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ABSTRACT 
In the present study we seek an explanation of several 

recent observations of steep destabilization of convective flow 
in Czochralski crystal growth models by a slow rotation of the 
crystal. Existing experimental and computational evidence 
shows that destabilization takes place in a wide range of the 
Prandtl number, from semiconductor melts with Pr~10-2 up to 
experiments with very viscous silicone oils having Pr~103. 
Examination of several models where flows are driven by the 
simultaneous action of convection and rotation shows that the 
destabilization is observed in cases where centrifugal force acts 
against main convective circulation.  This allows us to choose a 
generic model, which is flow in a cylinder with parabolic 
temperature profile at the sidewall and rotating top, exhibiting 
the destabilization for a wide range of the Prandtl numbers. 
Further observation of the flow and disturbance patterns shows 
that at relatively low Prandtl numbers the counter action of 
buoyancy and centrifugal forces can split the main vortex into 
two counter rotating vortices, whose interaction leads to 
instability.  At larger Prandtl numbers the counter action of the 
centrifugal force steepens an unstable thermal stratification, 
which triggers the Rayleigh-Bénard instability mechanism. 

 
INTRODUCTION 

This paper briefly describes an effect of destabilization of 
axisymmetric natural convection flows by a weak 
superimposed non-uniform rotation. In classical models, such 
as a rotating infinite layer or rotating cylinders and annuli, 
increasing rotation usually leads to stabilization of the flow, 
i.e., to the growth of the critical Rayleigh number or other 
critical parameters describing magnitude of the buoyancy force 
(see, e.g., [1,2] and references therein). These results lead to an 
intuitive expectation of a stabilizing effect of rotation on 
convective instabilities. However, such an expectation is 
generally wrong. The two above models consider classical 
Rayleigh-Bénard problem of stability of purely conducting 
quiescent states, while in most practically important cases, the 

buoyancy force is non-potential, so that natural convection flow 
always exists. Reviewing several studies devoted to instabilities 
driven by the simultaneous effect of convection and rotation, 
Koschmieder [2] noted that when the rotation affects the base 
flow, its effect on flow instability becomes very complicated.  
We can add that non-uniform rotation caused by a rotating 
boundary or an external force complicates the stability 
properties of flows even more. This was observed, for example, 
by Brummel [3] and Ali & McFadden [4]. 

This study is motivated by several recent observations of 
destabilization of convective flow by rotation in models of 
Czochralski bulk crystal growth process [5]. These models 
consider melt flow in a cylindrical crucible with a heated 
bottom and sidewall, cooled by a rotating cold crystal pulled 
out from the upper free surface. In laboratory flow models, the 
crystal is usually replaced by a cooled cylindrical dummy 
whose lower surface touches the free surface of working liquid. 
Rotation and lower temperature of the dummy mimic the effect 
of the crystal in a technological setup [6-8]. The flow is driven 
by buoyancy, rotation of the crystal and thermocapillary force 
acting along the free surface. Stability studies of these flows 
focus on parameters at which steady – oscillatory flow 
transition takes place. Different examples can be found in [9] 
and references therein. Figure 1 shows two examples of 
stability diagrams, in which critical temperature difference 
∆Tcr, to which both Grashof and Marangoni numbers are 
proportional, is plotted versus the Reynolds number defined by 
the angular velocity of the dummy rotation and the crucible 
radius. The system geometry and an example of the flow 
pattern are shown in the insert. Further details can be found in 
[8-10]. Both examples relate to similar experiments with 
different working liquids with the Prandtl number Pr=9.2 in the 
case (a) of Schwabe et al. [7] and Pr=23.9 in the case (b) of 
Teitel et al. [8]. In both examples computations predict a steep 
decrease of ∆Tcr with a slow increase of the rotational Reynolds 
number up to Re=100, which corresponds to the rotation of 
crystal with the angular viscosity smaller than 0.1 and 0.5 rad/s 
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(1 and 5 revolutions per minute)  in the cases (a) and (b), 
respectively. Note that depending on the aspect ratio, 
isothermal swirling flow in a cylinder with a rotating lid 
becomes unstable for the Reynolds number between 2000 and 
3000 [13], so that the destabilization observed in Fig. 1a,b 
cannot be addressed to a rotation-induced instability. Note also 
that in spite of the critical temperature difference ∆Tcr decreases 
in more than an order of magnitude, it never reaches zero. 
Therefore, it is an interaction of all the driving forces that 
makes the flow significantly lesser stable. It should be 
emphasized also that destabilization was observed also 
experimentally and numerically in low-Prandtl-number 
semiconductor melts, so that the explanation(s) of the whole 
phenomena must relate to a very wide range of the Prandtl 
number (see [11] for details).  

