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ABSTRACT 

In this paper a process of heat and momentum transfer in 
the in-line cross flow heat exchanger is investigated on the base 
of numerical solution of Navier-Stokes equations and energy 
conservation equation.  

Obtaining numerical solutions for apparatus of this type has 
a number of difficulties related primarily to the construction of 
orthogonal difference grid. Therefore, the vast number of 
papers is related to the analysis of fluid flow and heat transfer 
around a cylindrical tube or its symmetric part rather than the 
entire tube bank. The present work deals with the investigation 
of heat and momentum transfer for the entire tube bank of heat 
exchanger. The numerical method used to solve the problem is 
based on the difference grid which is orthogonal in the entire 
region. 

The method consists in sharing a general Cartesian 
coordinate system and a local cylindrical coordinate system 
near each of the cylindrical channel. An exchange of the 
information between the coordinate systems is carried out in the 
region of low velocity and temperature gradients.  

It allows, on the one hand, to obtain a strict orthogonality on 
the surface of cylindrical channels and, on the other hand, to 
use a smaller spatial step in the field of large velocity and 
temperature gradients at the same time. The results are 
discussed in terms of dependences of Nusselt number on 
Reynolds number. 

 
INTRODUCTION 

The research deals with the problem of laminar flow of the 
incompressible Newtonian liquid in a laminar stream past 
cylinder shaped tube banks. The simulation of temperature and 
velocity fields was carried out for the flow past the first three 
rows of the heat exchanger and also for the so- called "middle" 
cylinder, i.e. for a cylindrical channel located behind a great 
number of cylindrical tubes. In fact, the analysis of 
hydrodynamics and heat exchange was carried out for a 
multibond area consisting of one, two, three cylinders which 
are placed one after another in a straight line with the same 
step.  

 

NOMENCLATURE 
 

p [Pa]  pressure  
x [m] Cartesian axis direction  
y [m] Cartesian axis direction  
Ux, 

Ur, 
Uφ, 
Uy 

[m/s] components of velocity  

 [m2/s] current function 

 [kg/m3] density 

  dimensionless the time coordinate 

t  [К] time coordinate 

 [m2/s] kinematic viscosity coefficient 

a [m2/s] thermal diffusivity 

 [Vt/К·m2] heat transfer coefficient 

 [1/s2] vorticity 

T [K] temperature 
 

Pr  Number Prandtl 

Re  Number Reynolds 

Nu  Nusselt number 

 
 NUMERICAL METHOD 

To solve the problem numerically Navier-Stokes equations 
for the impulse transfer and the heat transfer equations are 
applied. The method of solution involves the use of Cartesian 
coordinate system and the polar one. For Cartesian coordinate 
system the non-dimensivnal equations are given in the form: 
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In the polar coordinate system we have 
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To solve the flat and axially symmetric problems the most 
widely known method of solving Navier-Stokes equations for 
an incompressible fluid is the way of applying the alternating 
values of the eddy vortex – the current function. We will use 
the determination of the vorticity: 
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We introduce the current function  , such that 
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  .                                  (4) 
By substituting the velocity components into the formula to 

determine the vorticity one obtains Poisson equation for the 
current function: 
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2 2x y

  
  

 
.                                                  (5) 

Then it is necessary to obtain the equation for the vorticity 
transfer. For this purpose the equation for the speed component 

transfer xU  should be differencated with respect to y, and the 

yU  components - with respect to x. By subtracting the second 

equation from the first one and converting the obtained 
expression by means of the continuity equation and by 
determining the vorticity (3), one obtains the equation for the 

vorticity transfer. In this way the system of the differential 
equations (1) is transfered into the vorticity transfer equations, 
Poisson equation for the function of the current and the 
equation of heat transfer, as a result it has the following form: 
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In the polar coordinate system the vorticity equation has the 
following form: 
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The current function  is determined by the following 

