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Abstract In this work, the heat transfer and fluid flow process in
a vertical cavity of large aspect ratio, AR = 12, with walls of fi-
nite thickness, heated from two portions localized in the side walls
of the cavity near the bottom, is studied. The equations of mo-
tion are written in non-dimensional form, depending of five non
dimensional parameters (the Rayleigh number, the Prandtl num-
ber, the thermal and conductivity ratio of the fluid and the material
of the cavity and the non-dimensional width of the walls) and are
solved numerically by the use of the SIMPLE algorithm. Calcu-
lations were performed for three different values of the Rayleigh
number for two values of the thickness of the wall, and fixed val-
ues for the rest of parameters.

1 Introduction

In many of the practical systems where natural convection is
present, it is of prime importance to consider the thermal properties
of the material that confines the fluid. A deeper knowledge of the
combined effects of the heat conduction in the walls of the cavity,
and the natural convection in the fluid, can lead to an improvement
in the design of thermal exchanging devices.

The conjugated effect of conduction and natural convection
has been widely studied, some examples are cited next. Kim and
Viskanta (1985) performed a numerical and experimental study of
the natural convection in a square cavity made of four conductive
walls. They found that under certain configurations of the system,
the conductive walls help to partially stabilize the flow and re-
duce the temperature differences in the cavity, as well as the heat
transfered by natural convection. More recently, Liaqat and Baytas
(2001), Moghtada and Mobedi (2008) and Zhang et al. (2011) stud-
ied the influence of the presence of walls of finite thickness over
the natural convection in square cavities with different geometri-
cal configurations. The numerical results reveal that, among other
things, the heat transfer increases almost linearly with the ratios

of thermal conductivities or diffusivities and decreases if the cav-
ity is inclined. Their results have demonstrated that there exists a
significant change in the behavior of the resultant flow, in compar-
ison with those obtained in similar systems where the conjugated
phenomena is not considered.

In the last years, the heat transfer studies for the design of ther-
mal devices have relied on the analyses of the second law of ther-
modynamics and on the minimal entropy production. However,
there are few works that consider the entropy generation due to
heat conduction and natural convection in enclosures with walls
of finite thickness. The works performed by Varol et al. stand out
(Varol et al. (2008) and Varol et al. (2009)) where the entropy pro-
duction due to the conjugated process of heat conduction-natural
convection is studied in a square cavity with side walls of different
finite thicknesses and in a trapezoidal porous cavity with a solid
vertical wall of finite thickness. Among their more important re-
sults, the presence of the solid walls affects the temperature and
velocity fields inside the cavity, the Bejan number diminishes when
the Rayleigh number or the thermal conductivities ratio increases,
and the most intense zones of local entropy production are found
in the corners of the cavity. They also show that the entropy pro-
duced by the viscous effects does not depend on the thickness of
the walls, and that the shape of the cavity can be a controlling pa-
rameter to decrease the overall entropy production, obtaining an
energy saving.

The present work is aimed to provide further information on the
transient heating process and the entropy production in a large as-
pect ratio cavity with walls of finite thickness. Which is a system
that can be used in many engineering devices.

2 Problem statement

In this work, the natural convection and entropy generation in a
Boussinesq fluid with constant viscosity and thermal diffusivity,
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confined by a two dimensional rectangular cavity with large aspect
ratio, AR = L/H = 12, and with solid conductive walls of finite
thickness with constant thermal diffusivity, as shown in Fig. 1, is
studied. L is the interior height of the cavity and H is its interior
length. The whole system, conformed by the cavity and the walls,
is adiabatically isolated from the exterior, except by two portions of
height l = H and length h located symmetrically on the side walls
of the cavity at a distance L1 from the top wall. The two portions
are held at constant temperature T1 which is larger than the initial
temperature of the fluid T0.
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Fig. 1: Schematic representation of the cavity.

