
 

HEFAT2012 

9
th

 International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 

16 – 18 July 2012 

Malta 

 

Optimum Geometry of Solid Porous Spheres with Heat Generation 

 

Baloyi J., Bello-Ochende T.*, Meyer J.P. 

*Author for correspondence 

Department of Mechanical and Aeronautical Engineering, 

 University of Pretoria, 

 Pretoria 0002, 

 South Africa 

E-mail: Tunde.Bello-Ochende@up.ac.za 

 

ABSTRACT 
Spent nuclear fuel has to be cooled so that the 

decay heat generated does not melt the containment 

system, which could lead to unintentionally release 

of radioactive material to the surrounding. The heat 

transfer mechanisms involved in the cooling have 

historically been analysed by assuming that the 

fluid and solid phases are at local thermal 

equilibrium (LTE) in order to simplify the analysis. 

An analytical model was developed to minimize 

the thermal resistance of an air cooled porous 

matrix made up of solid spheres with internal heat 

generation. This was done under the assumption of 

LTE. It was found that the predicted optimum 

sphere diameter and the minimum thermal 

resistance were both robust in that they were 

independent of the heat generation rate of the solid 

spheres. Results from the analytical model were 

compared to those from a commercial numerical 

porous model using liquid water and air for the 

fluid phase, and wood and silica for the solid phase. 

The magnitudes of the minima of both the 

temperature difference and the thermal resistance 

seem to be due to equally contribution from the 

thermal conduction heat transfer inside the solid 

spheres and heat transfer in the porous medium. 

Because the commercial numerical porous model 

models only the heat transfer occurring in the 

porous medium, it expectedly predicts half of the 

magnitudes of the minima of the temperature 

difference and thermal resistance of those by the 

analytical model. 

INTRODUCTION 
The storage of spent nuclear fuel is complicated by 

the need to manage the decay heat generated by the 

fuel. The spent nuclear fuel has to be cooled so that 

heat generated does not melt the containment 

system, which could lead to unintentionally release 

of radioactive material to the surrounding. Another 

instant where a similar scenario takes place, 

although innocuous, is whereby a pile of stones 

(heated a prior as an energy storage mechanism) 

are cooled by a fluid flowing through gaps between 

them. The heat transfer mechanisms involved in the 

cooling in both instances have historically been 

analysed by assuming that the fluid and solid 

phases are at local thermal equilibrium (LTE) in 

order to simplify the analysis. However in general 

models created with this assumption in mind do not 

give accurate results because the local temperature 

difference between the solid and fluid phases can 

be too big for the LTE assumption to be valid. In 

order to remedy this shortcoming local thermal 

non-equilibrium (LTNE) has been taken as the 

general condition which is assumed to prevail 

between the solid and fluid phases. 

Using the LTNE condition between the two phases 

many researchers [1- 6] created models in an 

attempt to solve the heat transfer problem for 

porous media and they showed that these models 

asymptote into LTE models at special conditions.  

Meanwhile [7-14] compared the LTNE and LTE 

models for cases from metallic and non-metallic 

packed beds to microchannel heat sinks and 

annulus partially filled with porous media. They 

come up with criteria under which the LTE 

assumption was valid. Reddy and Narasimhan [15] 

numerically investigate a similar case where there 

is interplay between internal heat generation and 
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externally driven natural convection inside a 

vertical porous annulus under steady state 

conditions. 

Whitaker [16] discusses constraints that should be 

satisfied when LTE was assumed. He suggested 

that these constraints must be satisfied when the 

following conditions are imposed: the solid and 

fluid phases’ thermal diffusivities ratio must be 

equal, the thermal conductivities ratio must be 

equal, and the non-slip condition must hold. [17] 

and [18] developed LTE models for metallic foams 

porous channels where they respectively 

discovered that the LTE assumption was valid even 

if the solid thermal conductivity was markedly 

higher than that of the fluid, and developed an 

algorithm that does away with the need to conduct 

numerical calculations. Alazmi and Vafai [1] 

investigated the proper boundary condition to be 

used for a porous channel bounded by walls having 

a constant heat flux. They found that the Darcy 

number, porosity, solid-fluid thermal conductivity 

ratio and Reynolds number all have a significant 

effect on the results for the different boundary 

conditions tested, and this was when thermal 

dispersion and porosity variation are not 

considered. For a porous matrix with a stagnant 

fluid and a heat flux Lage [19] showed that if the 

fluid and solid phases are in thermal equilibrium at 

the boundaries, then they will be in thermal 

equilibrium throughout the entire domain. Kou and 

Huang [20] investigated the effect of thermal 

boundary conditions applied on a vertical annular 

duct embedded in a porous medium. Teng and 

Zhao [21] have developed a model that attempts to 

extend the applicability of the Darcy’s law beyond 

the laminar flow regime as defined by the 

microscopic Reynolds number of about 10. 