relations 
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It should be noted that the choice of the sign for the 
components of velocity Ur, Uφ (in the formula (8)) should 
correspond to the sign chosen for the velocity components Ux, 
Uy. One can obtain Poisson equation for the current function in 
the polar coordinates in the same way.  
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Thus, by analogy with Cartesian coordinate system, one can 
obtain the system of equations in terms of the variables the 
vorticity - the current function  
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The equation system (6) describing the hydrodynamics and 
the heat transfer in Cartesian coordinate system is applied to 
solve the problem under consideration within the whole range 
in the heat exchanger excluding the local areas around the 
cylindrical tubes for which the equation system (10) was used. 
The calculated domain with two rows of tubes is presented in 
figure 1 to characterise the boundary conditions and those of 
the information exchange between the coordinate system. The 
equation system (10) is solved in the vicinity of every cylinder 
in the polar coordinate system (in figure 1 it is given for one of 
the cylinders in the area between С1С2 D1D2 circles). Cartesian 
coordinate system is a principal one where all the local 
coordinate systems are involved. Moreover, for convenience of 
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calculations the coordinate lines of Cartesian coordinate system 
in the vicinity of the cylindrical tubes are chosen in the form as 
rectangles and as a result the calculation region in Cartesian 
coordinate system is turned into a rectangle 
A1B1B2B3B4A4A3A2 in figure 1.  

      Figure 1 The calculated geometrical region. 

The peculiarity of the proposed method is the information 
transmission from one coordinate system to another. The 
exchange by the computed information occurs  by means of a 
linear interpolation in a certain geometric area where there 
exists a solution both in Cartesian system as well as in the polar 
one. The way to exchange is shown in detail in figure 1. In this 
way the transmission of the data from Cartesian coordinate 
system to polar one is realized along the circumference С1С2, 
which is disposed in the field of solving the system (6) in 
Cartesian coordinate system (the domain 
A1A2A3A4В4В3В2В1A1). Respectively, the information from the 
polar coordinate system to Cartesian one is transferred along 
the B1B2B3B4 line to the domains of computation of the polar 
coordinate system which is disposed between the circles С1С2 
and D1D2. On the boundaries the values of the , ,  variables 
are transmitted from one coordinate system to another. As the 
numerical computations of the equation systems (6) and (10) 
with the second order of precision show that the information 
transmission by means of the linear interpolation is quite 
sufficient. One should also point out that the proposed method 
of solving makes it possible to dispose the boundaries of 
transition from one coordinate system to another in the regions 
of relatively small temperature gradients and speeds, which, in 
turn, raises the accuracy of determining magnitudes and 
essentially simplifies the formulation of the boundary 
conditions. The choice of a denser difference grid in the polar 
coordinate system makes it possible to obtain a more accurate 
solutions in the boundary layer immediately near the 
streamlined body. In this case the grid steps in Cartesian 
coordinate system should be taken considerably longer and, on 
the whole, this does not influence the accuracy of solution and 
decreases the time for the solution the problem. 

The equations of the vorticity and heat transfer are solved 
by the implicit method of the alternating directions [2] both for 
Cartesian and polar coordinate systems. The scheme of this 
method to solve the equations of vorticity and energy transfer 
are written in the form of two semi-steps along the time 
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here 
x  and 

y  are accordingly the operators of the first and 

second derivatives along the coordinates x and y. A non-
conservative central-difference scheme was used for the 
convective terms in the transfer equations at small Reynolds 
numbers ( a network number Re < 1 ) and the conservative 
exponential scheme [3] was used at large Reynolds numbers, 
where for this case the transfer equations (6) and (10) were 
written in a conservative form. Poisson equation for the current 
function was solved by an iterative method of the sequential 
upper relaxation [1] which essential accelerates the process of 
solving the problem, the latter consisting in recalculation of the 
new values , using the  formula 

 1 1
, 1 , 1 ,1n n n

i j i j i j        .                              (12) 

In the calculations the relaxation coefficient 1 varied in 
value from 1.6 to 1.8.  

