SECOND LAW ANALYSIS OF THE FLOW OF TWO IMMISCIBLE COUPLE STRESS FLUIDS IN FOUR ZONES

Ramana Murthy J V1, *, Srinivas J1 and Sai K S2
1Department of Mathematics, National Institute of Technology, Warangal, 506004, India.
2Department of Mathematics, DMSSVH College of Engineering, Krishna-521002, India
*E-mail: jvjosyula@yahoo.co.in

INTRODUCTION

Contemporary engineering thermodynamics use a parameter called the rate of entropy generation (or production) to gauge the irreversibility’s related to heat transfer, friction, and other non-idealities within systems. The second law of thermodynamics should be considered to evaluate the sources of irreversibility in flow and thermal systems. Conserving useful energy depends on designing efficient thermodynamic heat-transfer processes. Energy conversion processes are accompanied by an irreversible increase in entropy, which leads to a decrease in exergy (available energy). Thus, even though the energy is conserved, the quality of the available energy decreases because the energy is converted into a different form of energy, from which less work can be obtained. Reduced entropy generation results in more efficient designs of energy conversion processes. Energy transfer in immiscible fluids are of special importance in the petroleum extraction and transport problem. Heat transfer in immiscible flows were discussed by Bakhtiyarov and Siginer [10], Chamkha [11] etc.

Flow fluid in porous media is an important subject of widespread interest in hydrology, geophysics, biology and the petroleum industry. The problem of water coning is often encountered in the oil industry when a layer of water forms under a layer of oil. To understand this phenomenon, it is of interest to examine the contact layer at the flow of two immiscible fluids. So there has been widespread interest in the study of flow through channels and tubes in recent years. Vajravelu et al. [12] studied unsteady flow of two immiscible conducting fluids between two permeable beds. Vijayakumar and Syam Babu [13] discussed MHD viscous flow between two porous beds. Iyengar and Punnamchander [14] have studied the couple stress fluid flow between two porous beds.

Entropy generation calculations for different systems which have different geometries in porous or nonporous channels have been restricted to the first law of thermodynamics. Calculations using the second law of thermodynamics, which are related to entropy generation and efficiency calculation, are more reliable than first law-based calculations. A great volume of information is available dealing with second law analysis in...
the flow field and heat transfer in a porous medium. Waqar and Gorla [15] have analyzed the second law characteristics of heat transfer and fluid flow due to mixed convection in non-Newtonian fluids over a horizontal plane. Hooman and Ejali [16] studied both the first and the second laws of thermodynamics for thermally developing forced convection in a circular tube filled with a saturated porous medium. Tamayol et al. [17] studied thermal analysis of flow in a porous medium over a permeable stretching wall. Morosuk [18] discussed entropy generation in conduits filled with porous medium totally and partially. Mahmud and Fraser [19, 20] have discussed conjugate heat transfer inside a porous channel and magnetohydrodynamic free convection and entropy generation in a square porous cavity and also mixed convection radiation interaction in a vertical porous channel. Tasnim et al. [21] studied entropy generation in a porous channel with hydro-magnetic effect. Kamel Hooman [22] discussed the second-law analysis of thermally developing forced convection in a porous medium. Chauhan and Vikas Kumar [23] described the effects of slip conditions on forced convection and entropy generation in a circular channel occupied by a highly porous medium governed by Darcy extended Brinkman-Forchheimer model. Paresh Vyas and Archana Rai [24] investigated the entropy generation in radiative MHD Couette flow of a Newtonian fluid in a parallel plate channel with a naturally permeable base. In recent years, the fluid flow and entropy generation in two immiscible fluids in a channel have received considerable attention by researchers. Kamisli and Oztop [25] considered the fluid flow and entropy generation in two immiscible fluids in a channel. These authors explained very nicely the thermodynamic interface conditions involved in a flow of immiscible fluids and made a significant observation that minimum temperature gradient in the transverse direction of the flow offers minimum entropy generation near the plates. Recently, Ramana Murthy and Srinivas [26] have studied the second law analysis for the flow of two immiscible micropolar fluids between two parallel plates. They observed that the entropy generation is more near the plates than at the interface of the channel.