Optimization of the performance and configuration 

of porous structures and systems has been the 

subject of consented research [22- 27] whereby 

analytical models were developed to that end. 

Effective cooling of a porous medium made up of 

solid spheres with internal heat generation rate is 

dependent on the minimization of the thermal 

resistance between the porous matrix and the fluid.  

Conditions under which minimization of the 

thermal resistance can take place would include the 

surfaces of the solid spheres and the fluid cooling 

them being in LTE with one another. The porous 

matrix under consideration was made up of solid 

spheres and the determination of the optimum 

porous properties would essentially mean the 

determination of the optimum sphere diameter at 

which the thermal resistance was minimized, for a 

given porosity. So the aim of the present study was 

to determine the optimum diameter of same size 

solid spheres with internal heat generation forming 

a porous matrix that results in minimum thermal 

resistance of the porous medium as the spheres are 

being cooled by air flowing through the porous 

matrix. This was done for a forced convection 

laminar flow under steady state conditions. 

 

NOMENCLATURE 
A [m2]  porous domain cross 

sectional area 

Be   Bejan number 

cp  [J/kg.K]  fluid heat capacity at 

constant pressure 

D [mm]  diameter of the solid 

sphere 

K  [m
2
]   porous medium 

permeability 

Kf [W/m.K] fluid thermal 

conductivity 

km  [W/m.K] porous medium thermal 

conductivity 

ks [W/m.K] sphere thermal 

conductivity 

L [m]  length of the porous 

medium 

P [Pa]  pressure 

q [W]  heat transfer rate 

q‴ [W/m
3
]  heat source density 

qʺw [W/m
2
]  heat flux 

RT [K/W]  thermal resistance 

Tmax [K]  maximum temperature 

at the centre of the sphere 

Tmin [K]  minimum temperature at 

the porous medium inlet 

Toutlet [K]  temperature at the 

porous medium outlet 

Tinlet [K]  temperature at the 

porous medium inlet 

u  [m/s]  streamwise fluid 

velocity component 

 ⃑  [m/s]  Superficial fluid 

velocity vector 

x  [m]  streamwise position 

variable 

 

Greek letters 

α [m
2
/s]  thermal diffusivity 

γ   solid/fluid thermal 

conductivity ratio 

η   dimensionless thermal 

resistance 

μ  [Pa.s]  fluid dynamic viscosity 

ϕ   porosity 

ρ [kg/m
3
]   fluid density 

Ψ   dimensionless sphere 

diameter 

θ   dimensionless 

temperature 
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Subscripts 

coarser     coarser grid 

finer   finer grid 

min   minimum 

max   maximum 

opt   optimum 

ANALYTICAL MODEL 

The case under investigation in the current study 

was a cylindrical porous domain with adiabatic 

walls, saturated with a fluid as shown in Figure 1. 

 

Figure 1 Sketch of the porous medium domain. 

Thermal resistance between the point at a 

temperature 
maxT  and the point at a temperature 

minT  

as shown in Figure 1 in a porous medium, as given 

by Eq. 1, shows that it is directly proportional to 

the temperature difference between the two points, 

if the rate of heat transfer is assumed to be 

constant. In this instance the heat transferred is due 

to the internal heat generation density, q  , inside 

the solid spheres. Here the inlet temperature is 

defines as the domain minimum temperature, i.e. 

minTTinlet  . 

 
q

TT
RT

minmax      (1) 

From this expression it can be seen that in order to 

minimize the thermal resistance, all that is required 

is to minimize the temperature difference. Because 

the porous medium is made up of air and solid 

spheres with internal heat generation, the rate of 

heat transfer is given by   ALqq  1 .However 

this rate of heat transfer must equal the rate of heat 

removal by the air flowing through the porous 

medium as given by Eq. 2 because steady state 

conditions were assumed. 

 minTTcmq outletp  
   (2)

 

The mass flow rate of the air flowing with an 

average superficial velocity u through the porous 

medium is Aum  . Given that laminar flow was 

assumed for the air flowing through the porous 

medium, Darcy’s law [28] was used to express the 

superficial velocity for a unidirectional driven flow 

as given by Eq. 3. 

