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and Ax the size of the computational cell in flow direction

A computational effective analysis method for the d [m] Diameter
. . . . . 1 [-] Turbulent intensity
hydrodynamic phenomena which occur in foams, is possible by 7 -] Identity tensor
applying an pp-scaling technique sgch as t.h§ volume-averagi.ng k [?/s?] Turbulent kinetic energy
methgd. Thl.S, however, resulﬁs in afidltlonal terms which l [m] Characteristic length (1 = [ /)
describe the 1nﬂu§nce of the microscopic transport phenomena I [m] Linear dimension of the REV
on the macroscopic scale of analysis. Closure of the averaged i [-] Normal vector on fluid-solid interface, pointing outward
equations is obtained by describing these terms as functions of the fluid phase
averaged variables. In this paper, the closure modelling is done, P [Pa] Pressure , , ,
.. R R [-] Two-point correlation between streamwise velocity
based on first principles. The local viscous and pressure forces components
which act on the solid matrix are computed directly and related Re [-] Reynolds number (re = P11/ )
to classical porous properties, i.e., permeability and inertial t [s] Time
factor. A flow regime dependency for the parameters is found u [m/s] Velocity component in x-direction
: : v [m/s] Velocity vector
and can be explained on physical grounds. v ] Fluid phase volume in the REV
X [m] Cartesian axis direction
y [m] Cartesian axis direction
INTRODUCTION z [m] Cartesian axis direction
Open-cell foams are hyper-porous materials, consisting of a .
fluid d lid oh In thi inele-ph fluid Special characters
uid and a solid phase. In this paper, a single-phase flui B (] Inertial loss factor
saturated foam is considered. Although the solid phase So [mm’]  Surface-to-volume ratio
distribution in the foam domain is stochastic from nature, it é [-] Porosity
possesses characteristic geometrical features. As such, non- K [m?] Permeability
overlapping sub-units are defined as cells. These cells are p [kg/m’]  Density
referred to as foam-cells, to distinguish them from the cells U F;g q EOIZI;%:E(;‘S’:;S?
which define a computational domain. The solid material is ’Z/ [_]' Aryt?itrary quanﬁt;
found in the struts (or ligaments) which are positioned around
the foam-cells. According to the Plateau rules, four struts have Subscripts
to meet in a node. This results in a single network, forming the ! Intrinsic average

Characteristic for open-cell foams is the

interconnection of foam-cells through pores. This allows a fluid
to flow through the foam domain. The introduced terminology
is illustrated in Figure 1.

NOMENCLATURE

Strut cross-sectional surface area
Fluid-solid interfacial surface area
Cell Courant number (¢ = vAt/, , with At the time step

1282



Porous domain
Figure 1 Foam terminology applied in this paper

Fluid flow through open-cell foams is of major importance
for many applications [1]. Most widely used for its analysis is
the Hazen-Dupuit-Darcy or Darcy-Forchheimer equation, given
by:

GV(P) = (@) + D) (D) (1)
where (P)! resembles the intrinsically averaged static pressure,
(V)¢ the intrinsically averaged (or filtration) velocity, u and p
are respectively dynamic viscosity and fluid density and ¢ is
porosity. The characteristics of the internal architecture of the
solid phase are account for via k and S, respectively known as
permeability and inertial loss factor.

These two properties are considered to be material
properties. They are typically obtained by considering one-
dimensional flow. Interpolating a second-order polynomial
through a dataset consisting of pressure drop versus Darcian (or
superficial or seepage) velocity allows to readily derive both
parameters. Note that this approach is applied on data which is
obtained experimentally, as well as via computational fluid
dynamics (CFD). This method, however, results in a large
scatter in the data which is published in open-literature. Bonnet
et al. [2] reviewed this, showing differences up to two decades.
They contribute this to neglecting compressibility effects.
Another source may be contributed on the amount of data
which serves for interpolation, as indicated by Innocentini et al.
[3]. On more physical grounds, variations in the flow
parameters have also been contributed to the walls confining
the foam domain [4], the existence of entrance/exit effects [5]
and dependency on the flow regime [6].

