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ABSTRACT

IThis work addresses two techniques to solve convection-
diffusion problems based on Hermite interpolation. More
specifically it deals with an adaptation to the case of these
equations of a Hermite finite element method providing
flux continuity across inter-element boundaries, shown to
be an efficient tool for simulating purely diffusive phe-
nomena [7]. In the latter case the method is the Hermite
analog of the celebrated lowest order Raviart-Thomas
mixed finite element method known as RTy [5]. The new
methods in turn can be viewed as non trivial improved
versions of the RT; extensions to convection-diffusion
problems, in divergence form or not, proposed by Douglas
and Roberts [3] more than three decades ago. In contrast
to the mixed methods, second order convergence results
in the mean square sense are proven to hold for both
Hermite finite element approaches, and comparative
numerical results illustrate the good performance of the
new methods.
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INTRODUCTION

Many numerical techniques are available nowadays to
simulate physical phenomena involving both convection
and diffusion processes, such as heat transfer and fluid
flow. Generally speaking, any efficient numerical approach
in this framework must be able to solve in a reliable man-
ner, the linear scalar convection-diffusion equation, since
they lie on the basis of the mathematical modeling of
countless technological or scientific problems. This fact
keeps encouraging specialists in the search for efficient
methodology to solve these equations. This is particularly
true of convection dominated processes, in which the
correct capture of sharp boundary layers often reveal
demerits of widespread computational techniques, even
when the problem to solve is linear. As far as numerical
methods allowing for the representation of diffusive fluxes



across the boundaries of discretization cells are concerned,
both mixed finite elements and finite volumes have been
playing a prominent role since long. This is because
very often in current applications the fluxes are more
important than the primal unknown itself. Among them
one could quote flow in porous media as an outstanding
application. However Hermite interpolation can also be a
tool well adapted to the enforcement of such a continuity
property, as shown in [7] for pure diffusion equations
in highly heterogeneous media. In that work two finite
element methods of the Hermite type based on a quadratic
interpolation were studied. Both have, either identical or
better convergence properties than some of the classical
mixed methods, such as the RTy method, i.e. the lowest
order Raviart-Thomas’ [5], according to the norm under
consideration, though at comparable implementation cost.
Actually it turned out from numerical experiments that
these Hermite methods are able to produce very accurate
solutions, in particular as far as the error of the primal
unknown measured in LP-norms are concerned.

In [8] the authors extended to the case of the convection-
diffusion equation, the Hermite finite element first studied
in [6], that can be regarded as a variant of the lowest
order Raviart-Thomas mixed element for the pure dif-
fusion equation. The purpose of this work is two-fold:
first of all the authors complete the study of such an
extension, and then they consider a different version of
it. Actually the two versions of the extension of RTj to
the convection-diffusion equations studied here can be
viewed as Hermite analogs of the two mixed extensions of
the RTy method to linear second order elliptic equations
proposed by Douglas and Roberts in [3], restricted to
the case of the linear convection-diffusion equation. The
method proposed in [8] corresponds to the mixed method
studied in [3] for the equations in non divergence form,
and the one introduced here can be viewed as an analogue
of the mixed method considered in [3] for the equations in
divergence form. Similarly to [6], a priori error estimates
in the L?-norm are in terms of the square of the mesh size
for both Hermite methods, in contrast to the first order
ones that hold for the RTy or the Douglas and Roberts
mixed methods. In this work the authors extend to the
case of the convection-diffusion equations, the Hermite
finite element that can be regarded as a variant of the
lowest order Raviart-Thomas mixed element [6]. Here
again a priori error estimates in the L2-norm are in terms
of the square of the mesh size, in contrast to the first
order ones that hold for the extension of the RT; method
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to C-D equations proposed in [3].

