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ABSTRACT 

When system sizes shrink to nanoscales as in the case of 

electronic and optical devices, heat transfer laws are altered due 

to the modification of the basic physical mechanisms at play, 

especially in the fields of conduction. We expose recent 

advances in the understanding of heat conduction in semi-

conductor superlattices. The effect of (i) coherence and (ii) 

interfaces becoming predominant, we use a direct simulation 

technique -i.e. Molecular Dynamics- to estimate the thermal 

resistance generated by those effects.  

 

INTRODUCTION 
Understanding the heat transport at interfaces is a challenging 

theoretical issue in solid-state physics [1, 2]. Thermal boundary 

resistances are of considerable interest in fields such as energy 

conversion—thermoelectricity, photovoltaics-, microchip 

cooling with thermal interface materials, thermal protection 

with insulating boundary layers in engines or even in 

phononics, which defines information technology based on 

phonon heat conduction. Not only designing but also defining 

thermal boundary resistance remains a difficult task. When two 

bodies with different equilibrium temperatures are interacting, 

the boundary resistance is usually derived as the difference 

between those latter temperatures divided by the net heat flux 

transferred from one body to the other. However, temperature is 

is defined at thermodynamic equilibrium and heat flux in a non-

equilibrium regime. Therefore, a thermal resistance is always a 

quantity with a limited robustness in terms of physical 

definition. In this paper, we highlight that the physical 

mechanisms involved are not only the well-known transmission 

and reflection of heat carriers –e.g. phonons in dielectric and 

solids and semi-conductors-, but also the loss of coherence of 

phonon wave-packets when crossing the interface. In this aim, 

we analyse the different regimes characterizing heat conduction 

in superlattices as a function of the structure period. Therefore 

we will propose a general definition of the thermal resistance 

that will reveal the interplay between phonon-phonon and 

phonon-interface scattering when the period is larger than a few 

nanometers. We then show that if the period becomes smaller, 

phonon wave-packet coherence has to be taken into account. 

 

NOMENCLATURE 
 
G [W/K] Interfacial thermal conductance  

Hi

  

[J] Hamiltonian of i=sys the total system, i=L,R the left or 

right subsystem, i=D the contact area 

i [-] Complex number 
kij [N/m] Force constant between atoms i and j 

L
 

[m] Film thickness in the superlattice 
m [kg] Atomic mass 

Ni [-] Number of degree of freedom divided by two in 

subsystems i=1 and i=2 
P [J] Potential energy operator  

pi [kg.m/s] Momentum of atom i 
Q [W] Power exchange at the interface between the two 

subsystems 

R [K/W] Interfacial thermal resistance 
s [-] Laplace variable 

Ti [K] Temperatures in susbsystems i=1 and i=2, at equilibrium 
i=0 

ui [m] Displacement of atom i 

 [m/s] Velocity of atom i 

 

Special characters 

 [rad/s] Volume fraction ratio 

 

Subscripts 
   

 

 
NANOSCALE HEAT CONDUCTION REGIMES 
Superlattices consist in the superposition of thin film layers of 

alternative chemical nature having thicknesses ranging from a 

few atomic planes to several tens of nanometers. Those objects 

are of special interest as they reveal the nature of phonon 
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scattering and wave-packets when their period (the sum of the 

thicknesses of two successive layers) varies. 

Phonons are the quanta of energy of the lattice waves, which 

are defined from the plane wave decomposition of the atomic 

motions. Phonon wave-packets –a combination of several plane 

waves having wave-vectors within a short wave-vector interval- 

can be considered as particles forming a gas in such a way that 

the classical kinetic theory of gases provides the definition for 

the phonon thermal conductivity.  

Three different heat transport regimes can be identified. The 

first one is the well-known diffusive regime illustrated in 

Figure 1 when the phonon mean free path  –the path between 

two phonon-phonon interactions- is smaller than the period D 

of the superlattice, i.e. the Knudsen number is smaller than 

unity. In this latter situation, heat flux is defined from the 

classical Fourier Law where the thermal conductivity eff is the 

arithmetic average of the thermal conductivities of both 

materials. 

 

   

Figure 1 Diffusive regime: Phonon path (blue line) in a 

superlattice with a period D larger than the phonon mean free 

path  

The second regime represented in Figure 2 appears when the 

period becomes smaller than the mean free path (typically a 

few hundreds of nanometers in semi-conductors at ambient 

temperature). If the interfacial scattering becomes predominant 

towards the phonon-phonon scattering, the total system 

resistance is obtained by setting the interfacial resistances in 

series so that thermal conductivity is found proportional to the 

period and reversely proportional to the interfacial thermal 

resistance R. This latter transport regime is called ballistic in so 

far as phonons have ballistic travels from one interface to the 

next one. 