A more theoretically analysis of flow phenomena in open-
cell foam can be obtained by upscaling the flow equations from
the continuum-scale (or microscopic-scale) to the natural-scale
(or macroscopic-scale) of foam. Microscopic-scale refers to the
scale at which the Navier-Stokes equations are valid (i.e.,
sufficiently low Knudsen number such that molecular-scaled
phenomena become irrelevant). The macroscopic-scale is a
linear dimension of a representative elementary volume (REV)
as defined by Bear [7]. Following Cushman et al. [8], the
existence of the macroscopic-scale makes open-cell foam a
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discrete hierarchical material, which indicates that there exists a
clear-cut length scale separation between the micro- and
macroscopically scaled physics. Remark though, that this
implies that the averaged depending variables over a REV have
to behave quasi-steady, compared to their continuum-scaled
counterparts.

The length-scale separation makes it convenient to perform
the upscaling via the volume-averaging theory, as described by
Whitaker [9]. The resulting flow equations for incompressible
flow with constant fluid properties in the REV, stationary solid
phase and constant porosity are then given by:

VA7) =0 (2)
a(v) (U)(V) ; S
[ + pV.< 5 = —@V(P)' + uvV3(v)
—pV.(BD) + %ffAﬁ fiss. (=BT + uvv)dA 3)

For both terms on Lh.s. and the first two terms on the r.h.s. of
equation (3), the depending variables are evaluated on the
macroscopic scale. The latter two terms on the r.h.s. take the
local spatial deviations in account, which for an arbitrary
quantity 1 result from a spatial decomposition given by:
Y = ()t +1p [10]. These terms act as source terms in the
evaluation of the macroscopic-scaled depending variables and
express the influence of the microscopic physics on the
macroscopic scale of analysis. Note that equation (3) takes the
form of the Navier-Stokes equation, allowing to use known
solution methods. This, however, requires that the integral term
is related to macroscopic quantities, which defines the closure
problem.

The first source term describes momentum dispersion.
Inspired by Large Eddy Simulation (LES) turbulence
modelling, a constitutive relation contributes the small-scaled
motions to the diffusion of the macroscopic-scaled momentum,
when there is a strain field on this scale. Note that these
motions are triggered by the presence of the solid matrix and
not by the mechanisms which trigger turbulence. Hence,
effective viscosity has a different meaning than the eddy-
viscosity in turbulence modelling. To implement this closure
model, it suffices to replace the fluid viscosity in second term
on the r.h.s. of equation (3) with the summation of the fluid and
effective viscosity (because they do not mutually correlate).

The second source term on the r.h.s. of equation (3) results
from the no-penetration and no-slip boundary conditions near
the solid-fluid interface and results in a pressure drag and
viscous drag force. V resembles the total volume of the REV in
this term, 7y is the normal vector on the fluid-solid interface
and Afg is the fluid-solid interfacial surface. For a
macroscopically steady and fully developed flow (thus no
entrance/exit effects or influences of no-slip or free-flow
boundaries of the foam domain) and after implementing the
momentum dispersion closure model, equation (3) reduces to:

SV(P)! (4)

éffAfs firs. (—PT + uvo)dA



Whitaker [11] showed theoretically that closing this equation
results in the Darcy-Forchheimer equation (1). Therefore, the
permeability and inertial loss factor (in tensorial form) are
given by:

= w()iv [ 1, s (ﬂvé)dA]_1 (5)
§ =-S5 [0, . (PT)a] ©

Recognizing that the integrals in these equations are
respectively the viscous and the pressure force which act on the
fluid-solid interface gives a physical interpretation to both
parameters.

To the best knowledge of the authors, these forces have not
been computed directly, which motivates the present work.

SIMULATION PROCEDURE

The goal is to solve numerically for both forces, for flow
regimes ranging from creeping to turbulent. This is done using
the commercial solver Ansys®. This requires a geometrical
model which is representative for the foam’s internal
architecture. The most accurate model available is a virtual
reproduction via a micro-computed tomography (uCT) scan.
The resulting REV consists of at least two foam-cells in each
direction [12], containing 8 foam-cells in total. Recalling the
fully-developed flow assumption, periodicity in the three
directions has to be applied. This is not the case for a uCT-
based model, restricting its applicability for solving equations
(5) and (6).