BOUNDARY CONDITIONS 
A special feature of defining the boundary conditions is 

their definition of the polar coordinate system on the surface of 
cylindrical channels as well as the definition of the other 
boundary conditions in Cartesian coordinate system. In 
particular, the current function has a constant value on the 
symmetry axis A2A3 and A1A4 =0, and for the temperature the 
condition is 0 y/ . The value of speed and temperature 

was taken to be a consistent at the entrance to the heat 
exchanger А1А2 (figure 1). On the exit boundary from the heat 
exchanger А3А4 (figure 1) the “soft” boundary conditions were 
used for all alternating values. On the surface of the cylinder 
circumference (the circle D1D2  figure 1), a physical condition 
of adhesion to the wall and non-penetration of a liquid on the 
wall were applied, the latter is transformed in the polar 
coordinate system into the condition 

 2 2/w w
r    .                                                  (13) 

By factorization of the current function into Taylor series 
this condition may be brought to a famous difference formula 
of Thom first order or Woods second order accuracy [1] which 
are of the form: 
    1 1

12 2

2 3 1
, .

2
 



 
     

 
w w w w

w w wr r

    (14) 

The temperature on the surface of the cylinders was 
supposed be constant and to be equal to unity in a 
dimensionless form. While calculating the input conditions for 
the "middle" cylinder the speed and temperature profiles 
obtained from the “soft” conditions at the exit were used for the 
speed and temperature profiles.  
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PROCESSING OF RESULTS 
To check the reliability of the obtained results the 

operations were performed, they dealt with the stream line flow 
of a single heated cylinder having a constant temperature by the 
endless stream. Figure 2 shows the temperature distribution 
while the stream of a single cylinder for numbers Re = 10, 100. 

Figure 1 The distribution of the local Nu distribution along 
 the surface of cylinders in an in-line heat exchanger. 

 
Figure 3 and 4 show the temperature distribution for the 

first pair cylinders of and the three following ones for different 
Re numbers. The calculated values of the average number Nu 
were compared in accordance with the criterion Re with the 
data taken from paper [4] (figure 5). One can see from the 
figures that a good agreement of the results has been achieved 

 
Figure 3 The temperature distribution in a laminar  

boundary layer on longitudinally 
streamlined plate 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 The speed profile in a laminar boundary layer  

on longitudinally stream lined plate  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 5 The dependence of the average Nu on Re 

 
While analyzing the first three cylinders and the "middle" 

ones of the in-line heat exchanger for a fixed number Re 
(Re=10) (figure 6) the difference in the Nu distribution was 
found out along the surface. The second and the following 
cylinders get into the vortex region formed behind the front of 
standing bodies. It is natural that the conditions of flowing over 
this region are worse than in the front part of a single cylinder, 
and, therefore, the maximum value of the local heat removal 
coefficient is removed into the depth along the flow current. 
One can see on the figure that difference between the second 
and the third cylinder begins to decrease, therefore the 
differences between the third cylinder and the next one will be 
minimum. This fact is confirmed by the curve for the “middle” 
cylinder. 
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Figure 6 The distribution of the local number Nu  
the surface of the first cylinder in  

   the in-line heat exchanger at 
 

CONCLUSION  
 

This paper presents the calculation method for the heat 
exchanger of the in-line type for the laminar flow regime. The 
method allows one to compute the heat exchangers with a 
different profile type of the cross-sections of the canals in a 
strictly orthogonal coordinate system. On the basis of this 
method the algorithm of the numerical solution was developed 
and the analysis of the results concerning the influence of 
different factors on the heat exchange process was carried out. 
Further, the authors intend to give a generalization of the 
proposed method on the basis of the turbulent flow regime in 
the heat exchangers of the in-line and staggered type. 
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