This latter regime only occurs if the size of the wave-packets, 

or the phonon coherence lengths, are smaller than the period as 

shown in Figure 3. Wave-packets are here defined by the 

properties of the layer that they are crossing and they are 

scattered by the interface.  

 

 

Figure 2 Ballistic regime: Phonon path (blue line) in a 

superlattice with a period D smaller than the phonon mean free 

path  

 

Figure 3 Schematic of a phonon wave-packet with a size 

smaller than the period so that its properties are defined by the 

single material of the layer supporting it. The wave-packet will 

be scattered by the interfaces. 

The third regime appears when the wave-packet size becomes 

larger than the period as shown in Figure 4. Now, the wave-

packet ―sees‖ the superlattice as a continuum and does not 

scatter on the interface. This transport regime can be defined as 

a ―coherent‖ one. 

 

Figure 4 Schematic of a phonon wave-packet with a size larger 

than the period so that its properties are defined by a continuous 

medium where interfaces have disappeared. The wave-packet 

will not be scattered by the interfaces. 

After the derivation of the interfacial resistance in the frame of 

fluctuational thermodynamics, the transition from the diffusive 
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to the ballistic regime and the transition from the ballistic to the 

coherent ones are addressed. 

 

INTERFACIAL THERMAL RESISTANCE FROM 
EQUILIBRIUM TEMPERATURE FLUCTUATIONS 

To show the interplay between the diffusive and the ballistic 

regimes, we use Molecular Dynamics technique to describe 

interfacial heat transfer at the atomic level. Molecular 

Dynamics technique consists in solving the time dependent 

atom trajectories when considering those as classical point 

masses. The governing 2nd Newton Law is thus integrated over 

time by updating the interaction forces at each time step. This 

approach only relies on the validity of the interaction potentials 

from which the forces are derived and that are fitted to key 

properties related to the quantities that are targeted. In the 

following, we will define the thermal interface resistance from 

the temperature fluctuations. Molecular Dynamics directly 

provides the atomic kinetic energy and therefore the local 

temperature. 

The thermal conductance G, the reverse of the resistance, 

between two heat baths 1 and 2 at equilibrium temperatures T1 

and T2 respectively and exchanging a net heat flux Q is 

classically defined by a linear relation including the 

temperature difference T=T1-T2 as follows: 

 

       (1) 

 

A conventional expression used for measuring and 

computing the thermal conductance is based on the time 

dependent energy conservation equation including the 

exchanged heat flux Q. The subtraction between the energy 

conservation equations of both bodies: 

 

      (2) 

 

and 

 

      (3) 

 

yields the equation of the temperature difference T : 

 

    (4) 

 

where kB is the Boltzmann constant and Ni is half the number 

of degrees of freedom in the heat bath i. However, the linear 

response theory establishes the heat flux as a convolution 

product between the conductance and the temperature 

difference. Eq. (4) corrected with a Langevin flux F(t) can be 

written as: 

 

  (5) 

 

Multiplying this equation by  and performing phase 

average allows for removing the F(t) dependent term in 

Equation (5) because the Langevin flux and  have an 

infinitely short correlation time: . The 

resulting equation is: 

 

        (6) 

 

The brackets denote the phase average or the well-known 

autocorrelation function. This function here applies to the 

equilibrium fluctuations of the temperature difference T. To 

simplify the notations, we propose to define 

and to rewrite 

Equation (6) as: 

 

     (7) 

 

where the star * is the convolution product. Taking the 

Laplace transform of Eq.(2.8) yields [3]: 

 

    (8) 

 

At the static limit (s=0), the reverse of the spectral 

conductance, R(s), is yielded as: 

 

 

        (9) 

 

This last equation clearly provides the interfacial resistance 

from temperature fluctuations and the number of degrees of 

freedom. We will now use it to investigate the contribution of 

the interface in the total superlattice thermal conductivity.  

The zone defining temperature in Eq. (9) has however to be 

specified, whether all the subsystems should be involved in this 

definition or only a restricted area around the interface. 