Using the length of the cavity H, the diffusion time of tempera-
ture H2/κ f (κ f is the thermal diffusivity of the fluid) and the dif-
ference between the initial temperature of the fluid and the tem-
perature that induces the buoyancy forces T1− T0, the following
non-dimensional variables arise,

xi =
x∗i
H
, ui =

u∗i H
κ f

, t =
t∗κ f

H2 ,

p =
p∗H2

ρ0κ2
f
, θ f =

Tf −T0

T1−T0
, θs =

Ts−T0

T1−T0
. (1)

where xi and ui are the non-dimensional i-th components of the
position and velocity vectors respectively. p, t and θ are used to
denote the non-dimensional pressure, time and temperature repec-
tively, the super index ∗ is used to distinguish between dimensional
and non-dimensional quantities, and the sub indexes f and s dis-
tinguish the physical properties of the fluid from those of the solid,

With the use of the non-dimensional variables (1), the governing
equations of the system can be written as follow

∂u
∂x

+
∂v
∂y

= 0;
Du
Dt

=−∂P
∂x

+Pr
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)
,

Dv
Dt

=−∂P
∂y

+RaPrθ f +Pr
(

∂ 2v
∂x2 +

∂ 2v
∂y2

)
,

Dθ f

Dt
=

∂ 2θ f

∂x2 +
∂ 2θ f

∂y2 ;
∂θs

∂ t
= α

(
∂ 2θs

∂x2 +
∂ 2θs

∂y2

)
, (2)

with the following boundary conditions

ui = 0, where i = 1,2, θs = θ f , on the solid-fluid interface;
(3)

K
∂θs

∂n
=

∂θ f

∂n
on the solid-fluid interface; (4)

θs = 1, en: y ∈
[L1 +h

H
,

L1 +h+ l
H

]
, x ∈

[
0,

h
H

]
and (5)

y ∈
[L1 +h

H
,

L1 +h+ l
H

]
, x ∈

[ h
H

+1,
2h
H

+1
]

∂θs

∂n
= 0 on the exterior part of the walls, (6)

where the usual non-dimensional parameters have been defined,
the Prandtl’s number Pr = ν/κ f , with ν as the kinematic viscosity;
the Rayleigh’s number Ra = βgd3(T1−T0)/(νκ f ), β is the volu-
metric thermal expansion coefficient; the thermal diffusivities ratio
is K = ks/k f and n represents the normal direction to a surface.

2.1 Entropy Production

In the Linear Irreversible Thermodynamics formulation, an explicit
expression for the entropy balance is obtained in terms of the ve-
locity and temperature fields. From that expression, the internal
entropy production in terms of the non-dimensional variables are

σ
∗
q = σq

H2T 2
0

k(T1−T0)2 =
1

(1+ εθ)2

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2]

σ
∗
ν = σν

H2T 2
0

k(T1−T0)2 =
Ec

(1+ εθ)

(
∂u
∂y

+
∂v
∂x

)2

.

where σq represents the entropy production due to heat flux, and
σν is the corresponding to the viscous effects inside the fluid. Ec
is the Eckert number given by Ec = νκ/[2cp(T1 − T0)H2] and
ε = (T1−T0)/T0. In the present work 0 < ε � 1, the temperature
differences are considered to be small in comparison with the tem-
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perature itself.

Fig. 2: Temporal evolution of the temperature field Ra = 104.

Fig. 3: Temporal evolution of the temperature field Ra = 106.

3 Numerical Method

The governing equations of the system were discretized under the
control volumes scheme and solved by means of the SIMPLE algo-
rithm (Patankar (1980)). Numerical codes in Fortran 90 language
parallelized with the standard OpenMP (Open Multi Processing)
were developed. The resulting system of algebraic equations are
solved with the Tridiagonal Matrix Algorithm (TDMA), a line by
line sweep and an iterative method.

