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ABSTRACT 

 

We present here the Navier-Stokes equations using the 

stream function-vorticity formulation. In order to solve these 

equations we have used a simple numerical method based on a 

fixed point iterative process [1] to solve a nonlinear elliptic 

system resulting after time discretization. For this kind of 

problems efficient solvers like Fishpack [2] may be used. 

Results are presented for two problems: the Taylor vortex 

problem and the driven cavity problem. We present results, for 

the driven cavity problem for Reynolds numbers Re=3200 and 

Re=7500, and for the Taylor vortex problem with the same 
Reynolds numbers. With respect to the driven cavity problem, 

results agree very well with those reported in the literature [4 - 

7]. For the Taylor vortex problem [3], since the exact solution 

is known, the relative error was calculated and results were 

very good. Results are compared with those obtained for the 

same problems with other formulations [3 - 8]. 

 

INTRODUCTION 
 

In this work, the Navier-Stokes equations in stream 

function-vorticity formulation are numerically solved. Results 
are obtained using a numerical procedure based on a fixed point 

iterative process [1] to solve the nonlinear elliptic system that 

results once a convenient second order time discretization is 

made. The iterative process leads us to the solution of an 

uncoupled, well-conditioned, symmetric linear elliptic problem. 

Fishpack [2] is used to solve this symmetric linear elliptic 

problem. Fishpack discretizes the elliptic equation which is 

solved using a generalized cyclic reduction algorithm. Second 

or fourth order approximations may be used. In particular we 

used a second order approximation. 

MATHEMATICAL MODEL 
 

Let  D = Ω × (0, 𝑇), 𝑇 > 0, Ω ⊂ 𝑅2, be the region of the 
flow of an unsteady isothermal incompressible fluid and Г its 

boundary. This kind of flow is governed by the non-

dimensional system of equations in D, defined by: 

 

𝒖t −
1

Re
∇2𝒖+ ∇p + 𝒖 ∙ ∇𝒖 = f ,      (1) 

 

∇ ∙ 𝒖 = 0.     (2) 

 

These are the Navier-Stokes equations in primitive 

variables, where 𝒖 is the velocity, p is the pressure and the 

dimensionless parameter Re is the Reynolds number. This 

system must be supplemented with appropriate initial and 

boundary conditions: 𝒖( , 0) =   ( ) in Ω and 𝒖 =   on Г, 

respectively. In order to avoid the pressure variable and the 

incompressibility condition (2), the stream function-vorticity 

formulation is used here.  

The stream function   is defined by:  

 

 =
  

  
 ,      = −

  

  
,   (3) 

 

where 𝒖 = ( ,  ) with   and   the velocities in x and y-axis, 

respectively. It is easy to verify that (𝒖 ∙ ∇) = 0. The vorticity 

is defined as the curl of the velocity field, and in 2D it is 

defined as: 
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      =
  

  
−
  

  
.    (4) 

 

    So, finally, we get the following coupled system of 

equations: 
 

      −
1

  
∇2 +𝒖 ∙ ∇ = 0 ,   (5) 

    ∇2  = −  .    (6) 

 
This is the system that we are going to solve. For system 

(5)-(6) whenever the velocity is given on Г, there are two 

boundary conditions for   and none for ω. Glowinski and 

Pironneau [15] (see also [16]) derived nonhomogeneous 

Dirichlet boundary conditions for ω from the condition on the 

normal derivative of    . We will discuss later how we get the 

boundary conditions for the two problems shown. 