For the purpose of this work one may work with the
convection-diffusion equation in dimensionless form with-
out specification of the application in view. However for
the sake of clarity one might consider the case where the
unknown function u is a temperature. In this case the
notations employed here correspond to quantities playing
a prominent role in a heat transfer process by convection
and conduction, i.e. diffusion :

NOMENCLATURE

u [K]: Temperature

z1 [m]: Cartesian axis direction

z2 [m]: Cartesian axis direction

23 [m] : Cartesian axis direction

L [m] : Characteristic length of the heat transfer domain.
K [W/mK]: Tensor of (anisotropic) thermal conductivity
w [m/s] : Convective velocity

f [W/m?] : Volumetric density of heat generation

Pé : Péclet number.

In all the sequel the authors study as a model the fol-

lowing equation assumed to have a unique solution u in
a (heat flow) bounded domain Q of RV, N = 2,3, with
boundary I':
Let the source function f be given in L?(2) together with
tensor K assumed to be constant, symmetric and positive
definite and the velocity w in C°(2). Denoting by V and
V- the gradient and the divergence operator, respectively,
one wishes to:

Find u € Hj(Q) such that — V- KVu+w-Vu = f in Q.
(1)
Henceforth let be assumed that €2 is a polygon if N =2
or a polyhedron if N = 3, and that a finite element parti-
tion 7p of €1 is given, consisting of triangles or tetrahedra
according to the value of N, and belonging to a quasi-
uniform family of partitions (cf. [4]). h denotes the max-
imum diameter of the elements of 7. Referring to [1], in
the sequel the following notations are employed: S being
a bounded open set of R, the standard norm of Sobolev
spaces H™(S) (resp. W™P(S) for p > 1, p # 2), for
any non negative integer m is denoted by || - ||m,s (resp.
|+ lm.p.s), including L2(S) = H(S). The standard semi-
norm of H™(Q) (resp. W™P(S) for p > 1, p # 2) is
denoted by | - |5 (resp. | |mp.s)-



THE METHOD FOR C-D EQUATIONS IN NON
DIVERGENCE FORM

In this Section the authors recall their method introduced
in [8], applying to the convection-diffusion equations in
non divergence form.

To begin with let Uy, and V}, be two finite element spaces

associated with 7, defined as follows: Let wyj, be the con-
stant field in each element of T" € 7; whose value in T
is w(Gr), where G is the centroid of T, and w} be the
standard continuous piecewise linear interpolate of w at
the vertices of 7. The operators Iy : L*(T) — L*(T)
given by IHrp[v] = [.vdx/meas(T) for T € T, and
II;, : LQ(Q) — L2(Q) by Hh[U]|T = HT[U‘T} vT € Ty
are further introduced.
Every function v € Vj, or u € Uy, is such that in each ele-
ment T’ € T, it is expressed by x'K~![ax/2+b] +d, where
X represents the space variable, b is a constant vector of
RN and a and d are two real coefficients. Now F being an
edge if N = 2 or a face if N = 3 belonging to the boundary
OT of an element T € Ty, and ng being the unit normal
vector on F' oriented in a unique manner for the whole
mesh, in this work every function in v € V}, (resp. u € Up,)
is such that its restriction to any 7' € 7 is defined by
means of N + 1 degrees of freedom, namely, the N mean
values of the flux (KVv+wIlr[v])-ng (resp. (KVu)-ng)
over F C 0T, and It [v] (resp. IIr[u]). All the degrees of
freedom of the first type coincide on both sides of every
interface F' common to two elements of 7;,. The canonical
basis functions for these spaces corresponding to the above
degrees of freedom can be determined as follows. First no-
tice that Vv € V}, or u € Uy, the fluxes are constant over
every edge or face F of any element T of the mesh. In-
deed from the particular form of v|7 or u|p, both Vv and
Vu are of the form K~![ax + b]. Then the flux is of the
form ax+ ¢, and from a well-known property of the lowest
order Raviart-Thomas mixed element, whose flux variable
is locally defined by functions of the same form, the result
follows. Incidentally this allows for the determination of
a and c for each basis function corresponding to a given
flux, in the same way as for the flux basis functions cor-
responding to the lowest order Raviart-Thomas element.
This yields the value of b, d being adjusted in such a way
that IIp[v] = Ipu] = 0 and the flux basis functions are
thus uniquely defined. As for the basis function corre-
sponding to the second type of degree of freedom, a = 0
for both v and w, while b = —w), and d = 1 + [w - x|(Gr)
for v, and b =0 and d =1 for w.
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Next the discrete variational problem (2) is set below, in
the aim of approximating (1), whose bilinear form a;, and
linear form L are given by (3), the notation (p, q)s repre-
senting [¢pq dS VS C Q, p,q € L*(9).