L

PK
u




      (3) 

Because the solid matrix of the porous medium is 

made up of solid spheres, the permeability is given 

by the Carman-Kozeny equation [28] as expressed 

by Eq. 4. 

 2
32

1180 






D
K     (4) 

The temperature difference between the outlet and 

inlet of the porous medium can be expressed in 

terms of the diameter of the solid spheres by simply 

substituting Eqs. 3, 4, into Eq. 2, and rearranging 

the terms to give Eq. 5. 

2

23

min

1
180

PDc

Lq
TT

p

outlet










 








   (5) 

 The temperature profile of the hottest solid sphere 

is
soutlet kDqTT 242

max
 . Combining the 

temperature profile of the hottest solid sphere with 

Eq. 5 results in an expression for the temperature 

difference between two points in the porous 

medium having the maximum and minimum 

temperatures as given by Eq. 6.  

2

232

minmax

1
180

24 PDc

Lq

k

Dq
TT

ps 









 











  (6) 

However, the aim of the analysis is the 

minimization of 
minmax TT  with respect to D . This 

results in the optimum sphere diameter as given by 

Eq. 7. 

4

24
3

1
107.8

Pc

Lk
D

p

s
opt








 








  

4
1

4
1

3

1
107.8










 
 BeLDopt 



   (7) 

Where 
fs kk is the solid/fluid thermal 

conductivity ratio and 2PLBe  is the Bejan 

number [29, 30] representing the dimensionless 

pressure drop across the porous medium. 

pf ck   is the thermal diffusivity of the fluid. 

The minimum temperature difference that 

corresponds to the optimum diameter is given by 

Eq. 8. 

  2
1

2
1

22
3

minminmax

1
477.5









 
 




Be

k

Lq
TT

f

 (8) 
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When Eq. 8 is substituted into Eq. 1 the result is the 

minimum thermal resistance as given by Eq. 9. 

 
 

f

T
Ak

LBe
R

2
1

2
1

2
3

2
1

min

1
477.5










   (9) 

Eqs. 8 and 9 express the minima temperature 

difference and thermal resistance in terms of 

porosity respectively; however it is also useful to 

express both minima in terms of the optimum 

diameter by substituting Eq. 7 into Eqs. 8 and 9. 

The expression for the minimum temperature 

difference as a function of optimum diameter is 

given by Eq. 10 and that for the minimum thermal 

resistance is given by Eq. 11. Note the 

disappearance of q  and Be in Eq. 11 when 

expressed in terms of Dopt. 

 
s

opt

k

Dq
TT

12

2

minminmax


    (10) 

 
 


112

2

min

s

opt

T
ALk

D
R    (11) 

The optimum diameter, the minimum temperature 

difference and minimum thermal resistance were 

all normalized with respect to their respective 

values at a porosity of 1.0 . The normalized 

optimum diameter,
opt , the minimum temperature 

difference, 
min and minimum thermal resistance, 

min are given by Eqs. 12, 13 and 14 respectively. 

  4
3

1.0

4
3

1.0 1

1












 








 
















opt

opt

opt
D

D

  (12) 

2

2
3

1.0

2
3

min

1

1

opt






















 








 



    (13) 

 

   
2

1.0
2

3

2
1

2
3

2
1

min
1

9.0

1

1

opt





























 













 



   (14)

 

NUMERICAL ANALYSIS 

The numerical porous medium model in ANSYS 

Fluent 13 [31] was used to conduct comparative 

simulations for this study. Unlike the analytical 

model (Eq. 6) where the porous medium and the 

heat conduction inside the solid spheres were 

modelled, the numerical model models only the 

porous medium. The flow was driven by a 

unidirectional pressure gradient across the porous 

medium. 

Steady state was assumed and a three-dimensional 

domain was also assumed. A further assumption 

made is that the flow was laminar. With all these 

assumptions in mind, the flow physics in the 

porous medium is given by Eqs. 15 to 17.  

