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ABSTRACT 

A laminar, two
dimensional and opposing mixed 

convection flow confined inside a vertical channel of finite 

length with adiabatic walls and discrete and isothermal heat 

sources has been studied numerically by solving the unsteady 

two
dimensional Navier
Stokes and energy equations. The 

dynamical behavior of the system is influence by geometrical 

parameters and three nondimensional parameters: the Reynolds, 

Richardson, and Prandtl numbers. Results show that for a fixed 

value of the Reynolds number, if the Richardson number is 

increased and then decreased along the same path, hysteresis is 

noted. To understand the principles of this hysteresis behavior, 

the dynamical properties of the system are analyzed in detail. 

Numerical predictions of the velocity and temperature fields 

show that the descending step size does not change the size of 

the hysteresis effect. 

 

INTRODUCTION 

The response of internal forced flow to opposing buoyancy 

forces is important for understanding heat transfer dynamics 

due to its relevance in thermal problems related to the cooling 

of modern electronic equipment, design of compact heat 

exchangers and solar energy collectors [1
4]. The complexity of 

gravity driven flows subjected to differential heat sources has 

been extensively studied in the past. Although multiple studies 

for laminar opposing mixed convection flows are available in 

the literature [5
8], most of them focus on studying flow 

reversion, vortex generation, and the resultant flow and heat 

transfer characteristics. However, relatively fewer studies deal 

with the investigation of the self
oscillatory characteristics of 

Navier
Stokes
type systems in mixed convection [9
12].  

Recently, transient laminar flow opposing mixed convection 

in a vertical channel of finite length subjected to isothermal and 

discrete heat inputs was studied numerically by solving the 

unsteady two
dimensional Navier
Stokes and energy equations 

for the case of symmetrical heating [13]. Results show that with 

increase in the buoyancy parameter, for a fixed Reynolds 

number, the system undergoes several transitions and exhibits 

states of asymmetrical steady
state (symmetry
breaking 

bifurcation), local vortex oscillation (Hopf bifurcation), global 

relaxation oscillation (gluing bifurcation), and later chaos. 

Although it is well known that countercurrent mixed 

convection systems support multiple dynamical states 

depending on the value of buoyancy forcing, hysteresis appears 

not to have been measured or computed for these nonlinear 

dynamical systems. Nevertheless, the important role of 

hysteresis has been observed and is well established for a long 

time [14
16]. Because hysteresis represents a non
trivial 

impediment to optimizing compact heat exchanger design and 

cooling of modern electronic equipment, it is desirable to 

identify conditions such that multiple dynamical states cannot 

occur. To achieve this goal, the control of these systems 

requires knowledge of the flow structure and in particular of the 

conditions for stability and transition to different states. 

In this paper, numerical predictions are carried out to 

examine the changes in the dynamical state of a countercurrent 

gravity driven mixed convection system when increasing and 

subsequently decreasing the value of the buoyancy parameter. 

From the numerical simulations, buoyancy drop hysteresis is 

observed, such that the transition between different dynamical 

states proceeds along different paths depending upon the flow’s 

time history. This work deals with quantifying and describing 
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the hysteretic behaviour of the aforementioned system by using 

global parameters that describe the final dynamical state 

reached by the system. In addition, the conditions for the 

occurrence of a subcritical bifurcation are determined 

numerically. 

NOMENCLATURE 

 
g [m/s2] Magnitude of the gravitational acceleration 
Gr

  

[ 
 ] Grashof number based on the channel width,  

Gr = gβ(Tw
T0)h
3/ν2 

h [m] Channel width (characteristic length) 
l [ 
 ] Nondimensional length of the channel, l=l1+l2+l3 

l1
* [m] Length from the channel inlet to the heated plate/plates  

l1 [ 
 ] l1= l1
*/h 

l2
* [m] Length of the heated plate/plates  

l2 [ 
 ] l2= l2
*/h 

l3
*
 

l3 

�u

�u   
Pe 
Pr 

q 

Re 
Ri 

 

T 
T0 

Tw 

U 
u0 

u,v 

 
V 

x,y,z 

X 
Y 

[m] 

[ 
 ] 

[ 
 ] 
[ 
 ] 

[ 
 ] 

[ 
 ] 
[W/m2] 

[ 
 ] 

[ 
] 
 

[K] 

[K] 
[K] 

[ 
 ] 

[m/s] 
[m/s] 

 

[ 
 ] 
[m] 

[ 
 ] 