Find up, € Uy, such that ap(up,v) = Lp(v) Yo € Vj,
where Vu € Uy, and Yv € Vj,

(2)

ap(u,v) := Z (V- KVu—wp, - Vu, Hr[v])r+
TETh
(Vu, KVv + wpr[v])r + (u, V - KVv)7];
Lh(’U) = —(f, Hh[’l]])Q.

(3)
If V is the space given by V := {vjv € H(Q); V-KVv €
L?(Q)}, form a;, can be extended to (U + V) x (Vj, + V).
Then one may further introduce the functional || - ||5:
Up+ Vi +V — Rgiven by: || v ||2:= (], Mpv])a +
>rer, {(Vv, Vu)r + (V- KV, V- KVv)r}. The expres-
sion | - ||, obviously defines a norm over V, Uj, and Vj,.
In this manner, it is easy to establish the continuity of ay
over (Up+V) x (V3 +V) with a mesh independent constant
M. In [8] the authors proved the validity of the following
inf-sup condition for aj over Uj x Vj, [5], which implies
that (2) has a unique solution.

Proposition 4.1 [8] If h is sufficiently small and w €
Wheo(Q), there exists a constant o > 0 independent of h
such that

ap(u,v)

o ln

Vu € U, \ {0} sup >allulln. (4)

veVL\{0}

In [8] the following a priori error estimate was also
proven to hold :

Theorem 4.2 Assume that w € W1>°(Q) and h is suf-
ficiently small. Then if u € H*(Q) and f € H'(Q) there
exists a mesh independent constant C' such that,

| u—ulln< Chllulen+|f

(5)

1,0]

The main property of the method described in this Sec-
tion is given in the following Theorem.



Theorem 4.3 If Q is conver, w € WH(Q) and h is
sufficiently small, there exists a constant C independent
of h such that,

| w—up loo< C"R? [Ju

(6)

2.0+ [fliol

The proof of Theorem 4.3 is based on the same argu-
ments as those employed to prove Theorem 2.3 of [6]. How-
ever notice that some additional technicalities come into
play in the case of the convection-diffusion equation. For
this reason the complete proof of this result, together with
analogous ones related to the other method presented in
this work, will be the object of a forthcoming paper.

THE METHOD FOR C-D EQUATIONS
DIVERGENCE FORM

IN

Before introducing this method it is wise to rewrite equa-
tion (1) in divergence form, namely,

Find v € H}(Q) and p € H(div; Q) such that
V.p—V-wu=fin Q
p = —KVu + wu.

(7)

where H(div; Q) := {q | q € [L}(Q)]V, V-q € L*(Q)}.

A natural weak (variational) formulation equivalent to
system (7) is given in [3], that is,

Find u € L?(Q2) and p € H(div; Q) such that
(V-p,v)a— (V- -wu,v)g = (f,v)q Vv e L*(Q),
(K'p,a)o — (4, V- q)o — (K'w u,q)q =0
Vq € H(div; Q).
(8)
The extension of RTy to the C-D equation considered in
[3] consists of using the Raviart-Thomas interpolation of
the lowest order to represent p and q - i.e. to approximate
H(div; Q) -, and the space of constant functions in each el-
ement of the partition 7}, to represent u and v. In contrast,
here the authors shall mimic (8) by resorting to the space
Uy, after adding up both relations in (8). More specifi-
cally they take in each element T' € Ty, qi7 = KVu|p for
v € Uy, and define the space W}, of functions of the form
xUK1[ax/2 + b] + d in each T € Ty, such that the nor-
mal component of —KVu + wll[u] is continuous across
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all the inner edges of the partition. In order to allow the
feasibility of such a construction the field w must be of
the form e¢x + d in each T € 7T}, for suitable real numbers
¢,dy,...,dy,d = [dy,...,dn]. The choice of W compat-
ible with the continuity of the normal component of the
flux variable p = —KVu+wu across the edges is certainly
the interpolate of w in the Raviart-Thomas (RTp) space,
and this completes the definition of W,.