 

 
 
 
 
 
 
 
 

 
 
Figure 1 Neutral stability curves for two models of Czochralski 
melt. (a) – configuration Schwabe et al. (2004); the insert 
shows the streamlines (right frame) and isotherms (left frame) 
at ∆T=0.5. (b) configuration of Teitel et al. (2008); symbols 
correspond to experimentally measured critical points, the 
insert shows frequency of flow oscillations at the critical points 
(curve) and experimentally measured frequencies. (c) Neutral 
stability curve of flow in a cylinder with parabolic temperature 
profile at the sidewall and rotating top at Pr=7. Inserts show 
streamline (left) and isotherm (right) patterns at different points 
of the neutral curve. 

 
Since the Czochralski flow model is rather complicated, in 

the present study we are looking for a simpler characteristic 
model exhibiting similar destabilization and intend to study the 
latter to get more physical insight in the phenomenon. 
Considering several examples of flows driven by convection 
and rotation we arrived to the conclusion that the simplest 
model exhibiting similar destabilization is a combination of two 
well-studied cases: convective flow in a vertical cylinder with a 
parabolic temperature profile at the sidewall, and swirling flow 
in a cylinder with a rotating lid. The three-dimensional stability 
of the first one was studied in [12] and of the second one in 

[13]. The stability diagram corresponding to the combination of 
the two cases at Pr=7 is shown in Fig. 1c, where at Re=50 the 
critical Grashof number decreases in more than an order of 
magnitude. Examining the flow and leading disturbance 
patterns we arrive at a conclusion that destabilization is caused 
by a counter action of the centrifugal force that tends to slow 
down the main convective vortex. This counter action leads 
either to the appearance of a new vortical structure, which is 
characteristic to small Prandtl numbers, or to a steeper 
temperature gradient along the axis observed at larger Pr. 
Consequently, the following destabilization is connected either 
to an interaction between counter rotating vortices (𝑃𝑟 ≲ 1), or 
to the Rayleigh-Bénard instability developing below the cold 
upper boundary (Pr≳ 1). An additional destabilization 
mechanism is connected to the advection of perturbations of 
azimuthal velocity towards the axis, where they grow due to 
conservation of the angular momentum, which causes a growth 
of the radial velocity disturbances.  In this short paper we focus 
mostly on the cases with a relatively large Prandtl number, for 
which the instability, as well as destabilization, are caused by 
an unstable stratification below the cold upper cylinder 
boundary.  
 
 
FORMULATION OF THE PROBLEM  

 We study three-dimensional instabilities of axisymmetric 
non-isothermal base flows. The full three-dimensional problem 
is described by the Boussinesq equations in cylindrical 
coordinates. A Boussinesq fluid with density ρ*, kinematic 
viscosity ν* and thermal diffusivity χ* in an axisymmetric 
region 0 ≤ 𝑟 ≤ 𝑅∗, 0 ≤ 𝑧 ≤ 𝐻∗ is considered. The polar axis is 
assumed to be parallel to the gravity force. The flow is 
described by the momentum, continuity and energy equations 
in cylindrical coordinates (r*, z*). To render the equations 
dimensionless, we use the scales R*, R*2/ν*, ν*/ R*, ρ*(ν*/ R*)2  
for length, time, velocity and pressure respectively. The 
temperature is rendered dimensionless by the relation 𝑇 =
(𝑇∗ − 𝑇𝑐𝑜𝑙𝑑∗ ) (𝑇ℎ𝑜𝑡∗ − 𝑇𝑐𝑜𝑙𝑑∗ )⁄ , where 𝑇ℎ𝑜𝑡∗   and 𝑇𝑐𝑜𝑙𝑑∗  are the 
maximal and minimal temperatures at the boundaries of the 
flow region. The set of Boussinesq equations for the non-
dimensional velocity 𝐯 = {𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧},  temperature Τ  and 
pressure p  in the domain 0 ≤ r ≤  1, 0 ≤ z ≤  A reads 

