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ABSTRACT 

Roll waves of finite amplitude on a thin layer of 

non-Newtonian fluid modeled as a power-law fluid 

are considered. In the long wave approximation, the 

flow is governed by a non-homogeneous hyperbolic 

system of equations.  As the linearized instability 

analysis of a uniform flow delivers only a diagnosis 

of instability, the nonlinear stability is investigated 

and the criterion for roll waves based on the 

hyperbolicity of the modulation equation is 

suggested. The main problem in defining the roll 

wave stability region on a roll wave diagram is due 

to the singularities of functions for the mean values 

and their derivatives near the boundaries of roll 

wave existence. Asymptotic formulae for nonlinear 

stability of roll waves of small and maximal 

amplitudes are derived. Numerical calculation 

reveals that for a Newtonian fluid, as the bottom 

inclination decreases downwardly the amplitude of 

admissible waves diminishes, and the stability 

domain reduces until it disappears. These results 

remain valid for a slightly non-Newtonian fluid. For 

highly non-Newtonian fluid, an inversion in the 

nature of stability is observed.  

 

INTRODUCTION 
The thin flow on a wall is of considerable 

importance for a variety of industrial and natural 

processes. Over a range of flow parameters, a 

variety of free surface instabilities may occur. Roll 

waves are among these flow patterns, which may 

exhibit quasi-periodic spatial structures of the free 

boundary. The standard procedure of roll waves 

consists of a periodic pattern of stable bores 

separated by continuous profiles increasing 

monotically from the rear (see an extensive 

reference quoted in [1]). From the experimental 

work of Kapitza [2]; Liu, Paul & Gollub [3], among 

others, have experimentally investigated the linear 

stability. A detailed study of this work can be found 

in the book by François Charru [4].  

The aim of the paper is to give a nonlinear 

study on stability of permanent roll waves on a 

shear thinning fluid in the frame of unsteady, 

gradually varied, laminar mud flow. Throughout the 

paper, the averaged equations for one-dimensional 

flow with the shear stress being evaluated in 

conventional manner. 

Starting from long waves equations averaged 

over the normal to the  bed, periodic roll waves are 

constructed. As the amplitude and the phase 

velocity of waves are slowly varying during their 

propagation and as these variations can give rise to 

instability, this problem of stability can be solved 

by deriving modulation equations for wave packets 

[5,6]. The stability criterion for nonlinear roll 

waves is formulated in terms of hyperbolicity of 

modulation equations that need calculation of 

averaged quantities. The main difficulty to 

construct the stability domain on the plane of 

governing parameters is due to the singularities in 

the hyperbolicity conditions of modulation 

equations for the waves of the infinitesimal and 

maximal amplitude. 

Using an asymptotic analysis, the stability 

conditions of roll waves of small and maximal 

amplitude, as well as the approximate position of 

boundaries of the hyperbolicity domain are 

obtained. Note that for a vertically falling film, the 

system is self-similar, the modulation equations 

take a rather simple form and the hyperbolicity 

criterion is reduced to a condition for a function of 

one variable [5]. Here we present an inclined flow, 

the stability condition depends on two governing 

parameters. Numerical calculations of stability 

diagrams corresponding to an inclined plane are 

presented. It must be noticed that roll waves 

without dissipation of energy across the shocks are 

of small amplitude. 
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NOMENCLATURE 
 
n   [ ]   Flow index 

   [ ]   Momentum flux factor  

      [ ]   Energy flux factor 

*x   [ ]m   Cartesian axis direction 

*y   [ ]m   Cartesian axis direction 

*h   [ ]m   Depth of the flow 

*u   [ ]m s   Means velocity 

*
b   [Pa]   Bottom stress 

*t   [ ]s   Time 

g   2[ ]m s   Gravity acceleration 

n   1 2[ ]nkgm s 
  Viscosity coefficient 

1h   [ ]   Depth of the flow before 

the jump, dimensionless 

2h   [ ]   Depth of the flow after the 

jump, dimensionless 

ch   [ ]   Critical flow depth, 

dimensionless 
*z   [ ]   Minimal depth of 

admissible roll waves, 

dimensionless 

 

Subscripts 
t   Derivative on t   

x   Derivative on x   

ch   Derivative on ch   

z   Derivative on z   

h   Derivative on h   

0 Reference 

 

Special characters 
'm   m  derivative on ch   

'D   D  derivative on ch   

 
GOVERNING EQUATION 

Consider a 2D flow of a thin fluid film down a 

plane inclined with an angle ,(0 2)    . The 

frame of reference is chosen as follows: the axis 
*Ox is directed in the flow direction, and the axis 
*Oy is perpendicular to it, directed upwards.  