Three different meshes, each one with 84 nodes in the horizon-
tal direction and 184 nodes in the vertical one, were used according

with the staggered grid scheme, with 10 nodes used for each solid
wall. The meshes were generated by the coordinate transformation
functions used by Martı́nez-Suástegui and Treviño (2008). The re-
sults obtained with these meshes were compared with those ob-
tained with meshes with 180 nodes in the horizontal direction and
250 nodes in the vertical one for the largest value of the Rayleigh
number studied, no significant variations were found.

A forward finite difference scheme was used to model the tran-
sient term with a time increment of ∆τ = 5× 10−4. Convergence
for each time step was declared when the residual of each equation
was less than 10−10.
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Fig. 4: Transverse averaged non-dimensional temperature in the fluid as
a function of time for five different values of the vertical coordinate. (a)
Ra = 104, (b) Ra = 106.

4 Results

Figure 2 shows the evolution of the temperature field for the
Rayleigh number, Ra = 104 and 3 shows the corresponding to
Ra = 106. When Ra = 104, two symmetric recirculation regions
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develop in front of the heat sources whose height increases as the
temperature increases on the walls. The shape of the isotherms in-
dicates that the process is dominated by heat diffusion and is sym-
metric in all the studied time interval. In the case of Ra = 106,
Fig. 3 shows that again two recirculation regions develop in front
of the heated portions of the wall. However, convection is stronger
than in the previous case, and the conjugated effects of convec-
tion and conduction on the walls promote the appearance of zones
where thermal energy concentrates, giving place to new recircula-
tion zones which are absent in the cases of smaller Rayleigh num-
ber. This leads the system to a unstable vortex configuration and to
the symmetry break down in the end.

In Fig. 4, the transverse averaged non-dimensional temperature
in the fluid is shown for five different values of the vertical coordi-
nate, θ̃ f (y, t) =

∫ 1
0 θ f (x,y, t) dx. It can be observed that the thermal

signal travels faster to the top of the cavity when the Rayleigh num-
ber increases and the overall temperature differences in the fluid
decreases.

To analyze the vortex dynamics, the first moment of the trans-
verse temperature distribution (thermal centroid) is calculated,
x̃(y, t) =

∫ 1
0 x θ f dx/θ̃ f (y, t), and is shown in the Fig. 5 for Ra= 106

and five different values of the vertical coordinate. The system
loses symmetry in y ≈ 11 at non-dimensional time of t ≈ 0.03
showing an intense vortex shedding activity with different fre-
quencies.
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Fig. 5: Thermal centroid for Ra = 106 as a function of time. For a fixed
value of y, positive values of x̃(y, t)−0.6 represent anticlockwise vortex.

The temporal evolution of the entropy generation field can be
observed in Fig. 6 and 7. For the case of Ra = 104, it can be ob-
served that the larger contributions to the entropy generation are
localized in the solid-fluid interface and that the entropy genera-
tion is less intense inside the fluid, being practically null along the
vertical symmetry axis of the cavity. In the case of the larger value
of the Rayleigh number, Ra = 106, the entropy generation is more
intense in general. As a consequence of the more intense convec-
tive heat flux, new entropy production zones appear inside the fluid
and remarkably in mid zone of the base. When symmetry breaks

down, the entropy production field show clearly the zones of more
intense heat flux. For both cases, the entropy production decreases
as time goes by, and the temperature becomes more uniform along
the cavity.
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Fig. 6: Temporal evolution of the entropy generation field Ra = 104.
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Fig. 7: Temporal evolution of the entropy generation field Ra = 106.

Figure 8 shows the average Nusselt number in both, the solid
and the fluid around each one of the heat sources as a function of
the non-dimensional convective time, τ =

√
RaPrt

N̄u f (t) = (−1)n
∫ h+L1+l

h+L1

∂θ f

∂x

∣∣∣
x=xn

dy in the fluid, (7)
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where n = 1,2 and makes reference to the heat sources lo-
cated in the left and right side wall of the cavity respectively.
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Fig. 8: Average Nusselt number as a function of the non-dimensional
convective time in the solid and in the fluid around the heat sources
(a) Ra = 104, (b) Ra = 106.

