)-Tc) &(s) CON:

[6cv)@y
0
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The minimum Nusselt numbersif,) are plotted in Figure 8
as function of the Rayleigh number for the threerape angles
analyzed (15°, 30° and 45°). Results show thatNhsselt
number grows with the Rayleigh number for all theses
considered. The curves in Figure 8 also reveal fbateach
aperture angleNu, is nearly invariant witiRa until a critical
Rayleigh number Ka,;) is attained. The critical Rayleigh
number marks the demarcation point between the umith
and convection heat transfer modes. Figure 8 asgeals that
the critical Rayleigh number increases when thetapeangle
diminishes.

Comparing the results for the three aperture angscts
that when the aperture angle is reduced from 45P5&) the
minimum Nusselt numbem{y) increases remarkably in the
low Ra range. However, for values of the Rayleigh number
higher than the critical one, tiNuy, curves for the three cavities
tend to converge into a single one. This meang, ftben the
view of controlling the superficial temperatures tbe wall
(controlling the maximum or critical temperaturdjetthree
cavities perform similar once the Rayleigh valususficiently
high enough to guarantee that the convective naasfer mode
is active.

100

45

-&-30 —4-15

10

Nu,

1.E+01 1.E+03 1.E+05 1.E+07
Ra
Figure 8 Variation of the minimum Nusselt number with the
Rayleigh number for the three aperture angles3®°and 45°.
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—-45 -&-30 415
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Figure 9 Variation of the mean Nusselt number with the
Rayleigh number for the three aperture angles3®°and 45°.
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Figure 9 shows the same results but for the measséliu
number Nu,). An analysis of the results in Figure 9 leads to
similar conclusions that those obtained for Figgiré&inceNu,
is based on the hot wall average temperature rétheron the
maximum or critical temperature, the valuesNaf are higher
thanNu, by a factor between 1.5 and 2.

CONCLUSIONS

In this paper the problem natural convection hasnbe
analyzed in a right-angled triangular cavity filledith air. The
analysis was performed for height-based Rayleighbars that
range from a lowRa= 0 (pure conduction) to a higRa= 10
and for the three aperture angles of 45°, 30° &fd The
numerical computations were channeled through the
determination of the minimum and mean Nusselt numbe
along the hot vertical wall, which are based on rieximum
and mean temperatures along the hot vertical vespectively.

The following major conclusions are drawn from the
analysis of the numerical results.

1. A critical Rayleigh number exists that marks the
threshold between the conduction mode and the alatur
convection mode. The critical Rayleigh number dases for
higher aperture angles.

2. For all the configurations, the minimum and mean
Nusselt numbers at the hot wall increases witheimemts in
the Rayleigh number.

3. For low Rayleigh numbers the thermal performance
increases for lower aperture angles. This behamiast be
attributed to an increased conductive heat transfated to the
small separation between the hot and cold walls.

4.In contrast, for high Rayleigh numbers the tharm
performance is merely equal for the three apertamgles
studied. Then, the same value of the maximum dicali
temperature along the hot vertical wall is obtained
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