In the long wave approximation, the film 

thickness depends only on 
*x and

*t , and the 

pressure is hydrostatic: * * *( )np g h y  , where 

cosng g  . The shear stress is modeled by a 

power law of the form [1,5]: 
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Here *h  is the depth, *u  is the velocity, *t  is 

the time, g  is the gravity acceleration and
*
b  is the 

bottom stress, the subscript 0 stands for the 

reference quantities. The viscosity coefficient is 

denoted by n with dimension 
1 2nML T     and n  

is the flow index (0 1)n  . The case 1n   

corresponds to the Newtonian fluid and 1  is the 

ordinary dynamic viscosity [1, 5].                                    

In dimensionless variables, the governing 

equations of mass and momentum conservation, 

averaged in the ordinate direction may take the 

form [1]: 
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1
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The main objective of this work is to investigate 

the nonlinear stability of roll waves (RW). For this 

purpose the approach developed in [5] for RW for 

vertical plane will be applied for thin viscous film 

flows on an incline.      

 

LINEAR STABILITY 
From a temporal linear analysis it is shown in [1] 

that the stationary solution of (3): 
1

0 0 0,
n

nu h h cte


                                                  (4)  

is unstable if the following condition is satisfied   
2(1 2 )n n                                                       (5) 

The same criterion of transition to unstable flow 

can be established by making use of the method 

promoted in [5,6]: there is stability if the velocity of 

the kinematic waves lies between the velocities of 

the dynamic wave d
 , i.e. 

d c d                                   (6) 

2
0 0 0 02 , ( 1) ,c dh u u u           where 

the condition (5) is recovered.  

 
ROLL WAVES 

We intend to construct discontinuous periodic-

wave solutions which propagate with a constant 

speed  (0 )D u D  (Figure 1). In the frame of 

reference accompanying the waves the flow is 

steady and Equations (3) may be expressed in terms 
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of the single variable x Dt   . With this 

transformation, Equation (3a) may be integrated 

directly to give  

( )m D u h                                                          (7) 

where the constant m is equal to the apparent 

discharge rate or progressive discharge according to 

[7].    

Between two successive discontinuities the 

momentum equation is valid, making use of (7), 

Equation (3b) leads to an ODE for h which may 

read: 
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Figure 1 Sketch in the frame of reference 

accompanying the roll waves 

 

For standard roll waves with only one jump on 

the period that divides the monotone smooth parts 

of flow. Therefore, it is necessary for the roll wave 

existence that the subcritical flow behind the jump 

( 0)  transforms into the supercritical flow 

( 0)  before the next jump, and there exists the 

critical depth ch  on the period. For the roll wave 

existence it is necessary that ( )F h  and ( )h vanish 

at the critical depth ch  simultaneously, i.e. 

( ) 0,  ( ) 0                                         (9)c cF h h    

After some algebra manipulations, taking (7) into 

account, the system (9) leads to 
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For given ch , the periodic solution containing a 

jump can be constructed if the jump amplitude is 

known. 

To complete the construction of roll waves, we 

must give the jump conditions.  

From the system (3), with the help of (7), the 

relations at jump discontinuity are reduced to  

 

1 2( , ) ( , )                                             (11)c cG h h G h h

 

where subscripts 1 and 2 denote the right and the 

left sides of the discontinuity. 

Equations (7)-(11) show that the roll waves 

depend on two parameters. For given values of 1h  

and ch , conditions: 

 1

2

( , ) 0       at 
                       

( , ) 0       at 
12

c c

c c

F h h h h h

F h h h h h

  


  
 

are necessary and sufficient for the formation of roll 

waves. It is shown in [1] that there exist solutions 

of roll waves only if 
*

1 cz h h   where *z  and ch  

are the roots of the equation ( ) 0F h   (Figure 2). 

The value of *z is obtained only numerically for a 

given flow parameter. 