Couple stress fluids: To the extent the present authors have surveyed the flow of immiscible incompressible couple stress fluids between two porous beds has not been studied so far. The consideration of couple-stress, in addition to the classical Cauchy stress, has led to the recent development of theories of fluid micro continua. This new branch of fluid mechanics has attracted a growing interest during recent years mainly because it possesses the mechanism to describe such rheologically complex fluids as liquid crystals, polymeric suspensions, and animal blood for which the Navier-Stoke’s theory is inadequate. One such couple stress theory of fluids was developed by Stokes [27], and represents the simplest generalization of the classical theory which allows for polar effects such as the presence of couple stresses and body couples. The couple stress fluid is a special case of a non-Newtonian fluid which is intended to take into account the particle size effects. A review of couple stress (polar) fluid dynamics was reported by Stokes [28], Ariman [29] discussed the applications on couple stress fluids and compared with that of micropolar fluids. A number of studies for such a fluid have been reported [30, 31].

The main objective of this paper is to study the entropy generation analysis for the flow of two immiscible couple stress fluids between two porous beds.

PROBLEM FORMULATION AND GOVERNING EQUATIONS

Consider the flow of two immiscible couple stress fluids between two parallel plates distant 2h apart, bounded by two porous beds of different permeability’s. The lower porous bed in zone-IV has low permeability with infinite thickness whereas the upper porous bed in zone-III is highly permeable with finite thickness H (Figure 1). The permeability’s of lower and upper beds are \(K_1 \) and \(K_2 \) respectively. Let \(X \) and \(Y \) are the axial and vertical coordinates respectively with the origin at the centre of the channel. Fluid flow is generated due to a constant pressure gradient which acts at the mouth of the channel. The lower fluid (viscosity \(\mu_1 \), density \(\rho_1 \) and thermal conductivity \(k_1 \)) occupies the region \((-h \leq Y \leq 0)\) comprising the lower half of the channel and this region will be referred to as zone I. The upper fluid (viscosity \(\mu_2 \), density \(\rho_2 \) and \(\mu \)) and thermal conductivity \(k_2 \) is assumed to occupy the upper half of the channel (i.e., \(0 \leq Y \leq h \)), and this region is called zone II. The two walls of the channel are held at different temperatures \(T_i \) and \(T_n \) (with \(T_i < T_n \)). The equations for the flow in zone I and II (i.e., \(-h \leq Y \leq h\)) are assumed to be governed by couple stress fluid flow equations (neglecting body forces except gravity force and body couples) of Stokes [27, 28] and energy equation

\[
\frac{dp}{dt} + \text{div}(\rho \mathbf{q}) = 0 \tag{1}
\]

\[
\rho \frac{d\mathbf{q}}{dt} = -\frac{1}{2} \text{curl}(\rho \mathbf{I}) \cdot \nabla P + \mu \text{curl(curl(curl(curl q)))} + \eta_1 \text{curl(curl(curl(curl q)))} + (\lambda + 2\mu) \text{grad(div q)} \tag{2}
\]

\[
\rho \frac{dE}{dt} = \Phi + k \nabla^2 T \tag{3}
\]

where \(\Phi = \mu \left[(\text{grad} \mathbf{q}) : (\text{grad} \mathbf{q}) \right]^T + (\text{grad} \mathbf{q}) : (\text{grad} \mathbf{q}) \]

\[
+ 4\eta \left[(\text{grad} \mathbf{\omega}) : (\text{grad} \mathbf{\omega}) \right]^T + 4\eta_1 \left[(\text{grad} \mathbf{\omega}) : (\text{grad} \mathbf{\omega}) \right]
\]

The equations (1) – (3) represent conservation of mass, balance of linear momentum and energy equation respectively. The scalar quantity \(\rho \) is the density and \(\mathbf{P} \) is the fluid pressure at any point. The vectors \(\mathbf{q} \), \(\mathbf{\omega} \), \(\mathbf{F} \) and \(\mathbf{t} \) are the velocity, rotational, body force per unit mass and body couple per unit mass, respectively. The material constants \(\lambda \) and \(\mu \) are the viscosity coefficients and \(\eta_1 \) and \(\eta_1 \) are the couple stress viscosity coefficients satisfying the constraints \(\mu \geq 0; 3\lambda + 2\mu \geq 0; \eta \geq 0 \). \(|\mathbf{t}| \leq \eta \). There is a length parameter \(l = \sqrt{\eta_1/\mu} \) which is a characteristic measure of the polarity of the couple stress fluid and this parameter is identically zero in
the case of non-polar fluids. In the energy equation \(\Phi \) is the dissipation function of mechanical energy per unit mass, \(E \) is the specific internal energy, \(\mathbf{\mathbf{\Phi}} = - k \nabla T \) is the heat flux, \(k \) is the thermal conductivity and \(T \) is the temperature.