 𝜕𝐯
𝜕𝑡

+ (𝐯 ∙ ∇)𝐯 = −𝛻𝑝 + ∆𝐯 + 𝐺𝑟𝑇𝐞𝑧      (1) 

 𝜕𝑇
𝜕𝑡

+ (𝐯 ∙ ∇)𝑇 = 1
𝑃𝑟
∆𝑇,         ∇ ∙ 𝐯 = 0            (2,3) 

Here A= H*/R is the aspect ratio, Gr = g*β*(𝑇ℎ𝑜𝑡∗ − 𝑇𝑐𝑜𝑙𝑑∗ )R*3/ν*2 
the Grashof number, Pr = ν*/χ* the Prandtl number, g* gravity 
acceleration, β* the thermal expansion coefficient, and ez the 
unit vector in the z-direction. Additionally, for the top of the 
cylinder rotating with an angular velocity Ω, we define the 
rotational Reynolds number as 𝑅𝑒 = Ω𝑅∗2 𝜈⁄ . The boundary 
conditions are   

at r=1 and z=0:             𝑣𝑟 = 𝑣𝜃 = 𝑣𝑧 = 0,                            (4) 

at z=A:              𝑣𝑟 = 𝑣𝑧 = 0, 𝑣𝜃 = 𝑅𝑒 𝑟,                  (5) 
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𝑇(𝑟, 𝑧 = 0) = 𝑇(𝑟, 𝑧 = 𝐴) = 0,  𝑇(𝑟 = 1, 𝑧) = 4𝑧(1 − 𝑧). (6) 

 We study instability of steady axisymmetric flows 
{𝐕,𝑃,𝑇},𝐕 = (𝑈,𝑉,𝑊) with respect to infinitesimally small 
three-dimensional disturbances, which are decomposed into a 
Fourier series in the azimuthal direction and are represented as 
∑ {𝐯�𝑚, 𝑝�𝑚,𝑇�𝑚}𝑚=+∞
𝑚=−∞ 𝑒𝑥𝑝(𝜆𝑡 + 𝑚𝜃), where λ is a complex 

amplification rate, 𝐯� = (𝑢� , 𝑣�,𝑤�), 𝑝� and 𝑇�  are perturbation of 
the velocity, pressure, and temperature, respectively. The 
subscript m denotes the m-th Fourier mode of a corresponding 
function. It is well-known that the linear stability problem 
separates for each m, which is an integer azimuthal 
wavenumber. Therefore, after an axisymmetric steady state is 
computed, solution of the stability problem is reduced to a 
series of 2D-like generalized eigenvalue problems defined for 
the eigenvalues λ separately at different azimuthal 
wavenumbers m (see, e.g., [14]).  The steady flow is unstable 
when at least one λ exists with a positive real part. The 
eigenvalue with the largest real part is called leading and 
parameters at which the leading eigenvalue crosses the 
imaginary axis are called critical.  
 To calculate steady states of Eqs. (1)-(7) and to study their 
linear stability with respect to three-dimensional infinitesimal 
disturbances, we use the finite volume discretization and the 
technique described and verified in [15]. The test calculations 
performed there showed that to keep critical parameters within 
1% accuracy, one needs to apply at least 100 grid points in the 
shortest spatial direction. Note that our stability results for 
isothermal flow in a cylinder with a rotating top were 
successfully compared with several independent computations 
[15] and were validated experimentally [16]. The results for 
stability of convective flow in a side-heated cylinder are also 
well-compared with the independent result of [17].  Together 
with the convergence studies [14] these make us confident in 
the accuracy of the results reported below. In the following 
calculations, the size of the stretched finite volume grid varies 
from Nr = 100 to 300 points in the radial direction. The grid size 
in the axial direction is taken as   Nz = ANr .  The grid size is 
chosen to ensure convergence to at least three correct decimal 
places in the calculated critical parameters. 