NUMERICAL METHOD 
 

The time derivative is approximated by the second-order 
scheme 

 

  ( , ( +  )  )  
3     4       

2  
,   (7) 

 

where    ,   Ω and    0 is the time step. 
    At each time level the following nonlinear system defined in 

Ω is obtained: 

 

    ∇2  = −  ,       =    , (8a) 
 

     −
1

  
∇2 +𝒖 ∙ ∇ =     ,     =    , (8b) 

 

 where  =
3

2  
, and   =

4       

2  
. At the first time step, to 

obtain  1 the following discretization is used 

  ( ,   )  
     

  
    

with     =
  

  
  and  =

1

  
. Then equation (6) can be used to 

obtain  1. 
   The equation (8b) is a transport type equation; a fixed point 
iterative process is applied to solve it. Denoting 

 

    𝑅 ( , ) =   −
1

  
∇2 +𝒖 ∙ ∇ −   , in Ω, (9) 

 

system (8a)-(8b) is equivalent to 

 

    ∇2  = −  ,       =    , (10a) 
 

     𝑅 ( ,  ) = 0,       =    . (10b) 

 

  So then (10a)-(10b), at time level n+1, is solved via the 

following iterative process [1]: 

 

   Given   , =   , and   , =   , solve “until convergence” 
in ω: 

 

    ∇2   ,  1 = −  ,  ,   in Ω,      ,  1  =    
  1, (11a) 

 

(  −
1

  
∇2)  ,  1 =

 (  −
1

  
∇2)  , −  𝑅 ( 

 , ,   ,  1),     in Ω,  (11b) 

 

     ,  1  =    
 , 

,  ρ>0; 

 

and then take (   1,    1) = (  ,  1,   ,  1). 
   The function    

  1 is a function derived from   at time 

( +  )  . By “until convergence” we mean until the following 

criterion is satisfied: 
‖  ,  1 −   , ‖     .    

   In our experience, the best choice for ρ is ρ=0.9 in order to 

get faster convergence, since for ρ<0.9 more iterations have to 
be done. 

   In order to handle high Reynolds numbers we use Ikeda’s 

upwind scheme [14], which is a second order scheme. To 

approximate − ∇2 + 𝒖 ∙ ∇  we use: 
 

   ( ,
 

 
  )
−   1, +    , −    1, 

 2
 

+   ( ,
 

 
  )
−  ,  1 +    ,  −  ,  1

 2
 

+ 
   1, +   1, 

  
+  
  ,  1 +  ,  1

  
, 

 with  =
1

  
 and 

 

  =
  

  
 
  , + +  , − 

  
 ,      = −

  

  
 −

  + , +  − , 

  
. 

NUMERICAL EXPERIMENTS AND RESULTS 
 

   Two problems are solved in this work, the first one is the un-

regularized driven cavity problem, and the second one is the 

Taylor Vortex problem. 

   With respect to the first one Ω = (0, ) × (0, ). The top wall 

is moving with a nonzero velocity given by 𝒖 = ( ,0) and for 

the other three walls the velocity is given by 𝒖 = (0,0), so 

using (3),   is constant on solid and fixed walls; at the moving 

wall  =  , a constant function for   is also obtained. 

Following Goyon [17]  = 0 is chosen on Г. As already 

mentioned,   is overdetermined on the boundary (
  

  
   is also 

known) and no boundary condition is given for  . Several 
alternatives have been proposed, we follow the alternative 

given by Goyon [17]. A translation of the boundary condition 

in terms of the velocity (primitive variable) has to be used by 

Taylor expansion of equation (6). By Taylor expansion of (6) 

on the boundary for the driven cavity the following boundary 

conditions for ω are obtained: 

 

 (0,  ,  ) = −
1

2  
 [  (  ,  ,  ) −  (   ,  ,  )] +  (  

2), 

 

 ( ,  ,  ) = −
1

2  
 [  ( −   ,  ,  ) −  ( ,  ,  )] +  (  

2),  
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 ( , 0,  ) = −
1

2  
 [  ( ,   ,  ) −  ( ,    ,  )] +  (  

2), 

 ( ,  ,  ) = −
1

2  
 [  ( ,  −   ,  ) −  ( ,  −   ,  )] −

3

  
+

 (  
2), 

 (12) 

with   ,    being space steps. 