The force stress tensor \(t_{ij} \) and the couple stress tensor \(M_{ij} \) that arises in the theory of couple stress fluids are given by

\[
\begin{align*}
t_{ij} &= (-P + \lambda \text{div}(\mathbf{q})) \delta_{ij} + \mu \delta_{ik} + \frac{1}{2} \delta_{ij} \left[m_{kk} + 4\eta \omega_{k,rr} + \rho c_k \right] \\
M_{ij} &= \frac{1}{3} \delta_{ik} \omega_{j,i} + 4\eta \omega_{j,i}
\end{align*}
\]

In the above \(\mathbf{\mathbf{\Omega}} = \frac{1}{2} \text{curl}(\mathbf{q}) \) is the spin vector, \(\omega_{i,j} \) is the spin tensor and \(\rho c_k \) is the body couple vector. \(\delta_{ij} \) is the components of rate of shear strain, \(\phi_{ij} \) is the Kronecker symbol, \(\delta_{ij} \) is the Levi-Civita symbol and comma denotes covariant differentiation.

Darcy’s law is valid for the flows through porous bodies with low permeability. In applications where fluid velocities are low, such as movements of groundwater and petroleum, etc., Darcy’s law well describes the fluid transport in porous media. Darcy law is the simplest and, by far, the most popular one, due to its simplicity. It states that the filtration velocity of the fluid is proportional to the difference between the body force and the pressure gradient. The constant \(K \) appearing in the relation is called the permeability of the medium. Since Darcy law is a first order PDE for the velocity, it cannot sustain the no-slip condition on an impermeable wall or a transmission condition of the contact with free flow. That motivated Brinkman to modify the Darcy law in order to be able to impose the no-slip boundary condition on an obstacle submerged in porous medium.

Certain flows that pass through bodies with high porosity do not follow the Darcy law. For this type of flows Beavers and Joseph [32] condition is not applicable. The Darcy law fails to describe the presence of an impermeable (solid) boundary. Brinkman model is applicable for this type of flows. Brinkman model is used in many applications as it allows one to resolve problems with boundary conditions on impermeable boundary as well as on the interface between porous medium and an open fluid domain. In this paper, Darcy law [33] for flow in zone IV and the Brinkman law [34] for flow in zone-III are taken.

The flow in the infinite porous bed (i.e. in zone IV) is governed by Darcy law

\[
\mathbf{\mathbf{\Phi}} = \frac{K}{\mu} (\mathbf{T} - \mathbf{\Phi} \mathbf{P})
\]

The flow in the finite porous bed (i.e. in zone III) is governed by Brinkman equation

\[
\nabla \cdot \mathbf{\mathbf{\Phi}} = \frac{\mu}{K} (\mathbf{\mathbf{\Phi}} + \mu V^2 \mathbf{\mathbf{\Phi}})
\]

The boundary conditions for the flow through porous beds need special attention. Generally the no-slip condition is valid on the boundary when a fluid flows past impermeable surfaces. But when it flows past permeable surfaces, the no-slip condition is no longer valid since there will be a migration of fluid, tangential to the boundary within the permeable surfaces. The velocity within the permeable beds will be different from the velocity of the fluid in the channel and we have to match the two velocities at the interface. Beavers and Joseph [32] based on their experimental investigations proposed that the slip velocity is related to the tangential stress (known as the Beavers and Joseph (BJ) condition).

\[
\frac{dU}{dY} = \frac{\alpha^*}{\sqrt{K}} (U_s - Q)
\]

Here \(Us \) is the slip velocity, i.e., the local averaged tangential velocity just outside the porous medium, \(Q \) is the velocity inside the porous bed, \(K \) is the permeability of the porous medium and the slip coefficient \(\alpha^* \) is a dimensionless constant depending on the material properties of the interstices and the derivative \(\frac{dU}{dY} \) is taking positive when the normal to the boundary into the fluid medium is in a positive direction. \(\alpha^* \) varies from 0 to 5 for different porous material surfaces (Nield [35]). If \(\alpha^* = 0 \), it indicates a perfect slip condition and \(\alpha^* \rightarrow \infty \), we get no slip condition i.e., \(U_s = Q \). When \(K \rightarrow \infty \), the surface will be impermeable and the velocity of the fluid in the normal direction to the surface is zero.