RESULTS 
Figure 2 shows dependence of the critical Grashof number 

on the Prandtl number for three fixed values of the Reynolds 
number Re=0, 200 and 400. Due to difference in the critical 
values and in the qualitative behaviour of the curves, the graphs 
in Fig. 2 are divided into two frames for Pr≤1 and for Pr≥1. We 
observe that the destabilization at small Prandtl numbers takes 
place starting from a certain, not very large, value of the 
Reynolds number (Re=400), while at smaller values (Re=200) 
the critical azimuthal modes replace each other at 
approximately the same values of the critical Grashof number. 
According to arguments given in [11], the destabilization at 
small Prandtl numbers is caused by mainly hydrodynamic 
mechanisms, such as interaction of counter rotating vortices 
and advection of angular momentum. To destabilize the base 
flow, these mechanisms must become strong enough, which 
happens at a sufficiently large value of the Reynolds number. 

An indication of the absence of the described destabilization 
effect is the appearance of the spoke pattern at non-zero Re. In 
Fig. 2a it is observed at Re=200 for m=5 and 6. 

 
Figure 2 Neutral stability curves Grcr(Pr) for flow in a vertical 
cylinder with parabolic temperature profile at the sidewall and 
rotating top for fixed values of the Reynolds number Re=0, 
200, and 400. Colors correspond to different  critical Fourier 
modes mcr. 

 

 

Figure 3 Snapshots of isotherms corresponding to different 
instability modes observed at large Prandtl numbers. (a) spoke 
pattern Pr=0.3, Gr=2.16×106, Re=200,  (b) oscillating jet Pr=7, 
Gr=2×104, Re=34.8,   (c) cold plume (Pr=7, Gr=5820, Re=50). 

 

At Pr ≥1 the instability, as well as the destabilization, take 
place mainly due to the change of the temperature distribution. 
In the absence of rotation the instability sets in as a spoke 
pattern [18]. With the increase of rotation of the top the area 
with the most unstable stratification is shifted towards the axis, 
so that the spoke pattern is replaced by an "oscillating jet" [6] 
or by "cold plumes" [8]. This may happen at significantly 
smaller Reynolds numbers. In fact, for each Pr there exists a 
relatively low value of Reynolds number at which the effect is 
strongest, e.g. at Re≈50 in Fig. 1c. We observe also that for 
large Prandtl numbers the destabilization at Re=200 is stronger 
than that at Re=400. Note also that in the absence of rotation 
the instability results in a spoke pattern. The critical Grashof 
numbers at Re=0 are very close for 10≤m≤15 (Fig. 2b). The 
oscillating jet and cold plumes modes are characterized by a 
smaller azimuthal wavenumber, which is seen on the curves 
corresponding  to Re=200 and 400 in Fig. 2b. Examples of the 
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computed three instability modes are shown in Fig. 3 and some 
experimental observations are shown in Fig. 4. 

 
Figure 4 Experimentally observed cold plume (left) and 
oscillating jet (right) instabilities. From Teitel et al. (2008). For 
more details and experimental videos see 
http://www.eng.tau.ac.il/~gelfgat/CZ_2007.htm 

 
We illustrate the effect of stratification change on 

several examples corresponding to the neutral curve shown in 
Fig. 1c. In this case the spoke pattern instability observed for 
0≤Re<30 with mcr=10 or 11 is replaced by another one, having 
mcr=1 and exhibiting a steep decrease of the critical Grashof 
number from Grcr≈2.5×104 at Re≈30 to Grcr≈104 at Re≈47. 
Note that this mode crosses the Re=0 axis at Gr≈4.7×104, so 
that in the absence of rotation it is less unstable than the spoke 
pattern mode. At Re≈47 this mode is replaced again by the 
axisymmetric one (mcr=0) that continues to even smaller values 
of Gr reaching Grcr≈3000 at Re≈51.5 . With further increase of 
the Reynolds number the critical Grashof number slowly grows 
and several other mode switches take place.  