   We report results for Re=3200 and Re=7500. Results are 

reported through the iso-vorticity contours and streamlines. In 

Figures 1 and 2,  we show the streamlines and the isocontours 

for the vorticity for Re=3200, respectively. In this case, the 

steady state is captured. Then, in Figures 3 and 4, we show the 

streamlines and isocontours for the vorticity with Re=7500. We 

have here a time-dependent flow.  

 
Figure 1 Streamlines for Re=3200, Δt=0.01,  t=100 and 

h=1/64. 

 
Figure 2 Isocontours for the vorticity with Re=3200, Δt=0.01, 

t=100 and h=1/64. 

 

 
Figure 3 Streamlines for Re=7500, Δt=0.01, t=200 and 

h=1/128. 

 

 
Figure 4 Isocontours for the vorticity with Re=7500, Δt=0.01, 

t=200 and h=1/128. 

 

For the Taylor Vortex problem we show results for the same 
values of the Reynolds number, Re=3200 and Re=7500,  

 =       , and t=100. We show the graph in 3D of the stream 

function and vorticity in order to see the difference in scales at 

different times and for the two afore mentioned Reynolds 

numbers. In both cases we show the relative error for the 

stream function, since we know the exact solution. In this case 

there is no steady state.  

   For this problem we use Ω = [0,  ] × [0,  ]. The exact 

solution, in this case, is known, and it is given by the following 

equations: 
 

  ( ,  ,  ) = −   ( )    ( )  
   

  , 

(13) 

  ( ,  ,  ) =    ( )    ( ) 
 2 
  . 

 

In the primitive variable formulation we have, as initial 

conditions: 

  ( ,  , 0) = −   ( )    ( ), 
(14) 

 

  ( ,  , 0) =    ( )    ( ). 
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To obtain the initial conditions in the stream function-

vorticity formulation we use equations (14):  

 

               =   ,     = −  ,     =   −   ,                    (  ) 
 

  =          ( ,  , 0) =    ( )   ( ) +  1( ), 

(   ) 
 = −      ( ,  , 0) =    ( )   ( ) +  2( ), 
 

where  1 and   2 are taken as zero. 

 

 

 =   −   , 

 

  = −   ( )    ( ) ,    =    ( )    ( ),        (   ) 
       

 ( ,  , 0) = −    ( )    ( ). 
 

For the boundary conditions in the primitive variable 

formulation we have: 

 

    (0,  ,  ) = −   ( ) 
   

   ,     (  ,  ,  ) = −   ( ) 
   

  , 

 

    (0,  ,  ) = 0 ,        (  ,  ,  ) = 0, 
 

for   0. We also have: 
 

        ( , 0,  ) = 0 ,       ( ,   ,  ) = 0, 
 

        ( , 0,  ) =    ( ) 
   

    ,    ( ,   ,  ) =    ( ) 
   

  , 

 

for   0. 
 

   Now we obtain the boundary conditions for the Taylor vortex 

problem in the stream function-vorticity formulation: 

 
 

   =  , 

  

   (0,  ,  ) = −   ( ) 
 2 
        (0,  ,  ) =  

−∫   ( ) 
   

    =    ( ) 
   

  +  1( ), 
                            

  (  ,  ,  ) = −   ( ) 
 2 
        (  ,  ,  ) = 

−∫   ( ) 
 2 
    =    ( ) 

 2 
  +  2( ). 

 

Where if  1 and  2 are taken as zero, then  (0,  ,  ) =
 (  ,  ,  ), for   0. 
 

 

 

 

 

 

   = − , 
 

  ( , 0,  ) = −   ( ) 
 2 
      ( , 0,  )

= −∫   ( ) 
 2 
    +  1( ), 

 

 ( , 0,  ) =    ( ) 
   

  +  1( ),          (16a) 

 

  ( ,   ,  ) = −   ( ) 
 2 
       ( ,   ,  )

= −∫   ( ) 
 2 
    +  2( ), 

 

 ( ,   ,  ) =    ( ) 
   

  +  2( ). 
 