Eq. (9) can be further derived using the well-known expression 

of the static deviation of the temperature difference 

 

      (10) 

 

where T0 refers to the equilibrium temperature, which yields 

T 0 
2

T0
2


1

N1

1

N 2
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  (11) 

         

Expression (11) can also be stated in terms of the frequency 

dependent resistance R() when introducing the Fourier 

transform of the temperature autocorrelation. As predicted by 

the linear response theory, the temporal evolution of the net 

exchanged power Q is a convolution product provided by the 

following constitutive relation: 

 

,       (12)  

 

Using the fact that the Fourier transform of the convolution 

product * is the product of the Fourier transforms, Eq. (12) 

implies that the temperature Fourier transform is also equal to 

the ratio of the heat flux Fourier transform by the conductance 

Fourier transform.  

Using Wiener-Kinchin theorem, the Fourier transform of the 

temperature autocorrelation function can then be expressed as 

proportional to the modulus square of the temperature Fourier 

transform. The frequency dependent resistance then arises as: 

 

      (13) 

 

where Fo denotes the Fourier transform. Finally, Eq. (13) 

allows for reformulating the conductance under a new form: 

  

     (14) 

    

the spectral conductance being real and positive. Q represents 

the temporal evolution of the fluctuations of exchanged power 

when both bodies are at thermal equilibrium. The exchanged 

power Q can be derived from the commutator of the 

Hamiltonian of one side of the system say the left side HL and 

the one of the total system Hsys:  

 

    (15) 

 

If the total Hamiltonian is decomposed into HL, HD and HR, 

which respectively correspond to the left subsystem, the right 

subsystem and the contact area, the commutator can be 

decomposed as follows: 

 

 (16) 

The commutator of the left and the right subsystems cancels 

because there is no direct energy exchange between both of 

them. The Hamiltonian of each region is then decomposed into 

the kinetic and the potential energies T and P, i.e. Hα=Tα+Pα: 

 

  

        (17) 

where T and P refer to the kinetic and the potential energies 

respectively. The first and last commutators cancel because the 

atomic displacements ui and the momenta pi operators commute 

with themselves. The expressions of T and P yield the 

expression of (a): 

 

  
(18) 

kij refer here to the force constant between atom i and j. When 

considering the following operator association property 

, 

 

  (19)  

 

The first commutator in the RHS is discarded because atoms i 

and j belong to two different regions, in such a way that: 

  (20) 

According to the same reasoning, the (b) term can be written 

as: 

,    (21) 

which finally provides the final expression of the exchanged 

power: 

   (22) 

 

Coming back to the initial question of the definition of the 

temperatures in Eq. (11), it clearly appears that the resistance 

only depends on the motions of atoms interacting across the 

interface. The reason is that R depends on the same variables as 

G and G depends on the power exchange (Eq. (14)). The power 

exchange in turn depends on the velocities and positions of 

atoms that are interacting across the interface. Eq. (22) indeed 

involve the force constant between atoms i and j that belong 

each to different  subsystems. Consequently, all the information 

necessary to define the resistance is included in the motions of 

few atoms in the vicinity of the interface. 

RkB 
kB

G   0 

1

T0
2

T 0 T t 
0



 dt



Q G*T
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DIFFUSIVE TO BALLISTIC HEAT CONDUCTION IN 
SUPERLATTICES 
As represented in Figure 5, we have computed the interfacial 

conductance in a Silicon/Germanium superlattice using 

Molecular Dynamics technique. We have implemented the 

three-body Stillinger-Weber [4] interatomic potential to 

reproduce the Si-Si and Ge-Ge covalent interactions. Potentials 

parameters have also been combined according to the mixing 

rules described by [5] to model the interfacial Si-Ge 

interactions.  

We have included at least two interfaces in the system 

―supercell‖ and applied periodic boundary condition in the 

three directions. The structure is relaxed using a steepest 

descent energy minimization algorithm. Atomic trajectories are 

then calculated in the microcanonical ensemble with a time step 

of 1fs. Thermal equilibrium has been achieved within 500ps. 

We assume a perfect interface between Si and Ge and a perfect 

lattice match. This is often achieved through the introduction of 

artificial strains in one or both of the phases. The lattice 

parameter difference of 4 percents between Si (0.543nm) and 

Ge (0.565nm) has been matched to 0.554nm in the direction 

perpendicular to the interface. The resulting lattice parameters 

in the direction parallel to the contact correspond respectively 

to 0.531nm and 0.573nm for Si and Ge phases. 

Obtaining thermal conductance from equilibrium thermal 

fluctuations according to Eq. (9) requires large ensemble 

averages. In practice, dozens of simulations with different 

atomic random velocities distributions have to be considered to 

ensure an accurate prediction.  

The thermal conductance is calculated through the following 

two-step procedure. Several MD simulations are performed to 

capture the time dependent fluctuations of the temperature 

fluctuations at a given equilibrium temperature. Averaging the 

autocorrelation functions then allows for the proper 

convergence of the thermal interface conductance. 