![Figure 1 Schematic of the investigated problem](image)

Herein the velocity vector \(\mathbf{\mathbf{\Phi}} \) is taken in the form \(\mathbf{\mathbf{\Phi}} = (U(Y),0,0) \). Non-dimensional variables are introduced through: \(x = \frac{X}{h}, \ y = \frac{Y}{h}, \ u = \frac{U}{U_0}, \ p = \frac{P}{\rho U_0^2} \) where \(U_0 \) is the maximum velocity of the fluid in the channel.

Neglecting body forces and body couples from the equation (2), we get the following set of non-dimensional form of governing equations and boundary conditions corresponding to the flow in two zones.

The governing equations in the corresponding zones are:

Zone I: \((-1 \leq y \leq 0)\)

Zone II: \((0 \leq y \leq h)\)

Zone III: \((h \leq y \leq h+b)\)

Zone IV: \((h+b \leq y \leq b)\)
\(\frac{d^4 u_1}{dy^4} - s_1 \frac{d^2 u_1}{dy^2} = - \text{Re} \frac{dp}{dx}\)
\text{Zone II: (0 \leq y \leq 1)}

\(\frac{d^4 u_2}{dy^4} - s_2 \frac{d^2 u_2}{dy^2} = - \text{Re} \frac{dp}{dx}\)
\text{Zone III: (1 \leq y \leq (1+\delta))}

\(\frac{d^3 u_3}{dy^3} - \frac{1}{\text{Da} n_k} u_3 = \text{Re} \frac{d\rho}{dx}\)
\text{Zone IV: (y \leq -1)}

\(u_4 = -\text{Da} \text{Re} \frac{dp}{dx}\)

where \(\text{Re} = \frac{\rho_1 U_h}{\mu_1} h\) is the Reynolds number, \(\text{Da} = \frac{K_1}{h^2}\) is the Darcy number, \(\mu_2 = \frac{\mu_2}{\mu_1}\) is the viscosity ratio, \(\rho_2 = \frac{\rho_2}{\rho_1}\) is the density ratio, \(n_k = \frac{K_2}{K_1}\) is the permeability ratio, \(s_1 = \frac{\kappa}{h^2}\) is the couple stress parameter, \(i=1,2\) and \(\delta = \frac{H}{h}\).

Boundary and interface conditions:

A characteristic feature of the two-layer flow problem is the coupling across liquid-liquid interfaces. The liquid layers are mechanically coupled via transfer of momentum across the interfaces. Transfer of momentum results from the continuity of tangential velocity and a stress balance across the interface.

V. K. Stokes has proposed two types of boundary conditions (A) and (B) respectively and the vanishing of couple stresses on the boundary is referred to as condition (A) [28]. This condition is adopted here as this is appropriate in the present context.

At the lower porous boundary, couple stress vanishes: Beavers-Joseph (BJ) slip condition is taken at the lower porous bed i.e.,

\[\frac{du}{dy} = \frac{a}{\sqrt{K_1}} (u_s - u_p) \text{ where } u_p = -\text{Da} \text{Re} \frac{dp}{dx}\]
\text{(11)}

\(u(-1) = u_s\) and \(\frac{d^2 u_1}{dy^2} = 0\) (condition(A)) at \(y = -1\)
\text{(12)}

At the fluid interface velocity, vorticity, shear stress and couple stress are continuous:

\[u_{1(0^-)} = u_{2(0^+)}\]
\[u_{2(0^-)} = u_{3(0^+)}\]
\[\text{and } u_{3(0^-)} = u_{4(0^+)}\]
\text{(13)}

Where \(n_\eta = \frac{n_2}{n_1}\) is the couple stress coefficient ratio.