The continuity Equation for the porous medium is 

given by: 

  0.  u     
(15) 

The momentum Equation is given by the Darcy’s 

law: 

K

u

dx

dP 
     (16) 

The energy Equation is given by: 

mmp qTkTvC  2.


    (17) 

Where 

  sfm kkk   1     (18) 

And 

 qqm
 1
    

(19) 

The optimum diameter as given by Eq. 7 was used 

together with the Carman-Kozeny equation (Eq. 4) 

to compute the viscous resistance to be inserted 

into the numerical model. The diameter and length 

of the porous domain were both 2000 mm. 

 

Figure 2 Sketch of the numerical porous medium 

domain with boundary conditions. 

The porous medium domain as represented by 

Figure 2 was sandwiched between an up-stream 

and down-stream domains (which are not shown in 

Figure 2 for clarity) used for implementing the inlet 

and outlet conditions because ANSYS Fluent 13 

[31] does not allow direct application of inlet and 
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outlet boundaries on porous domains. The up-

stream domain was a fluid domain that was made 

up of an adiabatic circumferential wall boundary 

with a non-slip condition and a pressure inlet 

boundary. The third boundary was simple an 

interface between the domain and the porous 

domain connected to it. The static pressure on the 

inlet boundary was set equal to the operating 

pressure and the temperature was set to be 25 °C. 

This domain had 8535 hexahedral cells. 

The porous domain was made up of an adiabatic 

non-slip circumferential wall boundary and two 

interface boundaries connecting it to up-stream and 

down-stream domains. The domain had 17070 

hexahedral cells. The down-stream domain was a 

fluid domain. The domain had an interface 

boundary connecting it to the porous domain, a 

non-slip adiabatic circumferential wall boundary 

and a pressure outlet boundary. The change in 

pressure difference was modelled by varying the 

gauge pressure of the pressure outlet boundary. The 

domain had 17070 hexahedral cells. The grid 

independence of the numerical solution was 

conducted using the temperature difference, 

inletoutlet TTT   as the figure of merit.  This was 

conducted for 35 /10 mWq   ,

kPaPPP outletinlet 6  and 1.0 . The relative 

change metric used to check the change in 

temperature difference from a coarser grid to a 

finer grid is simply  
finercoarserfiner TTT  / . As can 

be seen from Table 1 the change from 2460 cells 

through to 17070 cells is constant. For this reason 

the 17070 cells were chosen for the numerical 

simulations since there was no computational time 

penalty. 

 

Table 1. Grid independence study using air as the 
fluid and wood as the solid, for ΔP = 6 kPa and φ 
= 0.1. 

Number of cells ΔT (°C) Relative change 

1230 56.51124   

2460 57.72587 0.021 

4920 58.33546 0.0104 

17070 57.73561 0.0104 
 

The implicit pressure-based solver was selected, 

with the superficial velocity for the porous 

formulation. The PRESTO! [31] discretization 

scheme was used for the pressure, and the second 

order upwind schemes were selected for the 

density, energy and mass discretization. 

Two cases were run where the fluid phase was 

modelled by first using air and then liquid water. 

An assumption was made that the fluid (except for 

density of air) and thermal properties of the solid 

spheres and fluid are constant. The heat generation 

rate density that comes from the solid phase used in 

the numerical simulations was 35 /10 mWq  . For 

the LTE assumption to be valid for the porosity 

range of 9.01.0  the thermal conductivities of 

the fluid and solid phases making up the porous 

medium have to of the same order of magnitude. 

For this reason wood properties (which is important 

in biomass energy systems) with KmWks ./173.0  

and silica/sand properties (which is important in 

coal bubbling bed boilers systems) with 

KmWks ./2.0  were used to model the solid phase 

properties in the ANSYS Fluent 13 porous medium 

model.  The thermal conductivities of air and liquid 

water are 0.0242 W/m.K and 0.6 W/m.K 

respectively. 

RESULTS AND DISCUSSION 

From Eq. 7 it follows that the optimum diameter 

does not depend on the internal heat generation rate 

from the solid spheres. This suggests that this 

optimum diameter solution is robust when applied 

to a porous medium. This same quality of 

robustness is also observed with respect to the 

minimum thermal resistance as expressed by Eq. 11 

because it too is independent of the internal heat 

generation rate from the solid spheres. The 

normalized optimum diameter was evaluated for a 

porosity range of 9.01.0  , and this is plotted in 

Figure 3. 