Now replace in (8) :

e v with ITj,[uy], if the gradient operator is not directly
applied to it ;

e Vu with Vup;

e w with w if the divergence operator is not directly
applied to it;

e p with —KVuy, + Wil [uy] (taking u, € Wh);
e q with — KV (taking v € Uy,);
e f with IIp[f] in every T € Ty,.

This leads to the following equation:

> UV AKVup — Wil [up]}, v)r + (V- Wiz [up], v)7+
TETh
(KVup, — wllplup], Vo)r + (Ip[up], V - KV)p
+(WHT[”U,]—LL V'U)T] = 7(Hh[f], ’U)Q Yo € Uy
(9)
After straightforward simplifications, and taking into ac-
count that (II,[f],v)q = (f,Hx[v])q, the following Her-
mite finite element counterpart of (1) can be defined:

Find uj, € W}, such that ap(up,v) = Lp(v) Vo € Uy, where
Yu € Wy, and Yv € Uy,
(10)

an(u,v) = Z (V- {KVu — W r[up]},v)r +
TeTh

(V- wllr[up],v)r + (Vu, KVv) 1 + (u, V - KVv)7]
(11)
The fact that problem (10) has a unique solution can
be established quite similarly to problem (2). The conver-
gence results that hold for this method can be proved very
much like in the case of the method of the previous sec-
tion. The main difference is that it is necessary to reguire



a little more regularity of V- w, namely, that this function
lies in W1°°(Q). Apart from this assumption, the results
are qualitatively equivalent, in the sense that a priori error
estimates completely analogous to those of Theorems 4.2
and 4.3 apply to problem (10) as well. The correspond-
ing analysis will be the object of a forthcoming paper. As
far as this work is concerned, resulting properties among
others the authors have not formally established, are illus-
trated by means of a series of numerical examples.

COMPARATIVE NUMERICAL EXPERIMENTS

Several numerical results were obtained with the methods
described in the two previous sections. Some of them
are supplied below for academic test problems, which
particularly highlight the behavior of both Hermite
methods. In the tests manufactured solutions u are given,
which together with K and w produce right hand side
data f. For comparative purposes the test problems were
also solved with the Douglas & Roberts RT element
[3] in its two versions for equation (1) - that is, for its
formulation in divergence form or not [3], referred to as
RTy, and RTp, respectively. Their Hermite analogs in
turn are referred to as RTyq and RTj. respectively. In all
the test problems K is chosen to be Z and domains with
characteristic length L = 1 are considered. In this case
the Péclet number can be defined by Pé= max |w(x)| for
x € (.

In the first battery of tests €2 is the disk with unit radius
and center at the origin of the cartesian coordinates x;
and z5. For symmetry reasons in the computations only
the quarter of disk defined by the positive values of both
coordinates is taken into account. The purpose of these
tests is to observe the behavior of all four solution methods
in the presence of a curved boundary approximated by a
polygon, that is, the union of the mesh triangles. For this
reason w is chosen to be Pé(—xy;x1), which incidentally
annihilates the effects of the term involving the divergence
of w. Furthermore u(z1,22) = (1 — 2% — 23)/4 is selected,
for this function can be represented exactly by the
Hermite elements RTy. and RTy4, though only in the
polygons approximating 2. The computational meshes
consist of 2/% triangles constructed as described in [9],
where [ is a strictly positive integer. Notice that by this
process the generated meshes are pseudo-uniform, in the
sense that the elements are very similar to each other in
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both shape and size. Here is chosen to be of the form
[ = 2™ for m = 3,4,5,6, which yields values of h greater
than or equal to [~! and less than /72 +16/4 (=1 for
all [ [9]. These simulations are referred to hereafter as
Test-problem 1.
Tables 1, 2 and 3 display the errors measured in the L2-
norm of the approximations of v, Vu and the divergence
of the flux referred to as DF'(u) hereafter, obtained
with the four methods RTy,, RTy., R1o, and RTpg as h
decreases, for Pé= 1. Notice that DF(u) equals Au for
the four methods, except for RTpy,, in which case it is
given by V - [KVu — wu]. In Tables 4, 5 and 6 the same
kind of results are supplied for Pé= 10°.