A second issue is the required grid quality to resolve the
viscous boundary layer near the fluid-solid interface, in order to
obtain a sufficiently accurate numerical approximation of the
wall shear stress in equation (5). Furthermore, the complexity
of the geometry results in an unstructured grid, making a first
order approximation of the normal velocity gradient only
sufficiently accurate when the cells adjacent to the fluid-solid
interface are small enough. A proper estimation of the required
distance from the adjacent cell centroid (y,) to the solid-fluid
interface is given by (see the Fluent manual for more details):

(7

p(v)
c E S 17
where x, is the distance in flow direction, along the fluid-solid
interface. For a Darcian velocity of 10 m/s and x, chosen at
0.05 of a characteristic measure of the strut thickness (i.e. solve
95% of the viscous boundary layer), results in y, = 8 um (for p
=1 kg/m® and x4 = 1.79x10” Pa.s ). The cells from the fluid-
solid interface are allowed to grow in the fluid phase. The
growth rate needs to be limited (a factor 1.1 is used in this
paper), as it influences the gradient approximation in the
numerical scheme. The result is that in a uCT-based REV, the
number of cells would be in the order of 1x10°. This is found

practically insolvable with the available commercial solver.
A solution is found by using the pCT data of the studied
foam to quantify the characteristic geometrical features. This is
done by determining the averaged values from a foam volume

containing approximately 30 foam-cells. The results are
obtained from De Jaeger et al. [13] and reproduced in table 1
for the studied geometry. d, and d; are respectively the small
and large diameters of the ellipsoid encompassing an average
foam-cell, 4, is the cross-sectional surface area and oy is the
surface-to-volume ratio.

d[ dz AO ¢ o)
[mm] [mm] | [10" mm?] [-] [m']
4.22 6.23 0.998 0.932 440
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Table 1 Characteristic geometrical dimensions

Following De Jaeger et al. [13], a periodic unit foam-cell
(PUC) can be generated via a journal file in the pre-processor
Gambit®. The resulting PUC geometry is shown in figure 2(a).
Note that the strut geometry is based on two empirical
correlation which account for the strut cross-sectional shape
and surface area variation between two nodes.

(@ (b)

L
Figure 2 (a) Foam periodic unit cell, (b) computational domain
with the locations where local velocity is monitored

A more detailed study of the PUC reveals that a sub-volume
bares additional periodicity, as is depicted in figure 2(b). The
dimensions are L, = L. = 3.03 mm and L, = 6.42 mm. In this
case, the lower half of the boundary plane at x = 0 is periodic
with the upper half of the boundary plane at x = L,. The same
holds for the upper half at x = 0 versus the lower half at x = L,.
The same periodicity can be retrieved in the z-direction. A
classical periodic boundary condition is applied in the y-
direction, resulting in a fully periodic flow domain as is
required for equations (5) and (6) to be valid. The size of the
flow domain, however, must still be large enough to ensure that
all microscopically scaled physics. Therefore, the dimensions in
all three directions should be at least twice the size of the
largest eddies (or integral length scale) [14].

The flow regimes are characterised in this paper by a
Reynolds number based on the Darcian velocity and the side of
an equilateral triangle with surface area A,, as characteristic
length / (which is 0.48 mm for the foam in this paper). For the
earlier mentioned velocity and fluid properties, Re = 268,
Hutter et al. [15] performed simultaneously particle image




velocimetry (PIV) and laser induced fluorescene LIF
measurements, for Re ranging from 27 to 337. For Re = 202
and their highest Reynolds number flow, their turbulent
intensity is nearly constant (/ = 0.23). The authors concluded
that the flow can be considered turbulent. It should be noted
though, that a comparison with the flow regimes behind a
triangular cylinder suggests that the flow regime studied here
will be in the transitional regime rather than fully turbulent
[16]. A velocity field visualisation by Onstad et Al [17]
revealed that the flow field contains coherent jet structures
which pass through pores. In the core of these jets, velocity
gradients can be expected to be considerable less than near the
solid-fluid interface. Based on these observations and to keep
the computational cost affordable, the largest cell size is taken 5
times larger than the Kolmogorov scale. Therefore, the
simulation done on the fine grid cannot be guaranteed to be a
fully resolved DNS; rather it has to be seen as an implicit LES.