At the upper plate boundary, velocity and shear stress are continuous and couple stresses vanish due to no slip and hyper-stick conditions:

\[u_{2(1^+)} = u_{3(1^+)}\]
\[\text{and } u_{3(1^-)} = 0 \text{ (condition (A)) at } y = 1\]
\text{(14)}

No slip condition: \(u_s = 0\) at \(y = 1 + \delta\)
\text{(15)}

where \(u_s\) and \(u_p\) are respectively the dimensionless slip velocity and Darcy’s velocity.

SOLUTION OF THE PROBLEM

Velocity distributions:

Solving equations (7) and (10), we see that the velocity components in the zones as:

Zone I: (-1 \(\leq\) y \(\leq\) 0)

\[u_1(y) = c_{11} + c_{12} y + c_{13} \sinh c_{14} y + c_{14} \cosh c_{13} y + \frac{1}{2} \text{Re} B y^2\]
\text{(16)}

Zone II: (0 \(\leq\) y \(\leq\) 1)

\[u_2(y) = c_{21} + c_{22} y + c_{23} \cosh c_{24} y + c_{24} \sinh c_{23} y + \frac{1}{2} \frac{n}{n_\mu} \text{Re} B y^2\]
\text{(17)}

Zone III: (1 \(\leq\) y \(\leq\) 1+\(\delta\))

\[u_3(y) = c_{31} \cosh \left[\frac{1}{\sqrt{\text{Da} n_k}} y\right] + c_{32} \sinh \left[\frac{1}{\sqrt{\text{Da} n_k}} y\right] - \frac{n_\rho}{n_\mu} \text{Da} n_k \text{Re} B\]
\text{(18)}

Zone IV: (y \(\leq\) -1)

\[u_4(y) = -\text{Da} \text{Re} B\]
\text{(19)}

where \(B = \frac{dp}{dx}\) (constant). Here we take the solutions as: zone I: u = \(u_1(y)\), zone II: u = \(u_2(y)\), zone III: u = \(u_3(y)\) and zone IV: u = \(u_4(y)\). These involve 11 constants \(c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}\) and \(u_s\). These constants are found from the 11 boundary conditions given in (11) - (15) and these are obtained using Mathematica. As the expressions are cumbersome and they are not presented here.
Heat transfer analysis:

Once the velocity distributions are known, the temperature distributions for the two zones are determined by solving the energy equation (3) in the respective zones, subject to the appropriate boundary and interface conditions. Thermal coupling is achieved through continuity of temperature at the interface and the balance of heat flux across the interface. In the present problem, it is assumed that the two walls are maintained at constant temperatures T_I and T_{II} ($T_I < T_{II}$).

The governing equation for the temperature T_I of the conducting fluid in zone I is then given by

$$
k_I \frac{d^2 T_I}{dy^2} = - \left[\mu_I \left(\frac{dU_I}{dy} \right)^2 + \eta_1 \left(\frac{d^2 U_I}{dy^2} \right)^2 \right] = 0 \quad (20)$$

The governing equation for the temperature T_{II} of the conducting fluid in zone II is then given by

$$
k_2 \frac{d^2 T_{II}}{dy^2} = - \left[\mu_2 \left(\frac{dU_2}{dy} \right)^2 + \eta_2 \left(\frac{d^2 U_2}{dy^2} \right)^2 \right] = 0 \quad (21)$$

In order to non-dimensionalize the above equations (20)-(21), the following transformation is used for non-dimensional temperature θ: $\theta = \frac{T-T_I}{T_{II}-T_I}$.

The equations (20) and (21) are then reduced to the following form:

$$
\frac{d^2 \theta_1}{dy^2} + Br \left[\left(\frac{dU_1}{dy} \right)^2 + 1 \left(\frac{d^2 u_1}{dy^2} \right)^2 \right] = 0 \quad (22)
$$

$$
\frac{d^2 \theta_2}{dy^2} + \frac{Br n_k}{n_k} \left[\left(\frac{dU_2}{dy} \right)^2 + 1 \left(\frac{d^2 u_2}{dy^2} \right)^2 \right] = 0 \quad (23)
$$

where $Br = \frac{Ek Pr}{n_k}$ is the Brinkman number, $Pr=\frac{\mu c_p T_0}{k_1}$ is the Prandtl number, $Ek = \frac{U_0^2}{c_p T_0}$ is the Eckert number and $n_k = \frac{k_2}{k_1}$ is the thermal conductivity ratio.