For a small Péclet number the numerical solutions

[!] RTha | RInw | Ry, | RTy |
8 0.92106378E-02 0.12088608E-01 0.14273321E-03 0.72878159E-08
16 0.46131717E-02 0.91517998E-02 0.36641214E-04 0.73099739E-08
32 0.23075591E-02 0.82633266E-02 0.92227890E-05 0.73155245E-08
64 0.11539009E-02 0.80263174E-02 0.23096840E-05 0.73169126E-08

Table 1: L2 errors of u in Test 1 for Pé=1.

[l] RTha | RInw | RITye | RTya |
8 0.93229273E-08 0.49035715E-01 0.45950033E-02 0.93229273E-08
16 0.93341685E-08 0.48942597E-01 0.23211704E-02 0.93341684E-08
32 0.93369804E-08 0.48911400E-01 0.11636060E-02 0.93369804E-08
64 0.93376836E-08 0.48902954E-01 0.58218263E-03 0.93376836E-08

Table 2: L? errors of Vu in Test 1 for Pé=1.
[!] RTha | RInw | RTye | RTya |

0.26390408E-07

0.26390408E-07

0.12129518E-01

0.26390408E-07

16

0.26406317E-07

0.26406317E-07

0.60914089E-02

0.26406317E-07

32

0.26410294E-07

0.26410294E-07

0.30490236E-02

0.26410294E-07

64

0.26411289E-07

0.26411289E-07

0.15249263E-02

0.26411289E-07

Table 3: L? errors of DF(u) in Test 1 for Pé=1.

are certainly likely to behave in a more coherent way
with respect to expected theoretical predictions. For this
reason the first comments are related to the results for
Pé= 1. As one infers from Table 1 and Table 2, the



L]

RTy,

RTyy

RTy.

RTyq

8

0.92106342E-02

0.80277062E+-04

0.28468606E-07

0.85776730E-07

16

0.46131717E-02

0.41271521E4-04

0.17701899E-07

0.24675365E-07

32

0.23075590E-02

0.20787739E+404

0.90843429E-08

0.12246846E-08

64

0.11539009E-02

0.10464045E4-04

0.86802672E-08

0.51323208E-08

Table 4: L?

errors of u in

Test 1 for Pé=1.E+06

RTh,

|  RTw

|  RTy.

|

RTyq

0.27348255E-06

0.12493936E+10

0.13313106E-06

0.22441098E-06

16

0.15627926E-07

0.47454176E+08

0.35134232E-07

0.69222706E-07

32

0.15255380E-07

0.80931090E+-08

0.13704492E-07

0.10388122E-07

64

0.97826386E-08

0.20381309E+-08

0.12701600E-07

0.39247399E-08

Table 5: L? errors of Vu in Test 1 for Pé=1.E406

1]

RTy,

RTyy

RTy.