The Kolmogorov scale (17) is an estimate of the smallest
length-scales in highly turbulent flow regimes. Following Pope
[18], n depends on the turbulent kinetic energy (k), which is
readily available from the turbulent intensity. The
corresponding turbulent Reynolds number (Re;) can be
calculated, resulting in a measure for the Kolmogorov scale via
following relations:

— pVkL r_ Ret3/4

k =3/, (@I Re,

Based on the previous reasoning, the largest cell size is set at
100 pm. The final cell sizes for the finest grid thus grow from a
size of 8um to a largest size of 100um with growth rate 1.1.

For the other two grids, these cell sizes are doubled. The
resulting skewness and cell count is given in table 2. The
second to last column gives the percentage of the cell count
with skewness larger than 0.5. This can be seen as the limit
between a good (skewness < 0.5) and acceptable (0.5 <
skewness < 0.8) mesh, as can be read from the Gambit”
manual. The equiangle skewness is reported as this yielded for
all three grids the highest value, compared with equisize
skewness.

The equations to be solved are the incompressible Navier-
Stokes equations. The diffusive term is discretised via a
second-order central differencing scheme. For the finest grid,
the convective term is discretised via a second-order accurate
central-differencing scheme. For the other two grids, the
bounded central differencing is used for the convective term
(which is a blending between second-order central differencing
and upwind, depending on the cell Reynolds number). Implicit
dual time-stepping is used as unsteady formulation. In case of
unsteady simulations (Re>28), the time step is chosen to ensure
that the cell based Courant numbers are less than 1. The first 10
flow through cycles are discarded to ensure that unphysical
fluctuations have vanished. The final data is captured from
three subsequent flow through cycles.

Because the grids are unstructured, the gradients are
evaluated via the least-squares method. Solutions are obtained
via the pressure-based coupled solver, with double-precision
accuracy. Convergence in all computations reached 10° for

continuity and 10® for the
iterations per time step.

velocity components, within 20

Grid Min Max Max Skew Total cell
cell cell skew > 0.5 count

Fine 8 um 100 pum | 0.83 8.3% 30621891

Mid 16 um | 200 um | 0.83 8.2% 8282347

Coarse | 32 um | 400 pm | 0.82 8.1% 2285731

Table 2 Minimum- and maximum cell size of the three grids,
as well as the maximum skewness, the part of the grid with
skewness > 0.5 and the total cell count.

T

Grid y C | R (u)! Ky Bx
[-] | [ | [ms] | [107m?] | [m”]
Fine | 023 [0.16 [23.1| 999 8.06 194.38
Mid | 042 [0.16[263] 9.96 7.91 194.16
Coarse | 0.78 | 03 | 304 | 987 7.78 194.05

1285

Table 3 Averaged wall y', cell Courant (C) and Reynolds (R)
number. The x-component of the intrinsically averaged velocity
and first components of the permeability and inertial factor is
given, for the three grids.

RESULTS

Up to 390000 iterations are performed on the three grids.
This is done on two machines, equipped with dual hex core
Xeon X5690 3.46GHz processors with 12MB cache. The on-
board memory is respectively 48 and 96 GB DDR3-1333MHz
RAM. The operating system is Scientific Linux 5.5, 64-bit. The
computation of the finest grid took 235 days, while the coarse
grid finished within 12 days.

Grid independency

The grid independence is done for a pressure gradient of
20000 Pa/m in x-direction. Based on the geometrical
characteristics of the foam, the permeability and inertial factor
can be estimated from data in open literature [2]. The resulting
intrinsic velocity is estimated to be 10 m/s. The mean wall y*
values near the fluid-solid interface are given for the three grids
in table 3, as well as the averaged cell Reynolds and Courant
number. The latter is considerable smaller than 1 which favours
accuracy. The intrinsically averaged velocity between the
coarsest and finest grid only differs 1.2%, while the
permeability and inertial factors respectively deviate 3.5% and
0.2%. This indicates that a grid independent solution is
obtained for the relevant macroscopic variables.

A more thorough evaluation of the grid quality is based on
the two-point correlation between streamwise velocities () at
different streamwise (x-coordinate) locations but the same
lateral (y-coordinate) and spanwise (z-coordinate) location.
This is based on the local velocity monitoring, as depicted in
figure 2(b). Ten correlation coefficients are obtained between
the 10 points at x=0 and respectively at following
dimensionless locations: x/L,=0, 0.25, 0.5, 0.75 or 1. Averaging
over these points yields R,,, given by:




( u(0,y.z,t)u(x,y,zt)

Ju20.y,z,t) u?(x,y,zt)

where the over-bar represents time-averaging and (---) gives
the spatial averaging of the ten local values. The result for the
three grids is depicted in figure 3.