 

 

Figure 2 Profiles of   and F . vs h     

for 3,  0.4,  1cn h      

According to the reported observations, between 

two successive jumps the surface profile must 

increase, otherwise the slope dh d must be 

positive; it is also the condition of irreversibility of 

hydraulic jump. 

 Moreover, as ' 2 3( ) 2 0c ch m h     , 

therefore a necessary condition: ' ( ) 0cF h  , 

resulting in: 

 
2

2[(1 2 ) ]
n

n
cn n h


                                          (13) 

 

If the solution of the uniform base flow is 

critical, the inequality (13) coincides with (5). In 

this case, the condition of linear instability is 

necessary for the roll waves formation.  

It must be noticed that for 1ch  , if inequality 

(13) is verified, the required linear instability 

criterion (5) is unconditionally  satisfied, since the 

transition from uniform flow to intermittent flow 

regime is usually tackled by resorting to stability 

theory according to [7]. 

 
MODULATION EQUATIONS 

The periodic solution of (3) is defined by two 

parameters, say 1h and ch . The problem on 
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nonlinear stability of periodic wave trains with 

slowly varying values ch  and 1h  can be solved by 

analysis of hyperbolicity of the modulation 

equations for such waves. After averaging (3) over 

the fixed length scale, which is large enough 

comparing with the length of roll waves, the 

following modulation equations: 
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  2 2
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are obtained. All averaged quantities can be 

expressed as functions of 1h  and ch as follows: 
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In view of (15), the modulation equations take 

the form: 

 
   2

1

0
    (16)

( 2 ) ( , ) 0

t
x

c
t x

h Dh m

Dh m D h mD B h h

   



    


  

The non stationary evolution of the governing 

parameters 1( , )ch h  for a periodic wave train is 

described by equations (16). We say that the roll 

waves are stable if the modulation equations (16) 

for corresponding values 1( , )ch h  are hyperbolic. 

The investigation of hyperbolicity of the 

modulation equations can be performed more easily 

for the variables ch  and h [8]. It can be done by the 

transformation 1( , )ch h h h and 1( , ) ( , )c cB h h B h h . 

The modulation equations take the following 

form: 
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The characteristic curves of (17) are 
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Here the “prime” denotes the full derivation on 

the variable ch . The hyperbolicity condition for (18) 

is 

 
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For the variables ( , )ch z the hyperbolicity 

condition (17) can be expressed in the form: 
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To check the stability criterion (19) or (20) for 

given roll wave train, we have to resolve the 

singularities in (15) for the wave of infinitesimal 

( 0)L  and limiting ( )L  amplitude. 

 

ASYMPTOTIC ANALYSIS OF ROLL WAVE 
 
1. Stability of infinitesimal amplitude 

Let ch be the given critical depth, then one has: 
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The conjugate depth ( , )cw w z h and the 

corresponding derivatives at cz h  can be 

calculated from (11) as follows: 
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For the derivates of the mean values in (15) one 

obtains 
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With the functions ( , )cH H z h  and 

( , )cQ Q z h defined in (21) we have 
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It follows from (22)-(24) that  
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The second derivatives of B  and h  can be 

expressed at cz h  by formulae 
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To find the sign of (20), we need also the 

expression of 
chh and chB at cz h . It follows from 

(15) that 
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Now the stability of roll wave of infinitesimal 

amplitude can be checked by (19), (26), (27) using 

only values of the known 

function ( , ), ( , )c cA s h B s h and their derivatives 

for cs h .   

 

2. Stability of limiting roll waves 
Suppose that standard roll waves are defined for 

every critical depth ch  from an interval. It means 

that there are smooth functions * *( )cz z h and 

* *( ( ), )c cw w z h h and the conditions (12) are 

satisfied for conjugate depths ,  z w  with 

( ) ( )G z G w  and * *
cz z h w w    , 

* *( , ) 0, ( , ) 0c cF z h F w h  . 