 

     If we take  1( ) =  2( ) = 0, then  ( , 0,  ) =  ( ,   ,  ). 
  is periodic for    0. 

 

The boundary conditions for the vorticity are obtained from 

equation (14): 
 

 (0,  ,  ) =     ( ) 
   

  , 

 

 (  ,  ,  ) =     ( ) 
 2 
  , 

  (   ) 
 

 ( , 0,  ) =     ( ) 
   

  , 

 

 ( ,   ,  ) =     ( ) 
 2 
  . 

 

 

    In Figures 5 and 6 we show the streamlines and the 

isocontours for the vorticity for Re=3200, h=1/128 and t=100. 

In Figures 7 and 8 we show the graphs of the stream function 

and the vorticity for Re=3200 and t=100. As we have said, we 

show the graphs in 3D in order to see the difference in scales 

for the two different values of the Reynolds numbers,  namely 

3200 and 7500. 
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Figure 5 Streamlines for Re=3200, h=1/128  and t=100 

 

 

 
Figure 6 Isocontours for the vorticity for Re=3200, h=1/128  

and t=100 

 

 

 
Figure 7 Stream function for Re=3200 and t=100. 

 
 

 
Figure 8 Vorticity function for Re=3200 and t=100. 

 

 
Figure 9 Stream function for Re=7500 and t=100 
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Figure 10 Vorticity function for Re=7500 and t=100 

 

 

   Next we show the minimum and the maximum of the stream 

function for the Taylor Vortex problem. In the first table, we 

show the minimum and the maximum for the exact solution for 

t=100 with Re=3200 and Re = 7500, and in the second table, 

the minimum and the maximum for the numerical solution 
obtained for the same values of Re and t. 

   In Table 3 we show the relative error obtained for the two 

values of Re mentioned and t=100. This error is obtained as the 

maximum of the differences between the exact solution and the 

numerical solution, divided by the value of the exact solution. 

   

 

Re. Time Stream function 

  Min. Max. 

3200 1000 -0.5352614285045 0.5352614285189 
7500 1000 -0.7659283383439 0.7659283383646 

 

Table 1 Minimum and maximum values of the stream function 
(exact solution). 

 

 

 

Re. Time Stream function 

  Min. Max. 

3200 1000 -0.5352614285101 0.5352614331597 
7500 1000 -0.7659283383473 0.7659283450006 

 

Table 2 Minimum and maximum values of the stream function 

(numerical solution). 

 

 

 

 
 

 

 

Re. Time Relative error 

3200 100 3.167780632146758e-008 

7500 100 3.167314295814883e-008 
 

Table 3 Relative error. 

 

CONCLUSIONS 
 

   We are presenting an efficient numerical scheme for solving 

the non-steady Navier-Stokes equations in the stream function-

vorticity formulation. Two problems were solved: the driven 

cavity problem and the Taylor vortex problem. For the driven 
cavity problem results were compared with those reported in 

the literature [4 - 7], [9 - 11], where other formulations of the 

Navier-Stokes equations were used. Results agree very well 

with those reported. As the Reynolds number increases, more 

primary and secondary vortexes appear and smaller values of h 

have to be used, numerically by stability matters and physically 

to capture the fast dynamics of the flow [12]. In Figures 2 and 4 

oscillations occur for the vorticity and in order to avoid this 

problem smaller values of h should be used. 

   For the Taylor Vortex problem in [8] the velocity-vorticity 

formulation was used and results agree very well. In this case 

we were able to compare with the exact solution and the error, 
as shown in Table 3, was very small.  

   We are working now on reducing computing time. In the 

fixed point iterative process the coefficient matrix for each 

system solved is matrix A (symmetric and positive definite) 

resulting from the discretization of the laplacian. In a future 

work we will work with both matrixes, A and B, where matrix 

B results from the discretization of the advective term [13]. 
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