Ry = ), 3
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Figure 3 Zero-time-lag two-point correlation with streamwise
separation of the streamwise velocity. +: fine mesh, +: mid
mesh,-@-: coarse mesh.

CS/3 slope

Figure 4 Turbulent spectrum of the normalized turbulent
kinetic energy of the streamwise velocity component u, at
location x/L,= 0.5, y/L,= 0.5, z = 0. Caption: see figure 3.

The point where the correlation becomes zero gives a
measure for the integral length scale [19]. For the finest grid,
this is obtained at a quarter of L,. Comparing this with /, which
is 0.16 when made dimensionless, and recognizing that the
point where the correlation coefficient R,, becomes zero is not
accurately captured (due to a poor sampling of the streamwise
separation and using only 10 points in a plane) suggests that / is
an adequate characteristic length. The coarser grids clearly
suggests a larger characteristic length for the large eddies. This
can be contributed to numerical diffusion and additional
diffusion stemming from the LES subgrid model.
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Another, but less sensitive manner of examining grid
convergence is comparing the power density spectra in different
points. The spectrum of one point is depicted in figure 4. It
clearly shows a relatively compact inertial subrange (-5/3
slope), followed by the viscous dissipation range (-7 slope).
The latter seems to depend on the used grid. The finest grid
shows the least dissipation in the higher frequency (w) range,
while the opposite is observed for the coarsest grid.

Reconstructing the applied pressure gradient of 20000 Pa/m
results in 19755 Pa/m, 19517 Pa/m and 19152 Pa/m for
respectively the fine, mid and coarse grid. The latter results in a
deviation of 4.2%. Taking a compromise between accuracy and
computational cost, the viscous boundary layer is solved with
the 8um cells, while the largest possible cell in the
computational domain is set at 200pum. For all results presented
in the remainder of this paper, this yields a maximum
uncertainty of 1.2%. This clearly shows that the discussed
method, based on first principles, allows to determine flow
properties accurately.

Note that, although Figure 4 indicates that turbulence is
triggered, the derived viscous and pressure forces allow to
reconstruct the pressure drop with great accuracy. This is also
observed for a simulation at higher Reynolds number (Re=370,
resulting from 50kPa/m pressure gradient). This indicates that
influences of turbulence on pressure drop are fully captured via
the Darcy-Forchheimer equation and makes the usage of
turbulent viscosities questionable; at least for the Reynolds
numbers studied here.

Permeability

Lsx10”

k(a) ‘(lb) (e)

0.5

0.25

‘___________________.,____‘

10” 10 10° 10

Re

107

Figure 5 Permeability versus Reynolds number. Five flow
regimes can be distinguished. The arrows indicate the points for
which the flow pattern is depicted in Figure 6.

The permeability is determined by applying different
pressure gradients in x-direction, ranging from 0.05 Pa/m to
50kPa/m. The corresponding Reynolds number varies between
0.019 and 370. The result is depicted in Figure 5. It clearly
shows a significant dependency on the flow regime. Based on
experimental data, Dukhan et al. [6] already reported this
behaviour. Their 10PPI data is applicable for the foam structure
used to study the flow properties. They analysed pressure drop
versus velocity, which ranged from 0.5 to 20 m/s



(corresponding with Re ranging between 11 and 444). They
considered their first two points (0.5 and 1 m/s) to be in the
Darcy regime, while the flow regime with velocities above 5
m/s (i.e. Re=111) was referred to as the Forchheimer regime.
Between 1 and 5 m/s, they considered the flow to be
transitional. The permeability in the Darcy and Forchheimer
regime was 1.01x10™ and 4.29x107 m? respectively.