 

Figure 3 The variation of the normalized optimum 

diameter with porosity.

 
Figure 3 shows that the optimum diameter 

decreases nonlinearly with increasing porosity. The 

comparison between the results from Eq.13 and 

those from the normalized ANSYS Fluent 13 (for 

both air and liquid water) for the normalized 

minimum temperature difference with respect to 
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the result at a porosity of 1.0  is shown in Figure 

4 as functions of normalized optimum diameter. 

Results for the normalized minimum thermal 

resistance are also plotted on the same figure.

 

Figure 4 The variation of the normalized minima 

temperature difference and thermal resistance with 

normalized optimum sphere diameter. 

Figure 4 shows that the analytical solution 

compares very well with numerical results for both 

air and liquid water. This shows that LTE 

assumption made in the derivation of the analytical 

model is valid since the fluid to solid thermal 

conductivities ratio for both air and liquid water are 

close to unity or less. From Figure 4 it can also be 

seen that the analytical solution compares much 

better with the liquid water numerical results than 

with those of air. This could be as a result of the 

densities of the liquid water and wood being of the 

same order of magnitude. This follows from one of 

the criteria that were proposed by Whitaker [16] 

that the thermal diffusivities ratio of the fluid and 

solid phases should be of the same order of 

magnitude. 

The normalized minimum temperature differences 

together with the normalized minimum thermal 

resistance were also plotted against the porosity so 

as to illustrate the direct relationship between the 

minima temperature difference and thermal 

resistance with porosity. As was for Figure 4 this 

comparison between the analytical model and the 

numerical model was done for both air and liquid 

water, and is plotted in Figure 5. 

 

Figure 5 The variation of the normalized minima 

temperature difference and thermal resistance with 

porosity. 

 Again the analytical solution compares very well 

with both numerical solutions, but compares much 

better with the liquid water numerical solution 

because of the thermal diffusivities of the fluid and 

solid phases being of the same order of magnitude. 

Another observation is the absolute value of the 

minimum temperature difference predicted by 

ANSYS Fluent 13 was about half the value 

predicted by the analytical model as expressed by 

Eq. 10. This is illustrated in Figures 6 and 7 where

 
minminmaxmin TTT  . Figure 6 shows the 

comparison results for air/wood porous medium, 

and Figure 7 shows the comparison for liquid 

water/wood porous medium. 

 

Figure 6 The variation of the minimum temperature 

difference with optimum sphere diameter for 

air/wood porous medium. 
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Figure 7 The variation of the minimum temperature 

difference with optimum sphere diameter for liquid 

water/wood porous medium. 

For both Figure 6 and Figure 7 half the value from 

the analytical solution was also plotted so as to 

illustrate the point that the porous model in ANSYS 

Fluent 13 predicts half the value of the minimum 

temperature difference as that predicted by the 

analytical model.  This means that for optimum 

sphere diameter the temperature difference between 

centre of the hottest solid sphere and its surface is 

equal to the temperature difference between the 

sphere surface and the coolest point in the porous 

medium. This prediction of half the value by 

ANSYS Fluent 13 is due to the fact that the 

numerical code only models heat transfer between 

the surfaces of the spheres and the fluid. 

CONCLUSION 

The optimum sphere diameter expression was 

determined analytically and was found to be 

independent of the heat generation rate of the solid 

spheres. This same quality was found to be the 

same for the corresponding minimum thermal 

resistance. It can be concluded that the optimum 

solid sphere diameter and the minimum thermal 

resistance are both robust when applied to a porous 

medium where the LTE assumption is valid. The 

minimum temperature difference analytical 

solution compared very well to numerical solutions 

when air and liquid water properties are used for 

the fluid phase and wood and silica properties are 

used for the solid phase. The absolute value of the 

minimum temperature difference predicted by the 

ANSYS Fluent 13 was about half the value 

predicted by the derived analytical model. Because 

the minimum thermal resistance is directly 

proportional to the minimum temperature 

difference, the same conclusion can be draw that 

the absolute value of the minimum thermal 

resistance predicted by ANSYS Fluent 13 would be 

about half the value predicted by the analytical 

model. 
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