[ 
 ] 
 

Length from the heated plate/plates to the channel outlet  

l3= l3
*/h 

Nusselt number  
Average Nusselt number  

Peclet number, U0h/α 

Prandtl number, ν/α 
Heat flux per unit area on the heated plate/plates 

Reynolds number based on the channel width, Re= U0h/ ν 

Richardson number based on the channel width, 
Ri=Gr/Re2 

Temperature 

Fluid temperature at the channel inlet 
Temperature of the heated plate/plates 

Longitudinal nondimensional velocity, u/u0 

Fluid velocity at the channel inlet 
Longitudinal and transversal velocity components, 

respectively 

Transversal nondimensional velocity, v/u0 

Cartesian rectangular coordinates 

Nondimensional longitudinal coordinate, X = x/h 

Nondimensional transverse coordinate, Y = y/h 
 

Special characters 
α [m2/s] Thermal diffusivity 
β 
λ 

[K
1] 

[W/mK] 

Thermal volumetric expansion coefficient  

Coefficient of thermal conductivity 

ν [m2/s] Kinematic viscosity 
ρ0 

θ 

τ 

[kg/m3] 

[ 
 ] 

[ 
 ] 

Density for T = T0   

Nondimensional temperature 

Nondimensional time 

GOVERNING EQUATIONS 

The schematic view of the geometry considered, which 

consists of an unsteady Newtonian, two
dimensional, laminar 

downflow at the entrance of a vertical duct with finite 

isothermal heat sources located at both walls  is shown in 
Figure 1. The channel walls are separated by a distance h and 

axial distances from the entrance section are measured by the x 

coordinate (positive downward), while transverse distances are 

measured by y (y = 0 at the left wall). The heat sources of 

length l2 are located at x = l1 with uniform wall temperature Tw, 

where Tw > T0. All other surfaces of the channel walls are 

assumed adiabatic. The forced flow is driven by gravitational 

force acting vertically downward, entering the duct at ambient 

temperature T0. Flow rectifiers are placed at the channel 

entrance and exit, thus producing a parallel flow at x = 0 and x 

= l1 + l2 + l3 with a flat velocity distribution at the channel 

entrance u0. The viscous dissipation in the energy equation is 

neglected and the thermophysical properties of the fluid are 

assumed to be constant except for the density in the buoyancy 

term, which is treated according to the Boussinesq 

approximation.  

 
 

Figure 1 Schematic diagram of the flow and heat transfer 

problem. 

 

    The flow is described by the nondimensional two


dimensional continuity, Navier
Stokes, and energy equations, 

 

0
U V

X Y

∂ ∂
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∂ ∂
                                                              (1)   

( )
2 2

2 2

1
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∂ ∂ ∂ ∂ ∂ ∂ 
          (2)   
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1
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V V V P V V
U V

X Y Y X Yτ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + 

∂ ∂ ∂ ∂ ∂ ∂ 
                         (3)   

2 2

2 2

1
U V

X Y Pe X Y

θ θ θ θ θ

τ

 ∂ ∂ ∂ ∂ ∂
+ + = + 

∂ ∂ ∂ ∂ ∂ 
                                  (4)  

  
where U and V are the nondimensional longitudinal and 

transversal velocity components, respectively, and P and θ are 

the nondimensional pressure and temperature, respectively. In 

equations (1) – (4), the velocity components are scaled with the 

inflow velocity u0, U = u/ u0 and V = V/ u0; the longitudinal and 
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transversal coordinates are scaled with the channel width h, X = 

x/h and Y = y/h; the time is scaled with the residence time h/ u0, 

τ = t u0,/h; the temperature is normalized as θ = (T
T0)/(TW
T0); 

and the relative pressure is scaled with the dynamic pressure 

ρ0u0
2
, P = (p – p0 
 ρ0gx)/ ρ0u0

2
. H(τ) in equation (2) 

corresponds to the Heaviside step function, since the assumed 

initial condition corresponds to the downward flow without 

buoyancy. Equations (1) – (4) are to be solved with the 

following boundary conditions:   

 

0,     at     0,1U V Y= = =    

1 0,     at     0P U V X= − = = =                                          

1 2 30,     at     
U

V X L L L L
X

∂
= = = = + +

∂
           (5)   

1 1 21,      at     0,1     for     Y L X L Lθ = = ≤ ≤ +  

1 1 20,      at    ,  and    0,1L X L L Y
Y

θ∂
= > > + =

∂
 

1 2 30,      at    X L L L
X

θ∂
= = + +

∂
 

 