In the non-dimensional form, the boundary conditions for temperature and heat flux at the walls and interface become:

(i) at the lower and upper plate boundaries the temperatures are respectively,

$$
\theta_1(y) = 0 \quad \text{and} \quad \theta_2(y) = 1 \quad \text{at} \quad y = -1 \quad \text{and} \quad y = 1 \quad (24)
$$

(ii) at the fluid interface temperature (θ) and heat flux (\dot{h}) are continuous:

$$
\theta_1(y) = \theta_2(y) \quad \text{and} \quad \frac{d\theta_1}{dy} = n_k \frac{d\theta_2}{dy} \quad \text{at} \quad y = 0 \quad (25)
$$

The solutions of equations (22) and (23) with boundary and interface conditions are solved analytically and they are lengthy not shown here. The solution involves 4 constants c_{15}, c_{16}, c_{25} and c_{26} and these are found from the 4 boundary conditions (equations (24) and (25)) and are obtained using Mathematica.

ENTROPY GENERATION ANALYSIS

Once the velocity and temperature fields have been obtained, one can determine the entropy generation distribution in a flow channel. This function, which characterizes the irreversible behavior of system, will be used to optimize (minimize) the entropy generation rate by evaluating parameters as well as fluid properties.

The convection process in a channel is inherently irreversible. Non-equilibrium conditions arise due to the exchange of energy and momentum within the fluid and at the solid boundaries. This causes the continuous entropy generation. One portion of this entropy production is due to heat transfer in the direction of finite temperature gradients. Another portion of the entropy production arises due to fluid friction irreversibility. The volumetric rate of entropy generation for incompressible couple stress fluid is given as follows

$$
(S_{i})_i = \frac{k}{T_0^2} (\nabla T)^2 + \frac{1}{T_0} \Phi
$$

where Φ is the viscous dissipation function.

The volumetric rate of entropy generation reduces to

$$
(S_{i})_i = \frac{k_1}{T_0^2} \left(\frac{\partial T_1}{\partial y} \right)^2 + \frac{\mu_1}{T_0} \left(\frac{\partial U_1}{\partial y} \right)^2 + \frac{\eta_1}{T_0} \left(\frac{\partial^2 U_1}{\partial y^2} \right)^2 \quad (26)
$$

where the value of i can be either 1 or 2 that represents fluid I or fluid II, respectively. On the right hand side of the above equation, the first term is the entropy generation due to heat conduction and the remaining two terms represent the entropy generation due to the viscous dissipation function Φ for an incompressible couple stress fluid.

The characteristic entropy generation rate S_{GC} is defined as,

$$
S_{GC} = \left[\frac{(\bar{h})_i}{k_i T_0} \right]^2 \left[\frac{k_i (\Delta T)^2}{h^2 T_o^2} \right] \quad (27)
$$

In the above equation, \bar{h} is the heat flux in zone I, T_o is the average, characteristic, absolute reference temperature of the medium, $\Delta T = T_{II} - T_I$ and h is the half of transverse distance of the channel.

The dimensionless form of entropy generation is the entropy generation number (Ns) is the ratio of the volumetric entropy generation rate ($S_i)_i$ to a characteristics transfer rate S_{GC}.

$$
N_{Si} = \frac{(S_i)_i}{S_{GC}} \quad (i=1,2)
$$

The entropy generation number for each fluid with dimensionless variables are given by
we get the case of \(\phi \rightarrow 0 \). On the other hand, \(\text{Be} < 0.5 \) refers to the entropy generation effects due to the fluid friction. This corresponds to \(\phi \rightarrow 1 \). When \(\text{Be} = 0.5 \), the contributions of the heat transfer and fluid friction in the entropy generation are equal, and this corresponds to the case of \(\phi = 1 \).

RESULTS AND DISCUSSION

The closed form solutions for the flow of two immiscible couple stress fluids between two porous beds are obtained and reported in the previous section. Numerical work is undertaken and the variations of velocity, temperature, entropy generation rate and Bejan number for different values of parameters are shown through figures.