 When
*z z , we can use the asymptotic 

formulae 
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Excluding the wave length L  from (28) we 

have: 
*
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The approximate expression for the function 

( , ) ( , )c cB h h B z h is given by the following 

formulae, in which the limits of integrals in (29) are 

used for 
*z z  . 
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*

*
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z

w

c
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B h h B z h B h z

B s h B z h b s h ds

s z
B

b s h ds

  









             (30)                                                                         

The approximation (30) can be applied for 

calculations of the hyperbolicity domain of the 

modulation equations (17). For that we replace the 

function ( , )cB h h by
*

( , )cB h h . The criterion of the 

hyperbolicity takes the form 

 
 

2*
* ' 1

*
2

2( 1) ( 2 )

4 ( 1)

ch

h

Disc D m D B

D B

  



    

  

      (31) 

Due to the linear dependence 
*

B on h  in (30) 

the boundaries ( )ch h h
 

  of the hyperbolicity 

domain can be calculated from the quadratic 

equation *( , ) 0cDisc h h  relative to h  in the 

explicit form: 
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2

( 1)
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c c c

h

h c h h

d m d
h

d D d

d B DD

d Dm mD

B z h B z B z

d D B



 



 




  

  

  

   

             (32) 

 

 

NUMERICAL RESULTS 
The roll wave diagrams for some significant 

values of ( , )n are shown in figure 3-6, where the 

curves  and  h h h h
 

  are the boundaries of 

hyperbolicity region. In the ellipticity domains e  

roll waves are unstable. The curve 

ch h corresponds to the roll wave of infinitesimal 

amplitude. The curve 0E  corresponds to the roll 

waves with zero dissipation across the shock [1]. 

This type of wave is of small amplitude. Obviously 

the shock is accompanied by the loss of 

energy 0E  , the calculation of E can be seen 

in [1]. 

The computation results for a Newtonian fluid 

( 1)n   show that as   increase, the amplitude of 

admissible waves diminishes, and the stability 

domain reduces until it disappears. These results 

remain valid for a slightly Non-Newtonian fluid 

(for example 0.8n  ). As illustrated in figures 7 to 

10 for fixed critical value  1ch  . 

 For a highly non-Newtonian fluid ( 0.1n  ), we 

see that as   increase, the amplitude of admissible 

waves diminishes, and the stability domain of 

moderate waves increases.  

As we can see from the diagrams * *h z z

 , 

the boundary of the hyperbolicity domain can be 

found effectively by the above approximation (see 

(28)-(32)). 

 
 

Figure 3 the diagram of stability of roll wave for 

1, 0n    

 

 
 

Figure 4 the diagram of stability of roll wave for 

1, 0.25n     

 

 

 
 

Figure 5 the diagram of stability of roll wave for 

0.4, 0.25n    

 

 
 

Figure 6 the diagram of stability of roll wave for 

0.1, 0.25n    
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Figure 7 the diagram of stability of roll wave for 

0.8, 0, 1cn h     

 

 

 
 

Figure 8 the diagram of stability of roll wave for 

0.8, 0.25, 1cn h     

 

 
 

 

Figure 9 the diagram of stability of roll wave for 

0.8, 0.5, 1cn h     

 

 
 

Figure 10 the diagram of stability of roll wave for 

0.8, 2, 1cn h     

 

 

 

 
 

Figure 11 the diagram of stability of roll wave for 

0.1, 0, 1cn h     

 

 
 

 

Figure 12 the diagram of stability of roll wave for 

0.1, 0.25, 1cn h     
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Figure 13 the diagram of stability of roll wave for 

0.1, 0.5, 1cn h     

 

 

 
Figure 14 the diagram of stability of roll wave for 

0.1, 2, 1cn h     

 

 

CONCLUSION 
 
We have investigated the roll waves generation 

on laminar flow of the thin layer down an inclined 

plane by nonlinear hyperbolic system [1],  in which 

the rheological behavior is modeled by a power law. 

It has been shown that the roll waves solution can 

be described by two parameters analogously to roll 

waves in open channel flow. The linear stability 

criterion is unconditionally satisfied together with a 

roll wave required condition if the inequality (11) is 

verified, while dimensionless critical depth is less 

than 1  1ch  . A stability criterion based on 

hyperbolicity of modulated equations has been 

presented. The asymptotic analysis has been 

performed and the stability criterion for roll waves 

of small and maximal amplitude as well as the 

approximate position of boundaries of the stability 

region has been derived.  

Numerical calculations have been performed for 

some significant flow parameter. They have 

revealed that for a Newtonian fluid, as the bottom 

inclination decreases downwardly the amplitude of 

admissible waves diminishes, and the stability 

domain has been reduced until the disappearance. 

These results have remained valid for a slightly 

Non-Newtonian fluid. For highly non-Newtonian 

fluid, an inversion in the nature of stability has been 

observed.  
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