    Once the nondimensional velocity components U, V, and the 

nondimensional temperature field is known, the rate of heat 

flux from each heated slab can be obtained in nondimensional 

form with the local Nusselt number. The local Nusselt numbers 

on the left and right heat sources can be evaluated from the 

equations 

 

1 1 2

00

( , )
( , ) ,   for  

( )
L

Yw

q x t h
�u X L X L L

T T Y

θ
τ

λ =

∂
= = − ≤ ≤ +

− ∂
           (6)  

 

1 1 2

10

( , )
( , ) ,      for  

( )
R

Yw

q x t h
�u X L X L L

T T Y

θ
τ

λ =

∂
= = ≤ ≤ +

− ∂
           (7)   

where λ is the thermal conductivity of the fluid. The space 

averaged Nusselt number is then computed by integrating the 

local Nusselt number along each plate. 
 

1 2

1
2

1
( ) ( , ) .

L L

L

�u �u X dX
L

τ τ
+

= ∫                                                     (8)   

 

    The position of the recirculation bubbles (vortices) that are 

generated due to flow reversion close to the heated slabs is 

represented by a stagnation point at X=Xs(τ), defined by the 

maximum value of X, where the longitudinal velocity 

component is non
negative in the vortex region. It is to be 

noticed that this point is not a true stagnation point, because the 

transverse velocity component does not vanish at this point. 

  The dynamical properties of the system are described using 

the time evolution for the vortices’ upper positions (stagnation 

points) and the overall Nusselt number. 

NUMERICAL SOLUTION PROCEDURE 

      The dimensionless coordinates were transformed using a 

non
uniform staggered grid system. Due to the large velocity 

and temperature gradients, the non
uniform mesh with 121 x 51 

grid points has the highest grid density near the channel walls 

and close to the heated slabs. Information about the grid and 

time
step sensitivities are given in detail in [17] and are not 

repeated herein. All calculations were performed using water 

(Pr = 7) as the cooling agent. In all of the cases studied, 

numerical runs are carried out employing a computational 

domain with l = 12. The non
dimensional length of the heated 

slab/slabs is l2 = 1, and the length of the extended domains so 

that the obtained solution is independent of their sizes is l1 = 

5.5 and l3 = 5.5. The time step ∆τ was set at 5 x 10

4

, since a 

smaller time step had no significant influence on the results. In 

order to reproduce the system dynamical response and avoid 

large induction times, the buoyancy parameter is modified by 

introducing a temporal asymmetric artificial perturbation term. 

The modified Richardson number is  

 

( ) ( )1 exp / cos 2cRi yε τ τ π+ −            (9) 

 

where ε = 0.1 and 
cτ  = 2 are the assumed values. For a given 

value of the buoyancy parameter, computation is started 

immediately after the sudden imposition of a uniform wall 

nondimensional temperature from 0 to 1 on both walls over the 

finite nondimensional length l2 at time τ  = 0. After an initial 

transient of approximately τ = 300 nondimenional time units, 

the value of the Richardson number is varied every ∆τ = 100 

using a descending step size of ∆Ri = 0.2 or ∆Ri = 1. The final 

dynamical state reached by the system is compared against the 

solution obtained for a given value of the buoyancy parameter 

prior to the buoyancy drop using the global parameters 

described above. 

NUMERICAL RESULTS 

      In this section we discuss the hysteresis phenomenon 

which has been found in the countercurrent mixed convection 

system described above by varying the value of the buoyancy 

(Richardson number). The numerical results presented in this 

work correspond in all cases to a solution without the temporal 

asymmetric artificial perturbation term of equation (9), except 

when explicitly mentioned. After switching buoyancy on, the 

flow reverses close to the heated slabs and two vortices 

develop. In order to follow the migration of the vortex 

structure, the value of the stagnation point, Xs is plotted as a 

function of the nondimensional time.  

 

Fixed value of the buoyancy parameter 

First, simulations are carried out for a fixed value of the 

Richardson number. Figure 2 shows the time evolution of the 

location of the stagnation point of each vortex for a Richardson 

number of Ri = 8 [13]. Figure 3 displays the time evolution of 

the overall Nusselt numbers for a Richardson number of Ri = 8 

[13]. By inspecting Figures 2 and 3, simulations demonstrate 

that for this value of the buoyancy parameter, local vortex 

oscillations (Hopf bifurcation) takes place. 
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Figure 2 Time evolution for the vortices’ upper positions 

for Ri = 9. 