RTyq

8

0.16994514E-05

0.49306646E-06

0.42581852E-05

0.22408193E-05

16

0.31802766E-06

0.17720979E401

0.32516391E-06

0.51235847E-06

32

0.83513808E-07

0.15533869E-06

0.71639581E-07

0.12256936E-06

64

0.37797137E-07

0.97959156E-07

0.41604712E-07

0.27102455E-07

Table 6: L? errors of DF(u) in Test 1 for Pé=1.E+06

numerical solution is practically exact for the Hermite
method RTy4, while second order convergence to u and
first order convergence to Vu are observed for Hermite
method RTj.. One may conclude that the latter method is
sensitive to the approximation of the curved boundary by
polygonal lines, because otherwise the numerical solution
would be exact up to round-off errors. On the other
hand, Tables 1 and 2 also show that the Raviart-Thomas
mixed method in the Douglas & Roberts version RTj,
produces linear convergence to w and practically exact
values of Vu, while no clear convergence rates to these
quantities can be observed for the version RTy,. This
seems to indicate that the curved boundary locks the
convergence properties of the latter method, since in [3] it
was proved to converge linearly in the case of polygonal
domains. As for convergence to DF(u), Table 3 gives
rise to somewhat surprising conclusions. Indeed, except
for RTj. all the methods yield practically exact values of
this quantity independently of the mesh in use. Actually
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the linear convergence to Awu of the laplacian of RTjy,
solutions, indicates here again how this method is affected
by the boundary approximation.

The results obtained for Pé= 10¢ are quite different from
those displayed in Tables 1 through 3. This is even
more remarkable as far as the mixed methods RTj, and
RTy, are concerned, for the latter method now generates
completely meaningless results. Method RTj, in turn is
still first order convergent to w, but is now practically
exact in terms of the computed values of Vu and Auw.
On the other hand both Hermite methods RTp. and
RTyy are practically exact for all the three quantities
being plotted. The authors have no explanation for such
favorable behaviors, since they were not reproduced in
other simulations, as seen from the test problems reported
below.

In the second battery of tests € is the unit square
(0,1) x (0,1) and u(zy,r2) = (1 — 22)(x2 — 23)/4. Uni-
form meshes were employed with 2(? triangles constructed
by first subdividing € into {?> equal squares and then
subdividing each one of these squares into two triangles
by means of the diagonal parallel to the line z; = x5. The
corresponding value of h is v/217'. In the figures captions
w is specified, together with the corresponding Péclet
numbers. The first thing to be noted is that in each test
case the results obtained with both Hermite methods
are practically the same. Referring to the two previous
sections the reader can notice that the main difference
between both methods relies on the way of approximating
w (by using either wj, and w}, or w). This suggests that
these different types of approximation play a negligible
role in practice, in the case of a polygonal domain. Owing
to this observation in the remainder of this Section both
methods RTy. and RTyy will be referred to as HRTy.

In Test-problem 2 the convergence properties of the
methods under study are checked numerically, and in this
aim m varies from 3 up to 6. Here w =Pév/2(x1;29)/2
for increasing Péclet numbers, namely, Pé= +/210"/2,
for n = 0,2,4. Next errors measured in the L?-norm
are shown for methods RTy,, R1o, and HRT,, as h
decreases. They are assigned to a figure with label a if
they correspond to u, to a figure with label b if they refer
to Vu, and to a figure with label c if they are associated
with DF(u). Figures 1, Figures 2 and Figures 3
correspond to Pé= 0.5\/5, Pé= 501/2 and Pée= 57000\@.
The lines with slope 1. and 2. corresponding to h and h?
are also drawn in the figures, so that convergence rates



can be better recognized.

Figure 1la
llelly
10-1 *; —e— h
| o h?
102 | ~*- BT
1 -8 RTy,
1073 - —— HRTj
104 |
10~
1076 4 T — T h
1/64 1/32 1/16 1/8
Figure 1: L? errors of u in Test 2 for Pé= .5/2.
Figure 1b
llell;
| -eo— h
10 1 o 12
y - A= RTOa
| » | = RTy
1072 -o- HRT,
1073 -
I I I T T TTT h
1/64 1/32 1/16 1/8

Figure 2: L? errors of Vu in Test 2 for Pé= .5v/2.