Flow Field:

![Flow Field](image)

Figure 2 Effect couple stress parameter \(s_2 \) on velocity \(u \) for \(\delta = 0.2 \), \(\alpha^* = 0.6 \), \(\text{Be} = 0.8 \), \(\text{Da} = 0.08 \), \(n_1 = 0.9 \), \(n_2 = 0.9 \), \(n_5 = 1.2 \), \(n_7 = 0.9 \), \(\text{Re} = 2 \), \(s_2 = 1.5 \).

![Flow Field](image)

Figure 3 Effect of slip parameter \(\alpha^* \) on velocity \(u \) for \(\delta = 0.2 \), \(\text{Be} = 0.2 \), \(\text{Da} = 0.08 \), \(n_1 = 0.9 \), \(n_2 = 0.9 \), \(n_5 = 1.2 \), \(n_7 = 0.9 \), \(\text{Re} = 2 \), \(s_2 = 1.2 \), \(s_1 = 1.2 \).

The influence of the couple stress parameter \(s_2 \) on the velocity field is shown in Figure 2. It is seen that as \(s_2 \) increases, the velocity increases. As \(s_2 \rightarrow \infty \) we get the case of Newtonian fluid. It can be concluded that the velocity of viscous fluid is more than that of couple stress fluid. Thus, the presence of couple stresses in the fluid increases the velocity. Figure 3 depicts the effects of the slip parameter \(\alpha^* \) on the velocity field. As \(\alpha^* \) increases, the velocity decreases. This change in velocity is seen to be more near the lower porous bed where Darcy law is applicable. The effect of the Darcy number
Da on the velocity field is shown in Figure 4. It is seen that as Da increases, the velocity increases in all regions of the channel.

Figure 4 Effect of Darcy number Da on velocity \(u \) for \(\delta=0.2, \alpha^e=0.5, B=-0.1, n_p=0.8, n_k=1.2, n_\rho=0.9, Re=2, s_1=s_2=2 \).

Thermal field and Heat Transfer:

Figure 5 displays the effect of the couple stress parameter \(s_2 \) on the temperature field. As the couple stress parameter \(s_2 \) increases, the temperature increases. Figure 6 presents the effects of slip parameter \(\alpha^e \) on the temperature distribution. As the slip parameter \(\alpha^e \) increases, temperature decreases. The effect of an increase in Darcy parameter Da on temperature field is found to increase it in both zones of the channel as shown in Figure 7. Figure 8 indicates that the temperature increases with increasing the Brinkman number Br. This may be due to viscous dissipation.

Figure 5 Effect of couple stress parameter \(s_2 \) on temperature \(\theta \) for \(\delta=0.2, \alpha^e=0.5, B=-0.9, Br=0.1, Da=0.02, n_p=0.9, n_k=0.9, n_\rho=0.9, n_{g2015}=0.8, n_K=1.2, n_\mu=0.9, Re=2, s_1=s_2=2 \).

Figure 6 Effect of slip parameter \(\alpha^e \) on temperature \(\theta \) for \(\delta=0.2, B=-0.3, Br=0.1, Da=0.08, n_p=0.9, n_\rho=0.7, n_k=0.9, n_{g2015}=1.2, n_\mu=0.9, Re=2, s_1=s_2=3 \).

Figure 7 Effect of Darcy number Da on temperature \(\theta \) for \(\delta=0.2, \alpha^e=0.1, B=-0.1, Br=0.1, n_p=0.9, n_\rho=0.9, n_k=1.2, n_{g2015}=0.8, n_\mu=0.9, Re=1.2, s_1=s_2=2 \).

Figure 8 Effect of Brinkman number Br on temperature \(\theta \) for \(\delta=0.2, \alpha^e=0.8, B=-0.3, Da=0.08, n_p=0.8, n_{g2015}=0.8, n_\mu=0.8, Re=1.2, s_1=s_2=3 \).

Figure 9 Effect of couple stress parameter \(s_2 \) on Entropy generation number \(N_s \) for \(\delta=0.2, \alpha^e=2, B=-0.1, Br=1.5, Da=0.01, n_p=0.9, n_\rho=0.9, n_k=1.0, n_{g2015}=0.9, n_\mu=0.9, Re=5, s_1=s_2=5, \Omega=1 \).
Figure 10 Effect of couple stress parameter s_2 on Bejan number Be for $\delta=0.2$, $\alpha^*=0.1$, $B=0.1$, $Br=0.1$, $Da=0.01$, $n_\rho=0.9$, $n_\gamma=g_2015=0.9$, $n_k=1$, $n_K=0.9$, $s_1=2.5$, $s_2=2.5$, $\Omega=1$.