 

 
Figure 3 Time evolution for the overall Nusselt numbers 

for Ri = 9.  

 

Cycling forcing buoyancy 

      Figure 4 shows the time evolution for the vortices’ upper 

positions for Re = 100, starting with a Richardson number of Ri 

= 9 and imposed decrements of ∆Ri = 0.2. The dotted and 

continuous lines correspond to the left and right vortex, 

respectively. For clarity, every time a decrement in the 

buoyancy parameter takes place, the line colour is changed. The 

same line and colour pattern is used in Figure 5, which displays 

the time evolution of the overall Nusselt numbers starting at Ri 

= 9 and imposed decrements of ∆Ri = 0.2. Note how for Ri > 8, 

the system’s final state displays local vortex oscillation, as in 

Figures 2 and 3. However, when the value of the buoyancy 

parameter is Ri < 8, transition to a steady asymmetric flow 

occurs. Hence, no hysteretic behavior occurs for Ri > 8, since 

the transition to a final steady
state solution proceeds along the 

same path and is not affected by the decreasing value of the 

buoyancy.  

 
Figure 4 Time evolution for the vortices’ upper positions 

starting at Ri = 9 and imposing decrements of ∆Ri = 0.2.  

 

 
Figure 5 Time evolution for the overall Nusselt numbers 

starting at Ri = 9 and imposing decrements of ∆Ri = 0.2. 
 

      Figure 6 shows the flow’s time history for several values of 

the Richardson number when increasing and subsequently 

decreasing the value of the value of the buoyancy. For this case, 

the modified Richardson number of equation (9) is employed. 

The nonlinear dynamical response of the system is assessed by 

inspecting the mean value of the overall Nusselt numbers. For 

values of the Richardson number smaller than Ri < 5.2 [13], the 

symmetrical response is stable to infinitesimal perturbations. 

For larger values the solution losses the symmetry and one of 

vortices climbs, producing an asymmetrical solution. If now the 

Richardson number is progressively decreased starting from a 

point of the asymmetric branches until a final steady
state 

symmetric response is achieved, buoyancy drop hysteresis is 

observed. The transition from asymmetric to symmetric steady


state indicates the existence of a subcritical pitchfork 

bifurcation. Hence, the system is linearly stable but unstable to 
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a finite perturbation. The hysteretic behavior obtained by 

cycling the value of the buoyancy is illustrated in Figure 6, 

where the dotted black line and the continuous red line display 

the increasing and decreasing paths, respectively. It is 

interesting to note that the value of the overall Nusselt number 

has higher values on the descending path of the flow cycle.  

 

 
Figure 6 Flow’s time history of the mean overall Nusselt 

number obtained after cycling the forcing buoyancy 

(Richardson number). 

 

Numerical predictions indicate that no effect on the step 

size is detected, i.e., stepwise or smooth reductions of the 

buoyancy parameter to a lower final value did not change the 

final state achieved. 

CONCLUSION  

 

In the present study, numerical simulations have been 

conducted for a gravity driven two
dimensional mixed 

convection flow confined in a vertical channel of finite length 

and heated discretely using isothermal heat sources in order to 

describe the flow stability and dynamics with respect to an 

imposed buoyancy drop. As the value of the buoyancy 

(Richardson number) is varied, different flow regimes are 

observed, including symmetric and asymmetric steady
states, 

periodic and chaotic flow. This work deals with quantifying 

and describing the hysteretic behaviour of the aforementioned 

system. 

In particular, for Re = 100, Pr = 7 and Richardson numbers 

ranging between 1 and 8, numerical predictions show that 

variations of the buoyancy over this range give rise to a 

hysteresis cycle which is characterized by two abrupt 

transitions between symmetric and asymmetric flow patterns. 

This behaviour indicates the existence of a subcritical pitchfork 

(symmetry breaking) bifurcation. Here, the subcritical 

instability is triggered by a vanishingly small artificial 

perturbation or modified Richardson number.  

 

The main conclusions are the following: (i) we observe 

hysteresis in the asymmetrical steady
state regime, such that the 

transition between different dynamical states proceeds along 

different paths depending upon the flow’s time history, (ii) our 

findings indicate that the shape and extent of the hysteresis 

cycle is strongly dependant on the system’s initial dynamical 

state prior to decreasing the value of the buoyancy, and (iii) no 

effect on the step size has been detected.  
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