 

 

 

Figure 5 Schematic of the Si/Ge superlattice system simulated 

with the Molecular Dynamics technique. The length L refers to 

the film thickness.  

Figure 6 reports the thermal conductivity as a function of layer 

thickness L according to our interfacial resistance and Green 

Kubo formula formula predictions. The Green Kubo method is 

based on the linear response theory yielding transport 

coefficients at equilibrium from the flux fluctuations. It is 

including all possible scattering related to atomic motions.  

 

Figure 6 Si/Ge superlattice thermal conductivity as a function 

of layer thickness L from the interfacial resistance and from the 

Green Kubo formula [6].  

Figure 6 reveals the transition between a transport regime 

governed by interfacial scattering (or ballistic) and the one due 

to phonon-phonon scattering (or diffusive). Indeed, both 

predictions agree up to layer thicknesses of 10nm, which shows 

that interface resistances are fully capturing the heat conduction 

mechanisms. Above this thickness limit, the interfacial 

resistance based thermal conductivity overestimates Green 

Kubo data. This indicates that phonon-phonon scattering 

becomes significant and add resistance to heat conduction. 

 

BALLISTIC TO COHERENT TRANSPORT 
In superlattices with perfect interfaces, a minimum thermal 

conductivity at a particular period in the nanometer range has 

been widely reported [7]. On the other hand, for superlattices 

with imperfect interfaces -e.g. structural interfacial defects [8,9] 

or stress [10] - the thermal conductivity increases 

monotonically with the period thickness.  

The concept of phonon coherent transport was invoked in most 

of these works to explain the thermal conductivity trend. We 

therefore quantify the phonon coherence length, i.e. the phonon 

wave-packet size, as a function of the superlattice period.  

In order to evaluate the phase coherence between the motions 

of two atoms separated by a given distance, we compute the 

product between the time Fourier transforms of the velocities of 

those atoms from the time dependent velocities provided by 

MD simulations. For each frequency, the modulus of this latter 

product is analyzed as a function of the distance. The wave 

packet size is then identified as the decay length in this 

representation. The coherence length spectrum reported in 

Figure 7 is then retrieved by analyzing the all set of 

frequencies. 
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Figure 7 Phonon Coherence length lc spectrum normalized by 

the system length L0 as a function the superlattice period dSL.  

As shown by Figure 7, when the period length dSL  increases, 

the coherence length lc  decreases by 70% between dSL=1 nm 

and 8nm. The transition from a coherent to an interfacial 

scattering type of transport defines a threshold length between 4 

and 8 nm. This estimation was confirmed by MD computations 

of the thermal conductivity in this range of periods, where the 

thermal conductivity dip was retrieved. 

The dip in thermal conductivity can then simply considered as 

(i) the loss of coherence when the period increases from the 

sub-nanometer range –an additional impact of the decrease in 

the group velocity due to zone folding can also be invoked- and 

(ii) the predominance of interfacial scattering that decreases 

due to the reduction in the linear density of interfaces. This 

latter regime is the ballistic regime that was highlighted in the 

previous section. 

CONCLUSION  
 

We present the different heat conduction regimes when the 

characteristic system size in solid decreases from macroscale 

down to a few atomic layers. Superlattices were considered as 

reference systems where classical heat diffusion is observed 

when the period exceeds several phonon mean free paths while 

interfacial scattering is found to predominate if the period is 

smaller than this same path. The last regime appearing for 

periods of a few nanometers is characterized by a coherent heat 

transport where phonon wave packets have a width, i.e. a 

coherence length, larger than the period. 

To investigate those mechanisms, we have first defined the 

thermal resistance as a function of atomic velocities and 

positions. This resistance was found to depend on the motions 

of atoms interacting acrosse the interface and proportional to 

the integral of the autocorrelation of the temperature difference 

of those atom populations.  

Molecular Dynamics simulations were conducted at 

equilibrium to compute those atomic motions and the 

superlattice thermal conductivities deduced from interfacial 

resistance were found to be in agreement with other 

computations of the thermal conductivity including the full set 

of heat conduction processes. Interfacial scattering 

predominates below periods of 20nm in Si/Ge superlattices and 

a competition between interfacial and phonon-phonon 

scattering arises for larger periods. 

We finally show that the coherence length of phonon wave 

packets is affected by the superlattice period in the 1 to 8nm 

range due to the impact of interfacial scattering on coherence. 

This provides qualitative argument to explain the dip observed 

in superlattice thermal conductivity in terms of the interplay 

between coherence and interfacial scattering. 
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