N̄us(t) = K
(−1)m

h

∫ h

0

∂θs

∂y

∣∣∣
y=ym

dx;

N̄us(t) = K
(−1)m

h

∫ 2h+H

h+H

∂θs

∂y

∣∣∣
y=ym

dx (8)

in the left and right side of the solid respectively. In both expres-
sions m= 1,2 and indicates the bottom or the top of the heat source
respectively.

In both cases the heat flux to the solid is larger than the heat flux
to the fluid, this is so because of the large value of the thermal con-
ductivities ratio K. When the buoyancy parameter increases, and
after an initial period of non-dimensional time, the heat flux that
travels across the solid wall in the upward direction decreases in
relation to the one that travels across the solid wall in the down-
ward direction. This effect is due to the increment in the speed of

convective heat transfer that occurs for high values of the Rayleigh
number. When the speed of convective heat transfer in the fluid is
comparable to the rate of heat conduction on the solid, the tem-
perature difference in the solid-fluid interface becomes small, ther-
mal energy accumulates in the wall above the heat source and the
temperature in this zone tends to be uniform. Thus, the heat flux
represented by the Nusselt number decreases.
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Fig. 9: (a) Average total Nusselt number as a function of the non-
dimensional convective time for Ra = 104, 105 and 106. (b) Total En-
tropy production as a function of the non-dimensional convective time for
Ra = 104, 105 and 106.

In the Fig. 9(a) the sum of the three contributions to the aver-
age Nusselt number is plotted as a function of the non-dimensional
convective time. From the curves corresponding to h = 0.1 and the
three different values of the Rayleigh number, it is clear that the
overall heat flux to the system increases as the Rayleigh number
increases. Meanwhile, from the curves corresponding to Ra = 106

with h = 0.1 and h = 0.02 it can be observed that the overall heat
flux decreases with the thickness of the wall.
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Fig. 10: Temporal evolution of the temperature field Ra = 104 for
adiabatic walls.

The Fig. 9(b) shows the overall entropy production as a func-
tion of the non-dimensional convective time τ , and illustrates the
direct influence of the increment of the buoyancy forces on the in-
crement of the total entropy production of the system. The curves
describe a similar behavior to that followed by the curves of the
Nusselt number due to the direct relation that exist between this
two quantities. It can be observed as well that when the buoyancy
forces are large, the total entropy production increases, however
the average temperature in the cavity increases faster in this case.
This suggest that a good equilibrium between time of heating and
entropy production can be achieved for a practical purpose with
little more investigation.

For comparison, the case corresponding to Ra = 104 and adia-
batic walls is included in Fig. 10. Two vortical structures develop
above the heated plates displacing the warmer fluid to higher re-
gions of the cavity close to its walls while the colder fluid moves to
lower regions of the cavity along the symmetry plane. The height of
the upper heated layer increases with time with a sinusoidal shape
until instability occurs, resembling to that of Rayleigh-Bénard
problem. This contrasts with the smooth behavior for the case
showed in Fig. 2 for the same Rayleigh number but with a heat
conductive wall where no spontaneous instability occurs. Similar
results are obtained for the higher values of the Rayleigh num-
ber, the process with the heat conductive wall is much faster and
smoother than the obtained with adiabatic walls.

5 Conclusions

Conjugated conduction-natural convection, in a rectangular cavity
with large aspect ratio and solid conductive walls of finite thick-
ness, was numerically studied with the use of the control volume
discretization method and the SIMPLE algorithm. Isotherms, en-
tropy production fields, heat flux to the system given by the av-
erage Nusselt number and a quantitative information of the vor-
tex dynamics were obtained. Different mechanisms of symmetry
break down and heat transfer inside the fluid were found depend-
ing on the Rayleigh number. It was possible to show that an in-
crement in the Rayleigh number provokes an increment in the heat
flux over the solid walls and inside the fluid, making a faster pro-
cess of heat transfer that produces more entropy. It was observed
that the overall heat flux decreases with the thickness of the wall
for the considered values of h. Comparing the present results with
a previous analysis of the same system but with adiabatic walls,
it can be observed that the presence of the solid conductive walls
rises the speed of heating and tends to stabilize the process.
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Response to reviewer 1.
Comments:

please specify the specific application of this topic.