The numerical results confirm a quasi-constant permeability
for Re>115. The corresponding permeability in this flow
regime is 4.43x10”7, which is in close agreement with the value
that Dukhan et al. [6] found. For the lowest Reynolds numbers
though, the found permeability is 1.255x10°, which
significantly deviates from the data obtained by Dukhan et al.
[6]. The difference can be contributed to two factors. First,
Dukhan et al. [6] indicate that only two points are used for the
the Darcy flow regime and that they are relatively at the high
end of it. Secondly, Dukhan et al. [6] assumed a Darcy regime
by neglecting the second term in equation (1). As will be
demonstrated later, this assumption is not valid when the
definitions given by equations (5) and (6) are used for
permeability and inertial loss factor.

The numerical simulations allow to investigate the typical
flow pattern for each flow regimes. These are depicted in
Figure 6. In the first three flow regimes, the flow is laminar and
steady. For the lowest Reynolds number, regime (a), an inertial
core starts to form in the pores. The core does not span the
complete flow domain and therefore has no influence on the
struts downstream. This changes for the second flow regime,
where the inertial core now spans the complete flow region.
The permeability shows a slight decrease, as can be noted from
Figure 5. Recalling equation (5), this implies that the strain rate
(and thus shear stress for a Newtonian fluid) increases more
than the filtration velocity increases, i.e., the effect of the
inertial core formation is felt downstream in the foam.
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Figure 6 Typical flow patterns for the various flow regimes.
For each case, a global view is show, together with a detail of
the flow around the lower strut. Also given is the applied
pressure gradient, the x-component of the filtration velocity and
the corresponding Reynolds number.

In the third steady-laminar case, regime (c), recirculation
zones are formed in the wake behind struts. The flow is still
steady and laminar. Permeability starts to drop significantly,
again implying that the strain rate near the solid-fluid interface
increases faster than the filtration velocity. This can be
understood by recognizing that the regions containing the
recirculation zones have a very limited contribution to the mass
flow rate through the foam volume. On the other hand, the mass
flow rate is increased compared to previous flow regime (b). As
the majority of the increased mass flow rate has to pass through
a decreased volume, the inertial core tightens. This results in a
larger increase of the strain rate near the solid-fluid interface
than of the filtration velocity. The same reasoning can be made



for flow regime (d), where the flow becomes unsteady. This
seems to occur at Re=~30, which is in accordance with Magnico
et al. [20] who found 31.5. The region with limited mass flow
rate, in the wakes downstream the struts, further increases due
to the unsteadiness. This can be observed by comparing the
details of flow regimes (c) and (d) in Figure 6. Another
consequence is that the inertial core in the centre of the pores
further narrows. Increasing the Reynolds number above a
certain value (Re>115 in this case) results in an equilibrium
between the increment of filtration velocity and strain rate. This
is characterised by highly unsteady flow, where local turbulent
spots start to appear. Note, however, that the viscous boundary
layer still is laminar. It is unclear when this also becomes
turbulent.

Inertial factor

@' ©

(a) (b)
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Figure 7 Inertial loss factor as a function of Reynolds number.
The five flow regimes, as given in Figure 5, are indicated.

The inertial loss factor, based on the definition given by
equation (6), is shown in Figure 7. The nearly constant value,
for Re>10 is B = 86.7 m". The experimental research of
Dukhan et al. [6] yielded 89.5. The difference might be
contributed to small deviations between the foam geometry
used in their paper and the numerical representation used here.
To give a conclusive answer, a sensitivity study needs to be
done. This is out of the scope of this paper and will not be
discussed.