Figure 11 Effect of Reynolds number Re on Bejan number Be for $\delta=0.2$, $\alpha^*=0.1$, $B=0.1$, $Br=0.1$, $Da=0.01$, $n_\rho=0.9$, $n_\gamma=g_2015=0.9$, $n_k=1$, $n_K=0.9$, $s_1=2.5$, $s_2=2.5$, $\Omega=1$.

Figure 12 Effect of Reynolds number Re on Bejan number Be for $\delta=0.2$, $\alpha^*=0.1$, $B=0.1$, $Br=0.9$, $Da=0.01$, $n_\rho=0.6$, $n_\gamma=g_2015=0.6$, $n_k=0.8$, $n_K=0.8$, $s_1=2.5$, $s_2=2.5$, $\Omega=1$.

Entropy generation and Heat transfer irreversibility:

Figure 9 demonstrates the effect of couple stress parameter s_2 on the entropy generation number Ns. As the couple stress parameter increases, the entropy generation near the plates increases more rapidly in the fluid for the corresponding parameter. Ns is more on values near the plates in zone-I, than in the zone-II. This may be due to the more viscous nature of the fluid in zone-I.

Figure 10 illustrates the effect of couple stress parameter s_2 on Bejan number Be. As s_2 increases Bejan number decreases. A slight increase in couple stress parameter s_2, increases Bejan number Be huge at the interface and is nearly zero near the plates. Hence we conclude that near the plates the entropy generation rate due to conduction in the transverse direction is almost zero and entire entropy generation rate is due to fluid frictions only. From the limiting case of $s_2\rightarrow\infty$, we
see that for viscous fluids, values of Be are less than the values of Be in couple stress fluids. With this we conclude that energy dissipation is more for viscous fluids than for couple stress fluids.

Figure 11 shows the effect of Reynolds number Re on the entropy generation number Ns. The entropy generation near the plates increases more rapidly in the fluid I than in the fluid II. This is due to the fact that in zone-I fluid is more viscous. Figure 12 shows the effect of Reynolds number Re on Bejan number Be. As Re increases, Be decreases. The variation of Be near the plates is more than the variation at the interface.

Figure 13 predicts the entropy generation for different values of slip parameter \(\alpha^* \). As the slip parameter \(\alpha^* \) is increasing, the entropy generation is increasing in zone-I only where the slip condition is applied. \(\alpha^* \to \infty \) indicates no-slip condition, velocity decreases as \(\alpha^* \) increases. The same is observed in Figure 3. Hence when friction increases, entropy generation rate increases. Figure 14 describes the Bejan number Be profiles for different values of slip parameter. As the slip parameter \(\alpha^* \) increases, the Bejan number decreases. This is in good agreement with the previous observation in Figure 13 for entropy generation rate.

CONCLUSIONS

The first and second laws (of thermodynamics) aspects of fluid flow and heat transfer in a channel of two immiscible couple stress fluids between two porous beds is investigated analytically. The velocity and temperature profiles are found analytically. The exergy loss distribution is studied in terms of the second law of thermodynamics. The effect of viscous dissipation parameter \((Br/\Omega) \) on the entropy generation number (Ns) and Bejan number (Be) are studied analytically. The computational results are presented through figures. The following observations are made from the above analysis:

1. The presence of couple stresses in the fluid increases the velocity and temperature.
2. Viscous dissipation parameter has a significant effect on the entropy generation rate.
3. The values of Ns near the plates are more than they are at the interface, indicating that friction due to surface on the fluids increases entropy generation rate.
4. The values of Ns in zone-I are more than they are in the zone-II near the plates. This indicates the more is the viscosity of the fluid, the more is the entropy generation rate.
5. The Bejan number is maximum and irreversibility ratio ϕ is minimum at the interface of the channel. This indicates that the amount of exergy (available energy) is maximum and irreversibility is minimum at the interface.

6. The maximum entropy generation rate shifts to each plate as viscous effects become more important since the plates act as strong irreversibility producers due to more fluid frictions in plate regions.

7. As the slip parameter increases, entropy generation rate increases.

REFERENCES