The displayed results can be summarized as follows:
For lower Péclet numbers the methods behave exactly as
predicted by the theoretical results given in the previous
sections. More particularly Figure la and Figure 2a
confirm that method HRITj is second order convergent
in L? while methods RTp, and RTy, converge linearly.
Moreover the solution gradient and laplacian converge
linearly for all the three methods as predicted, according
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Figure 1c
llell; |
101 | —o— h
B . h?
| -4~ Rlp,
) —=— Ry
1072 4 -~ HRT,
1073 -
1o
T T T T T 11T h
1/64 1/32 1/16 1/8

Figure 3: L? errors of DF(u) in Test 2 for Pé=.5v/2.

Figure 2a
llell,, -
1] —o—

10 1 . B2
102 | *- RToa

| —=- RTy,
1073 4 —o— HRT,
104 |
1070
1076 \ \ — T h

1/64 1/32 1/16 1/8

Figure 4: L? errors of u in Test 2 for Pé= 50.y/2.

to Figures 1b, Figures 1c, Figures 2b, Figures 2c.
As far as accuracy is concerned, one observes that when-
ever the order of convergence is the same methods H RTj
and RTj, are practically equivalent - i.e. in gradient and
laplacian computations -, and more accurate than RTyy.
As for results obtained for Pé= 5,000v/2 a completely
different behavior is observed as shown in Figure 3a,
Figure 3b and Figure 3c: methods RTy, and HRTj
diverge all the way, while method RTy, converges for u,
Vu and DF(u), though with unclear rates. Notice that
the errors of the flux divergence are rather large for Ry,
but this is normal since this variable is directly influenced
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Figure 5: L? errors of Vu in Test 2 for Pé= 50.v/2.
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Figure 6: L? errors of DF (u) in Test 2 for Pé= 50.1/2.

by the Péclet number.

The purpose of Test-problem 3 is to check the behavior
of each one of the methods RTy,, RTy, and HT as the
Péclet number varies, keeping the mesh fixed. More
precisely only the finest mesh among the above ones is
considered, that is | = 64, while now w =Pé(x?, 23)/v/2.
In Figure 4, Figure 5 and Figure 6 the L2-errors of
u, Vu and DF(u), respectively, are displayed, for Péclet
numbers equal to /210" where n ranges from 0 up to 4.

The conclusions to be drawn from these results can
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Figure 7: L? errors of u in Test 2 for Pé= 5000.1/2.
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Figure 8: L2 errors of Vu in Test 2 for Pé= 5000.v/2.

be summarized as follows. First of all one can say that
for Péclet numbers up to the magnitude of about 103
method H RTj is qualitatively superior to both RTy, and
RTyy, as far as the errors of u are concerned, as expected.
On the other hand methods HRTy and R1y, are rather
equivalent in terms of the approximations of Vu and
DF(u), whereas RTy, is fairly less accurate in both
respects. The second observation to be reported is that
the results obtained with HRTy and RT,, downgrade for
Pé greater than 10*. This also happens to RTp, but to
a much lesser extent. This fact could advocate in favor
of the latter method for high Péclet number simulations.
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Figure 9: L? errors of DF(u) in Test 2 for Pé= 5000./2.
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Figure 10: L? errors of u in Test 3 for I = 64 and increasing
pé

However in contrast one might recall the very bad findings
in the case of a curved boundary (cf. Test-problem 1).

CONCLUDING REMARKS

As a conclusion of the tests carried out in the previous sec-
tion, it can be asserted that the Hermite methods showed
an overall behavior better than their mixed analogs. Nev-
ertheless the authors have to make an important remark
on the solution of real-life convection-diffusion problems
with the methods considered in this study. As they should
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Figure 11: L? errors of Vu in Test 3 for [ = 64 and in-
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Figure 12: L? errors of DF(u) in Test 3 for [ = 64 and
increasing Pé

emphasize, none of them is to be employed as such in the
presence of sharp boundary layers, or even simply in finite
element simulations of processes at high Péclet numbers.
Indeed it is well-known that suitable recipes must be used
in order to overcome such a difficulty. One of the most pop-
ular is the SUPG formulation first proposed in [2], among
many variants or improvements implemented by several
authors since then. The proper way to adapt such tech-
niques to the Hermite elements studied in this paper is a
subject left for future work.
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