Looking at equation (6), the inertial loss factor is defined as
the ratio of the intrinsically volume averaged pressure force to
the kinetic energy of the fluid. This pressure force is determined
by the pressure distribution over the surface area of the solid-
fluid interface. Upstream a strut, there is a stagnation zone
where kinetic energy reduces to zero and results in a region
with high pressure. Downstream, a distinction has to be made
between flow regimes with or without recirculation regions in
the wakes behind struts. In case of no recirculation (Re<10), the
inertial loss factor decreases with increasing Reynolds number.
This means that the pressure force increases at a lower rate than
the averaged kinetic energy in the flow domain. From the
moment that the recirculation regions in the wakes downstream
the struts appear (Re>10), the increment of pressure force and
averaged kinetic energy is equal. This is characterised by a
nearly constant inertial loss factor.
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For flow regime (a), Re<0.7, known as the Darcy regime
[20], it is surprising to find an increasing inertial loss factor
when Re decreases because in this regime, the Forchheimer
extension (i.e. second term in equation (1)) is expected to
vanish. With the definition of the inertial loss factor, given by
equation (6), this is not the case. Examining the ratio of the
Darcy term to the total pressure drop reveals a constant value of
0.32, for Re<0.7. For higher Reynolds numbers it decreases
significantly and was 0.02 for the highest Reynolds number
studied in this paper (Re=370). This suggests that the pure
Darcy regime is not reached for the studied structure; at least
not for the studied Reynolds numbers and with the used
definitions of the flow properties. A closer inspection of the
pressure distribution on the solid-fluid interface shows indeed a
significant variation, even for the lowest Reynolds numbers.
Therefore, based on physical grounds, the Forchheimer
extension is needed for the studied range of Reynolds numbers,
to be able to reconstruct the applied pressure drop gradient
within 1.2% accuracy. As mentioned earlier, Dukhan et al. [6]
assumed that the Forchheimer extension is negligible in the
Darcy regime, which might explain the difference in
permeability between their experimental and our numerical
results. It seems that the pressure forces which act on the solid-
fluid interface are contributed to the Darcy term.

Pressure drop graph

It is interesting to examine the pressure drop data in a
classical way, i.e., plotting pressure gradient versus velocity and
fitting a second order polynomial through the data. The
obtained equation is compared with equation (1), from which
both flow properties can be derived. The permeability and
inertial loss factor are respectively 3.8x10” m? and 85.9 m™,
which is in agreement with the numbers obtained by applying
first principles, for the unsteady flow regimes.

As indicated by Innocentini et al. [3], the amount of data
has a severe impact on the derived flow properties. Therefore,
flow properties are derived per five consecutive data points.
This indeed shows that for the low Reynolds number cases, the
Forchheimer contribution reduces to less than 2% and indicates
that only the first term of equation (1) (i.e. the Darcy term) is
needed to reconstruct the applied pressure drop gradient. The
permeability is 4.2x107, which is one third of the number
obtained via a first-principles analysis. As indicated eatlier,
deriving the flow properties by fitting a second-order
polynomial to pressure drop data, makes no clear distinction
between viscous and pressure forces. The pressure drop
reconstruction via the fitting method shows a maximum
deviation of £15% over the complete range of Reynolds
numbers.

CONCLUSION

A method based on first principles is proposed to close the
volume-averaged Navier-Stokes equations in the case of
incompressible flow with a Newtonian fluid. The terms which
describe the microscopic flow physics on a macroscopic scale
take the volume-averaged viscous- and pressure forces in
account. Both forces are source terms on the macroscopic



momentum balance. These forces are respectively related to
permeability and inertial loss factor, giving both parameters a
clear physical meaning.

Careful numerical simulations allows to compute both
forces. This is done for one foam structure and for a Reynolds
number ranging from 0.019 to 370. This covers five flow
regimes: (a) steady laminar with limited inertial core, (b) steady
laminar with inertial core spanning a foam-cell, (c) steady
laminar with recirculation zones in the wakes downstream the
struts, (d) unsteady laminar with periodic vortex shedding and
(e) highly unsteady with chaotic flow structures. Permeability
shows a great dependency on the flow regimes. The inertial loss
factor becomes constant when recirculation regions appear in
the wakes behind the struts.

In the flow regimes without recirculation behind the struts,
i.e. regimes (a) and (b), the inertial loss factor increases with
decreasing Reynolds number. Based on the first-principle
analysis, it is found that in these flow regimes, the contribution
of the viscous force on the total pressure drop remains constant
at 0.32. In other words, the Forchheimer extension remains
necessary to be able to reconstruct the applied pressure
gradient. In case of the foam structure and flow regimes studied
in this paper and the first-principles definition of the flow
parameters, it can be concluded that a pure Darcy regime in the
classical sense is not valid. The pressure force contribution
remains significant.

Analysing the same data with the often applied fitting of a
second-order polynomial on the pressure drop/velocity data,
does result in a negligible Forchheimer contribution in the
Darcy regime. There is, however, no physical explanation for
this; rather, it seems to be a result from the fitting procedure. It
should be noted that the authors do not question the validity of
the Darcy law, because it depends on many factors, such as the
definition of the flow properties and the porosity of the studied
porous medium.
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