A study like the present can be useful in the design of low en-
ergy water heating devices.

Corrections:

incorporate the assumptions in section 2 before writing the gov-
erning equations.

The assumptions concerning the properties of the fluid and the
solid were incorporated in section 2.

Response to reviewer 2.
Comments:

On what basis was the size of the mesh determined? There must
be a mesh convergence study to support the choice.

A mesh convergence study was performed for meshes of
84× 184, 180× 250 nodes for the case of Ra = 106 with walls
of thickness 0.1. The results for the total averaged Nusselt number
are shown in Fig. 11. No significant variations were found.
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Fig. 11: Comparison between different mesh sizes for Ra = 106.
How can the authors be sure that the vortex shedding discussed

in the paragraph following Figure 4 is not initiated by the accu-
mulation of numerical errors. Did they check the effect of how
the transient terms were being approximated? There needs to be a
statement regarding what methods were used to advance through
time. The SIMPLE algorithm is rather old fashioned in this respect.
How many iterations were used at each time step?

The code was tested for different mesh sizes and time incre-
ments for the case of adiabatic walls and Rayleigh number of 106.
The two lower values of the non-dimensional time increment tested

were ∆τ = 5×10−4 and ∆τ = 10−4. The vortex activity found in
this case is more intense than that found in the cases where the
conductive walls are present. Again, no significant variations on
the results were found. Specially, the symmetry break down and
the vortex shedding that follow were independent of the time in-
crement used. Thus, the authors are sure that the physical onset is
unstable, this unstable configuration is the one that amplifies the
differences that exist in the numerical solution and promote the
symmetry break down and not the mere accumulation of numeri-
cal errors. A similar study is now being performed for the case of
Ra = 106 with the conductive wall of thickness 0.1.

A statement concerning the non-dimensional time increment
and the number of iterations has been included in section 3.
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Fig. 12: Comparison between the results for the average Nusselt number
for different grid size and different time increments in the case of Ra = 106

for adiabatic walls.
The problem studied is self stabilizing in that eventually the

fluid heats up to the temperature of the plates and all buoyancy
disappears? The authors should comment on the relevance of the
study to a physical situation.

A physical situation of this kind is found in a water heater, this
study can be relevant in the design of such devices.

Corrections:

Figures 2 and 5 should be bigger or rearranged to make the
visualizations clearer. The numbers are very hard to read.

The figures size has been changed to make it easier to read.

The last sentence in the conclusion should be omitted because
there is no supporting evidence in the body of the paper.

Figure 10 has been added in order to support the last sentence
in the conclusions.
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The following minor corrections should be made.

Last line in abstract: should read ’fixed values for the rest of the
parameters’.

End of 3rd paragraph in introduction should be ’obtaining an
energy saving’.

2nd line in Section 2. It should be ’Boussinesq’ not ’Boussi-
nesqâs’.

Near the end of the first paragraph in Section 4, ’apparition’
should be replaced by ’appearance’ (apparition can mean ’a re-
markable or unexpected appearance’ â which is a bit strong in this
instance.)

End of first paragraph in Section 4, the word ’break’ should be
replaced by ’break down’. (A similar change should be made in the
middle of the conclusions.)

Paragraph after equation (8). It is unusual to talk about the
speed of conductive heat transfer. ’rate of head conduction’ would
be better.

Minor corrections have been taken into account.

Comment to reviewers.

In order to provide some information about the dependence of
the averaged Nusselt number on the thickness of the wall, the Fig.
9 was modified and the result for Ra = 106 with h = 0.02 was
included. Further calculations are being performed to extend the
present data.
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