Considering the first example of Fig. 5b we note that the 
striking feature of this case is the almost unchanged streamlines 
(not shown here) and slightly changed isotherm patterns 
corresponding to the zero and non-zero Reynolds numbers. The 
rotation is extremely slow, so that taking the characteristic 
length 10 cm and the viscosity of water ≈10-6 m2/s, Re≈35 
would correspond to approximately 0.2 rpm. It is really difficult 
to see what could change in the flow to so strongly affect its 
stability properties. One of possible explanations is the 
following. The temperature perturbation of the destabilized 
flow (not shown here) is located near the axis in the area of 
unstable temperature stratification and can be driven by the 
Rayleigh-Bénard instability mechanism. The spoke pattern 
instabilities also appear due to the Rayleigh-Bénard 
mechanism, but their disturbances are located mainly in the 
thinner unstable layer closer to the cylindrical wall [18]. The 
Rayleigh-Bénard driven instabilities located near the axis were 
also observed in the considered configuration without rotation, 
but in taller cylinders [12]. Therefore, we observe here two 
competing instability modes. The examination of isotherms 
(Fig. 5b) shows that while unstably stratified temperature near 
the sidewall is unaltered by the rotation, the temperature change 
along the axis slightly steepens, which is seen as a slight raise 
of a point where two upper isotherms arrive to the axis.  In Fig. 
5a the axial temperature gradient of flows at several critical 
points is compared with those calculated at the same Grashof 
numbers but with zero rotation rate. We observe that the axial 

gradients at the instability points are always slightly steeper 
than those corresponding to zero rotation cases.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 (a) Axial temperature gradients for several flows at 
the critical points corresponding to the descending m=1 branch 
of Fig. 1c, and several flows at the zero rotation. (b,c) 
comparison of the isotherms pattern with and without slow 
rotation of the top boundary. 
 
On the basis of the above, we can offer the following 
explanation of the observed destabilization. We assume that in 
a wide range of Grashof numbers the growth rate of the mode, 
leading at Re≈35, is negative but close to zero, so that this 
disturbance mode does not become unstable. A slow rotation of 
the upper boundary creates a small change in the base flow that 
makes the disturbance unstable. The rotation of the top slows 
down the axially directed radial flow along it. Consequently, 
the descending flow along the axis also slows down. As a 
result, the convective mixing near the axis reduces, which leads 
to steeper axial temperature gradients. When, with the increase 
of the Reynolds number, the unstable temperature gradient 
exceeds a certain critical average value the instability sets in.  
We observe that at larger Grashof numbers lower axial gradient 
is critical ( 0), which is quite expected and results from the 
dependence of the growth rate on the base flow. The three-
dimensional unsteady temperature pattern that results from the 
above instability mode is illustrated in Fig. 2. We observe that 
the isosurfaces form a thin tube that rotates along the axis. Such 
an instability pattern was observed in experiments of [6,8], 
where it was called "cold jet" or "oscillatory jet" instability.    

A light increase of the Reynolds number to Re≈47 leads to 
even stronger reduction of the critical Grashof number to 
Grcr=5819 (Fig. 1c). Again, we observe a steepening of the 
unstable temperature gradient (Fig. 4c) at the axis, which in this 
case leads to the so-called "cold thermals" instability (Fig. 2c), 
which is also of the Rayleigh-Bénard nature. Here the cold fluid 
is advected along the upper surface towards the axis where 
unstable stratification triggers the instability, appearing as a 
rapid descent of the cold fluid along the axis and oscillations of 
the main convective vortex.  

The full description of model problem for the Czochralski 
flow that motivated this study can be found in [9,10]. The 
crucible radius is chosen as the characteristic length, and 
therefore definitions of the Grashof and Reynolds number 
remain unchanged.  The flow is described by the Boussinesq 
equations (1)-(3) with no-slip boundary conditions at the 
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bottom and the sidewall of the crucible, while the temperature 
there is prescribed according to the experiment [7]  

at 𝑟 = 1:    𝑣𝑟 = 𝑣𝜃 = 𝑣𝑧 = 0,      𝑇 = 1                        (7) 

at 𝑧 = 0:   𝑣𝑟 = 𝑣𝑧 = 𝑣𝜃 = 0,       𝑇 = 0.8571 + 0.1429𝑟2              (8) 

The central part of the upper surface touches the rotating 
cold crystal dummy kept at the lower temperature. The 
remaining part of the upper surface is cooled by a convective 
flow of air above it and is subject to the thermocapillary force. 
This reads 
at 𝑧 = 𝐴 𝑎𝑛𝑑 𝑟 ≤ 𝑅𝑐𝑟𝑦𝑠𝑡𝑎𝑙

𝑅𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒
:    𝑣𝑟 = 𝑣𝑧 = 0, 𝑣𝜃 = 𝑅𝑒𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑟          (9) 

at 𝑧 = 𝐴 𝑎𝑛𝑑 𝑟 > 𝑅𝑐𝑟𝑦𝑠𝑡𝑎𝑙
𝑅𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒

:   𝑣𝑧 = 0, 

 𝜕𝑣𝑟
𝜕𝑧

= −𝑀𝑎𝑃𝑟 𝜕𝑇
𝜕𝑟

,  𝜕𝑣𝜃
𝜕𝑧

= −𝑀𝑎𝑃𝑟 𝜕𝑇
𝑟𝜕𝜃

                     (10) 

The flow is driven by buoyancy, thermocapillarity and 
rotation, which are characterized by the Grashof, Marangoni 
and Reynolds numbers. The Marangoni number is defined as 
𝑀𝑎 = 𝛾∆𝑇𝑅 𝜈𝛼⁄ , where 𝛾 = |𝑑𝜎 𝑑𝑡⁄ | is assumed to be a 
constant and σ is the surface tension coefficient. The working 
liquid is NaNO3 with Pr=9.2. Since both the Grashof and 
Marangoni numbers depend on the characteristic temperature 
difference we calculate Ma=586 ∆T /Pr and Gr=1.9×105∆T and 
use ∆T as a critical parameter. 

Figure 6 shows changes of the flow and perturbation 
patterns along the neutral stability curve of Fig. 1a. Since the 
instability in this case is axisymmetric (mcr=0), we plot the 
stream function and its perturbation instead of the two 
meridional velocity components. As above, in the case of our 
characteristic problem at Pr=7, we observe that with the 
increase of rotation the main convective circulation weakens, 
which leads to a steepening of the axial unstable temperature 
gradient near the axis. This leads to strong temperature 
perturbations that develop below the cold crystals and descend 
with the flow along the axis. The snapshots of isotherms shown 
in Figs. 7 and 8 for the points a and c of  0a, respectively, show 
similar oscillations of cold thermals that descend along the axis. 
Examination of the case of [8] shown in  0b shows similar 
perturbation patterns and similar time-dependence. We 
conclude that the destabilization observed for the large Prandtl 
number Czochralski melt flow has the same nature as the one 
observed for the simplified characteristic problem. Rotation of 
the crystal causes a retardation of the main convective 
circulation, which leads to a formation of an unstably stratified 
layer beyond the crystal. This layer is destabilized by the 
Rayleigh-Bénard mechanism, which is mainly defined by the 
layer thickness. With the increase of the rotation rate (the 
Reynolds number) formation of the unstable layer takes place at 
a lower Grashof number, thus resulting in the destabilization of 
this convective flow by rotation. 
 

CONCLUDING REMARKS 

We showed that a model problem of flow in a vertical 
cylinder with a parabolic temperature profile on the sidewall, 

isothermal top and bottom and rotating top resembles the 
destabilization of natural convection flow by a weak rotation, 
which recently was reported for different configurations of 
Czochralski model flow. Studying the mechanisms responsible 
for the destabilization we have found that at large Prandtl 
number the destabilization is caused by a development of an 
unstable stratification below the cold top boundary. A slow 
rotation of the top leads to a steepening of axial temperature 
gradient and further destabilization of the unstably stratified 
region. This, in its turn, causes a replacement of the spoke 
pattern eigenmode by another instability mechanism. The latter, 
depending on the rotation rate, appears to be either “oscillating 
jet” or “cold plume” instability, both observed in the 
Czochralski model flows. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Streamlines (left frames) and isotherms (right frames) 
shown by lines and perturbations of the stream function and 
temperature shown by color for four points a, b, c, and d shown 
in Fig. 1a. mcr=0.  (a) ∆T=0.63, Re=0, ψmin=–1.38, (b)  
∆T=0.37, Re=75, ψmin=–1.22, (c) ∆T=0.1, Re=104, ψmin=–0.81, 
(d) ∆T=0.018, Re=100, ψmin=–0.40, ψmax=–0.0066. 
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Figure 7 Eight equally distanced snapshots of isotherms of 
supercritical oscillatory state during one period of oscillations. 
Flow in the Czochralski model of [10]  top (Fig. 1a, point a) at 
∆T=0.63, Recr = 0, mcr = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Eight equally distanced snapshots of isotherms of 
supercritical oscillatory state during one period of oscillations. 
Flow in the czochralski model of [10]  top (Fig. 1a, point a) at 
∆T=0.1, Recr=100, mcr=0. 
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